
MATS442 Stochastic simulation — Problems 3, 31.1.2020

The problems marked with C have a part which needs to be implemented in a
computer programming language. Please return your implementation by email to
〈santeri.j.karppinen(·at·)jyu.fi〉.

1. Consider the following properties of min and max.

(a) Prove the following result: Let x, y ∈ A ⊂ R and let f : A→ R be non-decreasing.
Then, f(min{x, y}) = min{f(x), f(y)}.

(b) Suppose x, y ∈ A ⊂ R and f : A→ R is non-increasing. What is the expression for
f(min{x, y})?

(c) What happens if you replace min with max in (a) and (b)?

2.C (Construction of IS confidence intervals.)

Consider Example 4.16, with x0 = 4, that is, consider the importance sampling estimator
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where Yi = Ỹi + x0 where (Ỹi)
i.i.d.∼ Exp(4) (cf. Example 2.2).

(a) Implement a function which calculates the importance sampling estimator and the
associated 95% confidence interval.

(b) Use antithetic variable technique to reduce the variance of the estimator, and con-
struct a confidence interval for the antithetic estimator.

3.C Let m ≥ 1 and suppose p(1), . . . , p(m) > 0 with
∑m

i=1 p(i) = 1, that is, p( · ) defines a
p.m.f. on X = {1, . . . ,m}, and let f : X→ R.

(a) The given Julia function discrete_from_uniform implements the method of The-
orem 2.3 (finds the K corresponding a U).

(b) Implement a stratified sampling approach for uniforms as in Example 5.10, and use
the given Julia function to approximate

Ep[f(X)] =
m∑
i=1

p(i)f(i).

(c) Try your function with f(i) = i and p(i) ∝ i for i ∈ X = {1, . . . , 10}.
(d) Try what happens with n = 55 (repeat the experiment a few times). Can you explain

why?

(* Optional extra): Think what is the complexity of your algorithm in (b). That is, what
is the order of computer operations your algorithm needs to perform in terms of m and
n? Try to design an algorithm which is O(m+ n).

4.C Suppose that we are interested in estimating the mean and the second moment of the
random variable Y , where Y | X ∼ N(X,X2) (that is, Y given X = x is a Gaussian with
mean x and variance x2) and where X ∼ U(−1, 1).

(a) Use Monte Carlo directly: Produce realisations of Y and compute the empirical
mean and the second moment of Y .

(b) Use Rao-Blackwellisation and produce the same estimates of Y using only realisa-

tions (Xk)
i.i.d.∼ p.

(Hint: Compute first E[Y | X = x] and E[Y 2 | X = x].)
(c) Compare the sample variance of the two estimators.



5. Complete the proof of Theorem 4.23 (ii): assuming q(x) = 0 =⇒ p(x) = 0, Ep[w(X)] <
∞ and and σ̄2

p,q := Ep[w(X)f̄ 2(X)] <∞, where f̄(x) = f(x)− Ep[f(X)], show that
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Hints:

(i) Recall that f(Yk)− Î(n)p,q (f) = f̄(Yk)− Î(n)p,q (f̄).
(ii) Notice that (for n large enough such that
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(iii) Using these, show that
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and observe that the term R(n)→ 0 as n→∞.
(iv) Conclude your proof by showing that the remaining expression (with R(n) removed)

converges to σ̄2
p,q.

6. Consider the following Fisher-Yates shuffle algorithm: Define the vector a := (1, 2, . . . , n).
Then, for k = n, k = n− 1, . . . , k = 2 repeat

(i) Pick an independent Jk ∼ U({1, . . . , k}).
(ii) Exchange the elements ak ↔ aJk .

Report the final vector a as a random permutation of {1, . . . , n}, that is, each permutation
is equally likely.

(a) How can you transform U ∼ U(0, 1) into j ∼ U({1, . . . , k}) efficiently?
(b) Show that the vector a after applying the above algorithm is a random permutation

of {1, . . . , n}.
(Hint: Start by computing the distribution of an, then an−1 | an, . . . and finally
a1 | a2, . . . , an.)


