MATS442 Stochastic simulation - Problems 1, 17.1.2020

The problems marked with \mathbf{C} have a part which needs to be implemented in a computer programming language. Please return your implementation by email to〈santeri.j.karppinen(•at•)jyu.fi〉.

1. Consider the rain drops example: Assume $\left(H_{n}\right)_{n \geq 1} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Bernoulli}(\pi / 4)$, and suppose that we estimate the value of π by computing Monte Carlo estimates $I_{p}^{(n)}(f)$ with $f(h):=4 h$.
(a) Compute $\operatorname{Var}_{p}(f(X))$. (Hint: Remember that $\operatorname{Var}(Y)=\mathbb{E}\left[Y^{2}\right]-(\mathbb{E} Y)^{2}$.)
(b) Determine how big n must be chosen in order to attain an error less than 0.1 with probability at least 95%. Do this both with
i) The asymptotic error result.
ii) The bound from Chebychev's inequality.
(c) How does n change above if the error must be less than 0.01 (keeping the same probability $\geq 95 \%$).
(d) (* optional) How does n change if the error must be less than 0.1 but the probability is $\geq 99 \%$?
(e) $\left(^{*}\right)$ What about if you use the Hoeffding inequality?
2.C Consider the rain drops example as in Problem 1.
(a) Write a function which simulates n independent $\operatorname{Bernoulli}(\pi / 4)$ random variables and calculates an asymptotic confidence interval for the average.
Your function should be defined as
```
using Distributions, Statistics
function est_pi(n, pr)
    # Simulate, calculate mean m and confidence interval width d
    (est=m, tol=d)
end
```

where n is the number of smples and pr is the asymptotic probability of the confidence interval (like 0.95 for a $95 \% \mathrm{CI}$). The output est should contain your estimator (mean) and tol the confidence interval width, so that the CI is est $\pm \mathrm{tol}$. (Hint: You may use rand(Bernoulli(p), n) to simulate n samples from Bernoulli(p), mean to calculate the average and var for the sample variance (or std for the standard deviation). The standard normal quantile function $\Phi(t)$ is quantile(Normal $(0,1), \mathrm{t})$.)
(b) Use your function to calculate the estimator and 95% confidence interval with 100 samples.
(c) Calculate 1000 estimators and related confidence intervals, and check how often the true value was within your confidence interval.
3. Show that if $U_{1}, U_{2} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}(0,1)$, then the random vector (R, T) has a density

$$
p_{R, T}(r, t)= \begin{cases}\frac{1}{2 \pi} r e^{-r^{2} / 2}, & 0<t<2 \pi, 0<r<\infty \\ 0, & \text { otherwise }\end{cases}
$$

where $R=\sqrt{-2 \log U_{1}}$ and $T=2 \pi U_{2}$.
(Hint: Observe first that R and T are independent.)
4.C Let p be the Cauchy p.d.f., that is, for $x \in \mathbb{R}$,

$$
p(x)=\frac{1}{\pi\left(1+x^{2}\right)} .
$$

(a) Find an algorithm which generates $X \sim p$ using $U \sim \mathcal{U}(0,1)$.
(b) Implement your method and check that you got it right by inspecting the histogram of 10000 simulated values.
(Hint: If x is a vector of simulated values, you may write

```
using Plots # Install by using Pkg; Pkg.add("Plots")
h = histogram(x, normalize=true, bins=LinRange(-4,4,20))
p(t) = 1/(pi*(1+t^2)) # same as function p(t) 1/(pi*(1+t^2)) end
t = LinRange(-4, 4, 500)
plot!(h, t, p.(t))
```

which shows the histogram within $[-4,4]$ normalised so that it matches the density.)
5. Suppose $p: \mathbb{R} \rightarrow(0, \infty)$ is a continuous p.d.f., and let $F(x)=\int_{-\infty}^{x} p(y) \mathrm{d} y$ denote the corresponding c.d.f..

Let $U \sim \mathcal{U}(0,1)$ and $-\infty<a<b<\infty$. Find the distribution of
(a) $Y_{b}:=F^{-1}(F(b) U)$,
(b) $Y_{a, b}:=F^{-1}(F(a)(1-U)+F(b) U)$, and
(c) $Y_{a}:=F^{-1}(F(a)+(1-F(a)) U)$.
(Hint: Find first the distribution of $Z_{b}:=F(b) U, Z_{a, b}:=F(a)(1-U)+F(b) U$ and $Z_{a}:=F(a)+(1-F(a)) U$, and draw a picture.)
6.C The early PRNGs were mostly linear congruential generators, that is, based on a recursion of the form

$$
Z_{n}=\left(a Z_{n-1}+c\right) \quad \bmod M,
$$

with some parameters $a, c, M \in \mathbb{N}$ with $a, c<M$ and a seed $Z_{0}<M$. Then, $U_{n}:=Z_{n} / M$ were "random uniform $\mathcal{U}(0,1)$."

Implement the above PRNG with $M=2^{31}, a=2^{16}+3$ and $c=0$ and any $Z_{0} \in[0, M)$ you want.
(a) Plot 100 samples produced by your generator (plot(u)), and inspect visually whether the produced samples seem i.i.d. $\mathcal{U}(0,1)$.
(b) Produce 3000 uniform samples from a unit cube with your generator, that is, $V_{k}=$ $\left(U_{3 k+1,3 k+2,3 k+3}\right)$, and plot them and inspect the randomness as above.
(Hint: Produce 9000 points from your generator to the vector u and you can plot them by:

```
using Plots; plotly()
scatter(u[1:3:end], u[2:3:end], u[3:3:end], markersize=1)
```

You can rotate the figure with mouse.)

