MATS442 Stochastic simulation — Problems 3, 31.1.2020

The problems marked with **C** have a part which needs to be implemented in a computer programming language. Please return your implementation by email to $\langle \text{santeri.j.karppinen}(\cdot at \cdot) jyu.fi \rangle$.

- 1. Consider the following properties of min and max.
 - (a) Prove the following result: Let $x, y \in A \subset \mathbb{R}$ and let $f : A \to \mathbb{R}$ be non-decreasing. Then, $f(\min\{x, y\}) = \min\{f(x), f(y)\}.$
 - (b) Suppose $x, y \in A \subset \mathbb{R}$ and $f : A \to \mathbb{R}$ is non-increasing. What is the expression for $f(\min\{x, y\})$?
 - (c) What happens if you replace min with max in (a) and (b)?
- **2.C** (Construction of IS confidence intervals.)

Consider Example 4.16, with $x_0 = 4$, that is, consider the importance sampling estimator

$$I_{p,q}^{(n)}(\mathbf{1}(\cdot \ge 4)) = \frac{1}{n4\sqrt{2\pi}} \sum_{k=1}^{n} \exp\left(-\frac{Y_i^2}{2} + 4(Y_i - 4)\right),$$

where $Y_i = \tilde{Y}_i + x_0$ where $(\tilde{Y}_i) \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(4)$ (cf. Example 2.2).

- (a) Implement a function which calculates the importance sampling estimator and the associated 95% confidence interval.
- (b) Use antithetic variable technique to reduce the variance of the estimator, and construct a confidence interval for the antithetic estimator.
- **3.C** Let $m \ge 1$ and suppose $p(1), \ldots, p(m) > 0$ with $\sum_{i=1}^{m} p(i) = 1$, that is, $p(\cdot)$ defines a p.m.f. on $\mathbb{X} = \{1, \ldots, m\}$, and let $f : \mathbb{X} \to \mathbb{R}$.
 - (a) The given Julia function discrete_from_uniform implements the method of Theorem 2.3 (finds the K corresponding a U).
 - (b) Implement a stratified sampling approach for uniforms as in Example 5.10, and use the given Julia function to approximate

$$\mathbb{E}_p[f(X)] = \sum_{i=1}^m p(i)f(i).$$

- (c) Try your function with f(i) = i and $p(i) \propto i$ for $i \in \mathbb{X} = \{1, \dots, 10\}$.
- (d) Try what happens with n = 55 (repeat the experiment a few times). Can you explain why?

(* Optional extra): Think what is the *complexity* of your algorithm in (b). That is, what is the order of computer operations your algorithm needs to perform in terms of m and n? Try to design an algorithm which is O(m + n).

- 4.C Suppose that we are interested in estimating the mean and the second moment of the random variable Y, where $Y \mid X \sim N(X, X^2)$ (that is, Y given X = x is a Gaussian with mean x and variance x^2) and where $X \sim \mathcal{U}(-1, 1)$.
 - (a) Use Monte Carlo directly: Produce realisations of Y and compute the empirical mean and the second moment of Y.
 - (b) Use Rao-Blackwellisation and produce the same estimates of Y using only realisations $(X_k) \stackrel{\text{i.i.d.}}{\sim} p$.
 - (Hint: Compute first $\mathbb{E}[Y \mid X = x]$ and $\mathbb{E}[Y^2 \mid X = x]$.)
 - (c) Compare the sample variance of the two estimators.

Complete the proof of Theorem 4.23 (ii): assuming $q(x) = 0 \implies p(x) = 0$, $\mathbb{E}_p[w(X)] < \infty$ and and $\bar{\sigma}_{p,q}^2 := \mathbb{E}_p[w(X)\bar{f}^2(X)] < \infty$, where $\bar{f}(x) = f(x) - \mathbb{E}_p[f(X)]$, show that 5.

$$v_{p,q}^{(n)} := \sum_{k=1}^{n} (W_k^{(n)})^2 \left[f(Y_k) - \hat{I}_{p,q}^{(n)}(f) \right]^2 \qquad \text{satisfies} \qquad n v_{p,q}^{(n)} \xrightarrow{n \to \infty} \bar{\sigma}_{p,q}^2$$

Hints:

- (i) Recall that $f(Y_k) \hat{I}_{p,q}^{(n)}(f) = \bar{f}(Y_k) \hat{I}_{p,q}^{(n)}(\bar{f})$. (ii) Notice that (for *n* large enough such that $\sum_{j=1}^n w_u(Y_j) > 0$)

$$n(W_k^{(n)})^2 = \frac{\frac{1}{n}w_u^2(Y_k)}{\left(\frac{1}{n}\sum_{j=1}^n w_u(Y_j)\right)^2}.$$

(iii) Using these, show that

$$nv_{p,q}^{(n)} = \frac{\left(\frac{1}{n}\sum_{k=1}^{n}w_{u}^{2}(Y_{k})\bar{f}^{2}(Y_{k})\right) + R(n)}{\left(\frac{1}{n}\sum_{j=1}^{n}w_{u}(Y_{j})\right)^{2}},$$

and observe that the term $R(n) \to 0$ as $n \to \infty$.

- (iv) Conclude your proof by showing that the remaining expression (with R(n) removed) converges to $\bar{\sigma}_{p,q}^2$.
- Consider the following Fisher-Yates shuffle algorithm: Define the vector a := (1, 2, ..., n). 6. Then, for $k = n, k = n - 1, \ldots, k = 2$ repeat
 - (i) Pick an independent $J_k \sim \mathcal{U}(\{1, \ldots, k\})$.
 - (ii) Exchange the elements $a_k \leftrightarrow a_{J_k}$.

Report the final vector a as a random permutation of $\{1, \ldots, n\}$, that is, each permutation is equally likely.

- (a) How can you transform $U \sim \mathcal{U}(0, 1)$ into $j \sim \mathcal{U}(\{1, \dots, k\})$ efficiently?
- (b) Show that the vector a after applying the above algorithm is a random permutation of $\{1, ..., n\}$.

(Hint: Start by computing the distribution of a_n , then $a_{n-1} \mid a_n, \ldots$ and finally $a_1 \mid a_2, \ldots, a_n$.)