
MATS442 Stochastic simulation — Problems 4, 7.2.2020

The problems marked with C have a part which needs to be implemented in a computer
programming language. Please return a single code file with the answers to these exercises
by email to 〈santeri.j.karppinen(·at·)jyu.fi〉.

1. Prove simplified version of Proposition 5.1 (law of total variance): Suppose that X and Y
are any random numbers in X = {1, . . . ,m}, then

Var(X) = E[Var(X | Y )] + Var(E[X | Y ]). (1)

Hints: If (X, Y ) ∼ p, that is, P(X = x, Y = y) = p(x, y), recall the decomposition
p(x, y) = pY (y)pX|Y (x | y), where pY (y) = P(Y = y) is the marginal of Y and pX|Y (x |
y) = P(X = x | Y = y) is the conditional (for which you may assume for simplicity that
pY (y) > 0 so that pX|Y is well-defined. . . )

Recall that for any function f : X→ R:

(i) E[f(X) | Y ] =
∑

x∈X f(x)pX|Y (x | Y )
(ii) E[E[f(X) | Y ]] =

∑
y∈X pY (y)E[f(X) | Y = y] = E[f(X)]

(iii) Var(X | Y ) = E[X2 | Y ]− (E[X | Y ])2

2. Prove Proposition 6.16: Show that the Metropolis-Hastings transition probability K is
reversible with respect to p (in case X is countable).
Hints:

(i) Use Proposition 6.15 to start with.
(ii) Consider first the case x = y.

(iii) Continue then to the case x 6= y.
• Consider the case q(x, y) > 0 and q(y, x) > 0.
• Consider finally the case q(x, y) = 0 or q(y, x) = 0.

Remember the properties of min{ · , · } proved in the last problems class!

3.R Recall that a Binom(m,β) p.m.f. is given as

p(k) =

(
m

k

)
βk(1− β)m−k, k ∈ X := {0, . . . ,m}.

(a) Implement a Metropolis-Hastings algorithm which targets p and uses q(k, j) = (m+
1)−1 for all k, j ∈ X. Hint: You can use logpdf(Binomial(m, beta), y) from the
Distributions package to calculate log p(y) and use it in your algorithm.

(b) Apply your algorithm to the case of Binom(100, 0.9), and construct an estimator
for Ep[X] using 100000 samples.

(c) What was the acceptance rate, that is, the number of accepted proposals compared
to steps of your algorithm?

4.R Let p be Binom(n, β) p.m.f. as above, but

(a) Implement now a Metropolis-Hastings algorithm where your proposals are generated
as

Yk = Xk−1 + [Zk],

where [x] stands for rounding (round in Julia; nearest integer to x)1, and Zk
i.i.d.∼

N(0, σ2), with σ2 = 5mβ(1− β).
Hint: Do not try to calculate q(k, j) but think what properties it has.

1. Do not care about borderline cases, because they happen with probability zero anyway.



(b) Use your algorithm in case of Binom(100, 0.9) and construct an estimator for Ep[X]
using 100000 samples.

(c) Study empirically the mean and variance of your estimator and compare them
against the variance of the estimator in Problem 3.

5.R Suppose your model is given as V ∼ U(0, 10) and Yi | V
i.i.d.∼ N(0, V ) for i = 1, . . . , 10,

and you want to study the distribution p(v), which is the conditional density V | Y1 =
y1, . . . , Y10 = y10 where yi are given as

y = [0.32, 0.27, 0.24,−0.09,−0.15, 0.43,−0.53,−0.38,−0.01,−0.04].

Note that p(v) ∝ pV (v)
∏10

i=1 pY (yi | v) where pV is the U(0, 10) density and pY ( · | v) is
the N(0, v) density.

(a) Implement MCMC with proposals of the form

V ′k = Vk−1 +Wk, Wk
i.i.d.∼ N(0, 0.12),

and estimate Ep[V ] and Varp[V ].
(b) Implement MCMC with proposals of the form

log(V ′k) = log(Vk−1) +Wk, Wk
i.i.d.∼ N(0, 12).

Check that you get the same result as in (a)!
Hint: Think carefully what the proposal density is. You may also think the problem
using transformed target density. . .

6. Suppose that pu is an unnormalised p.d.f. on R, which is unimodal: pu is continuous,
increasing in (−∞, β] and decreasing in [β,∞) for some β ∈ R.

Consider the following unnormalised density: p̃u(x, t) := 1 (0 ≤ t ≤ pu(x)) on R2.

(a) Sketch the set {(x, t) ∈ R2 : 0 ≤ t ≤ pu(x)}.
(b) Suppose that for any 0 ≤ p∗ < pu(β), you can calculate x− < x+ such that pu(x−) =

p∗ = pu(x+). Describe a Gibbs sampling algorithm (Xk, Tk)k≥1 targetting p̃(x, t) ∝
p̃u(x, t).

(c) Suppose that (Xk, Tk)k≥1 is the outcome of the Gibbs sampling algorithm. Where
does

1

n

n∑
k=1

f(Xk)

converge to?

The procedure described above is called slice sampling. Can you guess how the algorithm
can be generalised to pu on Rd?


