
MATS442 Stochastic simulation — Problems 2, 24.1.2020

1. Suppose F1(x), F2(x), . . . , Fn(x) are continuous and strictly increasing c.d.f.s on R.

(a) Suppose α ∈ (0, 1). Let Y1 ∼ F1 and Y2 ∼ F2, and let U ∼ U(0, 1) be independent
of Y1 and Y2. Define X as follows

X :=

{
Y1, if U ≤ α

Y2, if U > α.

Determine the c.d.f. of X.

(b) Suppose w1, . . . , wn ≥ 0 with
∑

iwi = 1. Describe an algorithm to simulate from
c.d.f.

F (x) =
n∑
i=1

wiFi(x),

using random variables Y1 ∼ F1, . . . , Yn ∼ Fn and an independent U ∼ U(0, 1).

2. Suppose you have a sample X ∼ p, where p is a density on R, and a, b ∈ R are constants
with a 6= 0. Find a method to transform X to Y ∼ q, with the density

q(x) =
1

|a|
p

(
x− b
a

)
.

3. Suppose we are interested in simulating a distribution with density

p(x) =

{√
2
π

exp
(
− 1

2
x2
)
, x ≥ 0

0, otherwise.

(a) How can you use rejection sampling to simulate X ∼ p with proposal density
N(0, 1)?

(b) How can you transform Z ∼ N(0, 1) directly to X ∼ p?

4.C Suppose that we are interested in the probability

P(Z ≥ 6), where Z ∼ N(0, 1).

Try to estimate this ‘rare event probability’ by using N = 1000000 samples with

(a) Classical Monte Carlo. (Hint: You can draw standard normal random variables with
Julia function randn)

(b) Importance sampling with importance distribution

q(x) =

{√
2
π

exp
(
− 1

2
(x− 6)2

)
, x ≥ 6

0, otherwise.

(Hint: Problems 2 and 3.)

Repeat the tests 100 times and compare the results. Which method seems more reliable?



5.C Consider the rare-event simulation example in the lectures, but a bit more generally.

• Suppose p(x) is the normal density with µ ∈ R and variance σ2 > 0.
• Suppose q(y) := r exp

(
− r(y − x0)

)
1 (y ≥ x0) is a shifted exponential.

• We want to estimate
∫∞
x0
p(y)dy with x0 > µ.

Write a R function which takes µ, σ, x0 and number of samples n as arguments, and
returns the corresponding importance sampling estimate.

• Determine r so that (log p)′(x0) = (log q)′)(x0).
• Use only uniform random variables (rand()) in your function.

6.C Suppose we are interested in Bayesian logistic regression based on the model Yi ∼
Bernoulli(πi) where log( πi

1−πi ) = α + βXi, with a Gaussian prior. That is, consider a
bivariate density

p(α, β) ∝ exp
(
− 1

8

(
α2 + β2

)) N∏
i=1

π
1(yi=1)
i (1− πi)1(yi=0) with πi = logit−1(α + βxi),

and where logit−1(x) = ex/(1 + ex). The following code generates “data”
(x1, y1), . . . , (x100, y100) using the model with α = −2 and β = 2, and defines a func-
tion returning values − log pu(θ) where θ = (α, β)T :

using Random; Random.seed!(123)

N = 100; alpha = -2; beta = 2; x = sort(rand(N)*3)

plogis(x) = exp(x)/(1 + exp(x)) # Inverse logit

pi_ = plogis.(alpha .+ beta*x); y = rand(N).<pi_

function nlog_p(theta)

a = theta[1]; b = theta[2]; L = 0.125*(a^2+b^2)

for k = 1:length(y)

L -= y[k] ? log(plogis(a + b*x[k])) : log(1.0-plogis(a + b*x[k]))

end

L

end

The Laplace approximation of a density p is based on a (second-order) Taylor expansion
of log pu around its mode:

using Optim # Install by: Using Pkg; Pkg.add("Optim")

func = TwiceDifferentiable(nlog_p, zeros(2))

o = optimize(func, zeros(2), NelderMead()); m = o.minimizer

S = inv(Optim.hessian!(func, m)); S = (S+S')/2

The Laplace approximation q ≈ p is then q(α, β) = N
(
(α, β);m,S

)
.

(i) Use q as a proposal for self-normalised importance sampling, with 10000 samples,
and calculate an estimate of

P
(
α ∈ [−2± 0.5], β ∈ [2± 0.5] | y1, . . . , y40

)
=

∫ −1.5
−2.5

[ ∫ 2.5

1.5

p(α, β)dβ

]
dα.

(ii) Construct a 95% confidence interval for your estimate.

(iii) Calculate also a Monte Carlo estimate of
∫ −1.5
−2.5

[ ∫ 2.5

1.5
q(α, β)dβ

]
dα.1

(iv) Inspect the weights (e.g. looking at the histogram and using 3-dimensional scatter;
how do the weights look like near m?)

1. This may be regarded as a direct approximation of the integral of interest, relying on q ≈ p. . .


