
MATS442 Stochastic simulation — Problems 1, 17.1.2020

The problems marked with C have a part which needs to be implemented in a
computer programming language. Please return your implementation by email to
〈santeri.j.karppinen(·at·)jyu.fi〉.

1. Consider the rain drops example: Assume (Hn)n≥1
i.i.d.∼ Bernoulli(π/4), and suppose that

we estimate the value of π by computing Monte Carlo estimates I
(n)
p (f) with f(h) := 4h.

(a) Compute Varp
(
f(X)

)
. (Hint: Remember that Var(Y ) = E[Y 2]− (EY )2.)

(b) Determine how big n must be chosen in order to attain an error less than 0.1 with
probability at least 95%. Do this both with

i) The asymptotic error result.
ii) The bound from Chebychev’s inequality.

(c) How does n change above if the error must be less than 0.01 (keeping the same
probability ≥ 95%).

(d) (* optional) How does n change if the error must be less than 0.1 but the probability
is ≥ 99%?

(e) (*) What about if you use the Hoeffding inequality?

2.C Consider the rain drops example as in Problem 1.

(a) Write a function which simulates n independent Bernoulli(π/4) random variables
and calculates an asymptotic confidence interval for the average.
Your function should be defined as

using Distributions, Statistics

function est_pi(n, pr)

# Simulate, calculate mean m and confidence interval width d

(est=m, tol=d)

end

where n is the number of smples and pr is the asymptotic probability of the con-
fidence interval (like 0.95 for a 95% CI). The output est should contain your
estimator (mean) and tol the confidence interval width, so that the CI is est±tol.
(Hint: You may use rand(Bernoulli(p), n) to simulate n samples from
Bernoulli(p), mean to calculate the average and var for the sample variance (or
std for the standard deviation). The standard normal quantile function Φ(t) is
quantile(Normal(0,1), t).)

(b) Use your function to calculate the estimator and 95% confidence interval with 100
samples.

(c) Calculate 1000 estimators and related confidence intervals, and check how often the
true value was within your confidence interval.

3. Show that if U1, U2
i.i.d.∼ U(0, 1), then the random vector (R, T ) has a density

pR,T (r, t) =

{
1
2π
re−r

2/2, 0 < t < 2π, 0 < r <∞,
0, otherwise,

where R =
√
−2 logU1 and T = 2πU2.

(Hint: Observe first that R and T are independent.)

4.C Let p be the Cauchy p.d.f., that is, for x ∈ R,

p(x) =
1

π(1 + x2)
.



(a) Find an algorithm which generates X ∼ p using U ∼ U(0, 1).
(b) Implement your method and check that you got it right by inspecting the histogram

of 10000 simulated values.
(Hint: If x is a vector of simulated values, you may write

using Plots # Install by using Pkg; Pkg.add("Plots")

h = histogram(x, normalize=true, bins=LinRange(-4,4,20))

p(t) = 1/(pi*(1+t^2)) # same as function p(t) 1/(pi*(1+t^2)) end

t = LinRange(-4, 4, 500)

plot!(h, t, p.(t))

which shows the histogram within [−4, 4] normalised so that it matches the density.)

5. Suppose p : R → (0,∞) is a continuous p.d.f., and let F (x) =
∫ x
−∞ p(y)dy denote the

corresponding c.d.f..

Let U ∼ U(0, 1) and −∞ < a < b <∞. Find the distribution of

(a) Yb := F−1(F (b)U),
(b) Ya,b := F−1

(
F (a)(1− U) + F (b)U

)
, and

(c) Ya := F−1
(
F (a) + (1− F (a))U

)
.

(Hint: Find first the distribution of Zb := F (b)U , Za,b := F (a)(1 − U) + F (b)U and
Za := F (a) + (1− F (a))U , and draw a picture.)

6.C The early PRNGs were mostly linear congruential generators, that is, based on a recursion
of the form

Zn = (aZn−1 + c) mod M,

with some parameters a, c,M ∈ N with a, c < M and a seed Z0 < M . Then, Un := Zn/M
were “random uniform U(0, 1).”

Implement the above PRNG with M = 231, a = 216 + 3 and c = 0 and any Z0 ∈ [0,M)
you want.

(a) Plot 100 samples produced by your generator (plot(u)), and inspect visually
whether the produced samples seem i.i.d. U(0, 1).

(b) Produce 3000 uniform samples from a unit cube with your generator, that is, Vk =
(U3k+1,3k+2,3k+3), and plot them and inspect the randomness as above.
(Hint: Produce 9000 points from your generator to the vector u and you can plot
them by:

using Plots; plotly()

scatter(u[1:3:end], u[2:3:end], u[3:3:end], markersize=1)

You can rotate the figure with mouse.)


