MATS442 Stochastic simulation — Problems 4, 7.2.2020

The problems marked with \mathbf{C} have a part which needs to be implemented in a computer programming language. Please return a single code file with the answers to these exercises by email to $\langle \text{santeri.j.karppinen}(\cdot at \cdot) jyu.fi \rangle$.

1. Prove simplified version of Proposition 5.1 (law of total variance): Suppose that X and Y are any random numbers in $\mathbb{X} = \{1, \ldots, m\}$, then

$$\operatorname{Var}(X) = \mathbb{E}[\operatorname{Var}(X \mid Y)] + \operatorname{Var}(\mathbb{E}[X \mid Y]).$$
(1)

Hints: If $(X,Y) \sim p$, that is, $\mathbb{P}(X = x, Y = y) = p(x,y)$, recall the decomposition $p(x,y) = p_Y(y)p_{X|Y}(x \mid y)$, where $p_Y(y) = \mathbb{P}(Y = y)$ is the marginal of Y and $p_{X|Y}(x \mid y)$ $y = \mathbb{P}(X = x \mid Y = y)$ is the conditional (for which you may assume for simplicity that $p_Y(y) > 0$ so that $p_{X|Y}$ is well-defined...)

Recall that for any function $f : \mathbb{X} \to \mathbb{R}$:

- $\begin{array}{ll} \text{(i)} & \mathbb{E}[f(X) \mid Y] = \sum_{x \in \mathbb{X}} f(x) p_{X \mid Y}(x \mid Y) \\ \text{(ii)} & \mathbb{E}[\mathbb{E}[f(X) \mid Y]] = \sum_{y \in \mathbb{X}} p_Y(y) \mathbb{E}[f(X) \mid Y = y] = \mathbb{E}[f(X)] \\ \text{(iii)} & \operatorname{Var}(X \mid Y) = \mathbb{E}[X^2 \mid Y] (\mathbb{E}[X \mid Y])^2 \end{array}$
- Prove Proposition 6.16: Show that the Metropolis-Hastings transition probability K is 2. reversible with respect to p (in case X is countable). Hints:
 - (i) Use Proposition 6.15 to start with.
 - (ii) Consider first the case x = y.
 - (iii) Continue then to the case $x \neq y$.
 - Consider the case q(x, y) > 0 and q(y, x) > 0.
 - Consider finally the case q(x, y) = 0 or q(y, x) = 0.

Remember the properties of $\min\{\cdot, \cdot\}$ proved in the last problems class!

3.R Recall that a Binom (m, β) p.m.f. is given as

$$p(k) = \binom{m}{k} \beta^k (1-\beta)^{m-k}, \qquad k \in \mathbb{X} := \{0, \dots, m\}.$$

- (a) Implement a Metropolis-Hastings algorithm which targets p and uses q(k, j) = (m + j) $(1)^{-1}$ for all $k, j \in \mathbb{X}$. Hint: You can use logpdf(Binomial(m, beta), y) from the Distributions package to calculate $\log p(y)$ and use it in your algorithm.
- (b) Apply your algorithm to the case of Binom(100, 0.9), and construct an estimator for $\mathbb{E}_p[X]$ using 100000 samples.
- (c) What was the acceptance rate, that is, the number of accepted proposals compared to steps of your algorithm?
- **4.R** Let p be Binom (n, β) p.m.f. as above, but
 - (a) Implement now a Metropolis-Hastings algorithm where your proposals are generated as

$$Y_k = X_{k-1} + [Z_k],$$

where [x] stands for rounding (round in Julia; nearest integer to x)¹, and $Z_k \overset{\text{i.i.d.}}{\sim}$ $N(0, \sigma^2)$, with $\sigma^2 = 5m\beta(1-\beta)$.

Hint: Do not try to calculate q(k, j) but think what properties it has.

^{1.} Do not care about borderline cases, because they happen with probability zero anyway.

- (b) Use your algorithm in case of Binom(100, 0.9) and construct an estimator for $\mathbb{E}_p[X]$ using 100000 samples.
- (c) Study empirically the mean and variance of your estimator and compare them against the variance of the estimator in Problem 3.
- **5.R** Suppose your model is given as $V \sim U(0, 10)$ and $Y_i \mid V \stackrel{\text{i.i.d.}}{\sim} N(0, V)$ for $i = 1, \ldots, 10$, and you want to study the distribution p(v), which is the conditional density $V \mid Y_1 = y_1, \ldots, Y_{10} = y_{10}$ where y_i are given as

$$y = [0.32, 0.27, 0.24, -0.09, -0.15, 0.43, -0.53, -0.38, -0.01, -0.04]$$

Note that $p(v) \propto p_V(v) \prod_{i=1}^{10} p_Y(y_i \mid v)$ where p_V is the U(0, 10) density and $p_Y(\cdot \mid v)$ is the N(0, v) density.

(a) Implement MCMC with proposals of the form

$$V'_k = V_{k-1} + W_k, \qquad W_k \stackrel{\text{i.i.d.}}{\sim} N(0, 0.1^2),$$

and estimate $\mathbb{E}_p[V]$ and $\operatorname{Var}_p[V]$.

(b) Implement MCMC with proposals of the form

$$\log(V'_k) = \log(V_{k-1}) + W_k, \qquad W_k \stackrel{\text{i.i.d.}}{\sim} N(0, 1^2).$$

Check that you get the same result as in (a)!

Hint: Think carefully what the proposal density is. You may also think the problem using transformed target density...

6. Suppose that p_u is an unnormalised p.d.f. on \mathbb{R} , which is unimodal: p_u is continuous, increasing in $(-\infty, \beta]$ and decreasing in $[\beta, \infty)$ for some $\beta \in \mathbb{R}$.

Consider the following unnormalised density: $\tilde{p}_u(x,t) := \mathbf{1} (0 \le t \le p_u(x))$ on \mathbb{R}^2 .

- (a) Sketch the set $\{(x,t) \in \mathbb{R}^2 : 0 \le t \le p_u(x)\}$.
- (b) Suppose that for any $0 \le p_* < p_u(\beta)$, you can calculate $x_- < x_+$ such that $p_u(x_-) = p_* = p_u(x_+)$. Describe a Gibbs sampling algorithm $(X_k, T_k)_{k\ge 1}$ targetting $\tilde{p}(x, t) \propto \tilde{p}_u(x, t)$.
- (c) Suppose that $(X_k, T_k)_{k\geq 1}$ is the outcome of the Gibbs sampling algorithm. Where does

$$\frac{1}{n}\sum_{k=1}^{n}f(X_k)$$

converge to?

The procedure described above is called *slice sampling*. Can you guess how the algorithm can be generalised to p_u on \mathbb{R}^d ?