
About BUGS (*)

The BUGS (Bayesian inference Using Gibbs Sampling) software [27] is an imple-
mentation of Gibbs sampling (and sometimes also other Metropolis-within-Gibbs
updates). The user supplies only the model (using a specialised ‘programming
language’) and the data, and the BUGS software outputs MCMC simulation of a
given length.

The model is given in BUGS by specifying the joint distribution p̂

p̂(x(1:d)) = p1(x
(1))

dY

i=2

pi(x
(i) | x(1:i�1)),

where ‘x(1:i)’ is a shorthand for ‘x(1), . . . , x(i). This specifies p̂ fully, and on the
other hand, any d-dimensional distribution p̂ can be factored like this.

Usually, the model is sparse, that is, pi(x(i) | x(1:i�1)) do not depend on all
x(1:i�1), but on a subset of ‘parent’ variables. This reflects conditional indepen-
dencies, which define a directed acyclic graph. For instance, a Markov chain with
initial distribution � and transition probability P could be given as above, where
p1 = � and pi(x(i) | x(1:i�1)) = P (x(i�1), x(i)) for i � 2.

The distribution of interest p is a conditional distribution of p̂, given some
‘data’. For instance, if the first two variables X(1) = x(1)

⇤ and X(2) = x(2)

⇤ were
observed, and the others not, then the MCMC targets the posterior distribution
of X(3:d) | X(1:2) = x(1:2)

⇤ which satisfies

p(x(3:d)) / pu(x
(3:d)) = p̂(x(1)

⇤ , x(2)

⇤ , x(3:d)).

This can be simulated with (Metropolis-within-)Gibbs that updates only the un-
observed x(3:d), one at a time.

6.7 Langevin-type proposals (*)

One way to construct proposal distributions q(x, y) in the Metropolis-Hastings
algorithm is to use random-walk like proposals, but also use r log p(x) to ‘inform’
the direction of proposals, based on the shape of p around x. The simplest such
proposal is of the ‘Langevin’ type, where

Yk = Xk�1 +
⌧

2
r log p(Xk�1) +

p
⌧Z, Z ⇠ N(0,⌃), (16)

for some parameters ⌧ 2 (0,1) and covariance ⌃ 2 Rd⇥d.13 This algorithm is
known as the Metropolis adjusted Langevin algorithm (MALA).

MALA is just Metropolis-Hastings algorithm with proposal q(x, y) =
N(y; x+ ⌧

2
r log p(x), ⌧⌃) corresponding to (16). Note that in this case, q(x, y) 6=

q(y, x) and so the ratio q(y, x)/q(x, y) does not vanish from the acceptance prob-
ability!

13. The proposal (16) stems from an Euler discretisation of the (overdamped) Langevin di↵usion
of the form dXt =

1
2r log p(Xt) + dBt, which is a continuous-time Markov process that admits

p as its stationary distribution. . .

51

6.8 Hamiltonian Monte Carlo (*)

In recent years, a so-called Hamiltonian Monte Carlo (HMC) MCMC algo-
rithm has gained attention [cf. 17]. Its proposal is based on a physics-motivated
continuous-time process (Hamiltonian dynamics) involving an auxlliary momen-

tum random vector.
The HMC is based on the target distribution p̃(x,m) = p(x)q(m), where

the auxiliary ‘momentum’ variable m has distribution q, a density of N(0,⌃). The
related ‘Hamiltonian’ can be written as

H(x,m) := � log p̃(x,m) = U(x) +K(m),

where U(x) := � log p(x) and K(m) := � log q(m) = 1

2
mT⌃�1m (up to a con-

stant). The proposal is inspired by the following system of di↵erential equations:

dmt/dt = �rU(xt) dxt/dt = ⌃�1mt. (17)

These di↵erential equations leave p̃ invariant (that is, if (m0, x0) ⇠ ⇡̃, then also
(mt, xt) ⇠ ⇡̃ for any t > 0!), but of course we cannot solve them exactly. HMC
uses a specific kind of numerical approximation of (17), (with L � 1 steps and
with step size ⌧ > 0) in order to construct the proposals, and an acceptance ratio
which ensures reversibility.

Algorithm 6.49 (Hamiltonian Monte Carlo). Let X0 ⌘ x0 s.t.p(x0) > 0. For
k = 1, . . . , n:

(i) Draw Mk�1 ⇠ q.
(ii) Calculate (X̂k, M̂k) LF(Xk�1,Mk�1)
(iii) Generate Uk ⇠ U(0, 1), and if Uk ↵(Xk�1,Mk�1; X̂k, M̂k) accept and

set Xk = X̂k, otherwise reject and set Xk = Xk�1, where the acceptance

probability ↵ is defined as follows:

↵(x,m; x̂, m̂) := min

⇢
1,

p̃(x̂, m̂)

p̃(x,m)

�
= min

�
1, exp

�
H(x,m)�H(x̂, m̂)

�
.

where
LF(x0, m0):
For t = 1, . . . , L:
(i) m̂t mt�1 +

⌧
2
r log p(xt�1)

(ii) xt xt�1 + ⌧⌃�1m̂t

(iii) mt m̂t +
⌧
2
r log p(xt)

Return (xL,�mL)

(NB: The momentum flip in the end of LF(·) is unnecessary in practice,
but included here for mathematical convenience. . .)

The HMC algorithm looks similar to Metropolis-Hastings (and indeed may
be seen as an instance of a generalisation of Metropolis-Hastings).

The key observations required to check p-reversibility of the HMC are:
1. If Xk�1 ⇠ p, then (Xk�1,Mk�1) ⇠ p̃.

52

- 2 - 1 0 1 2
- 2

- 1

0

1

2

0.025

0.050

0.075

0.100

0.125

0.150

Figure 16: Three trajectories (x0, . . . , xL) of the leapfrog integrator starting from
x0 = [1, 1]T with three independent realisations of m0 from N(0, I2). Here, p =
N(0, I2) with density values shown as background color, L = 100 and ⌧ = 0.05.

2. The leapfrog integrator LF(·) is reversible, in the sense that if (x̂, m̂) =
LF(x,m), then (x,m) = LF(x̃, m̃). (Or, equivalently, it is an involution:
LF(LF(x,m)) = (x,m).)

3. The leapfrog integrator LF (·) is isometric, or volume-preserving.

See [8] for details, as well as result showing the p-irreducibility of the HMC (which
turns out to be a non-trivial exercise!).

There are a number of user-friendly implementations of (variants of) HMC.
Stan [5] is the most popular, and has an interface similar to BUGS, allowing to
build model from blocks. Stan can provide good performance in some scenarios
where BUGS struggles, but it does not always outperform BUGS. If you intend
to use Stan, there are certain inherent restrictions that come with it, which are
good to know:

• Discrete variables cannot be unknowns.

• Unknowns need to be (easily transformable) to R (or Rd).14

• Tail behaviour and geometry of p may have a dramatic influence in perfor-
mance.

• The variables need to be (roughly) unit-scaled.

Even though the HMC (and its implementation in Stan) have showed great
promise in many practical situations, they may not always provide a reliable out-
come, and this may not be easy to predict.

This is in contrast with Gibbs sampling and random-walk proposals, which
are rather well understood by now (including their weaknesses!).

14. Stan transforms x > 0 and x 2 (a, b) automatically with exponential and logistic transfor-
mations.

53

0 200 600 1000

0
5

15
25

x

0 200 600 1000

−4
−2

0
2

Figure 17: The first 1000 samples simulated from Example 6.27 with a = 1 and
with with x0 = 30 (left) and x0 = �5 (right). The red vertical line indicates the
‘burn-in time’.

7 MCMC convergence and mixing

With MCMC, there are two issues considering the reliability of the calculated
averages: I(n)p,q,MH

(f) = n�1
Pn

k=1
f(Xk):

• The MCMC chain does not start from the invariant/stationary distribution,
so E[f(Xk)] 6= Ep[f(X)], and the di↵erence may well be substantial for
small k. This can induce significant bias to the estimator.

• It is not direct to assess the reliability of MCMC averages, because of the
dependence of the random variables (Xk). The dependence usually adds
variance to the estimator, when compared against simple Monte Carlo
averages.

7.1 Burn-in bias

MCMC Markov chain Xn converges in distribution to p as n ! 1 (under an
aperiodicity condition, cf. Theorem 6.7). The common practice with MCMC is
to discard b first values of the Markov chain X0, . . . , Xb, to minimise bias. It is
assumed that Xb+1 will have approximately the distribution p, and then use the
estimator

1

n� b

nX

k=b+1

f(Xk).

The initial period X0, . . . , Xb is called burn-in of the MCMC.

Remark 7.1. Several statistics may be calculated in order to ‘detect’ a bias in
MCMC. However, they usually rely on certain rather strong assumptions, such as
the asymptotic normality, or at least unimodality of the target.

7.2 Asymptotic variance of MCMC

With classical Monte Carlo and importance sampling, the confidence intervals
can be constructed with help of the CLT, and the associated variance is relatively
straightforward to calculate.

54

Also Markov chains satisfy CLT in many cases. For example, we may record
the following statement without proof.

Theorem 7.2. If the Metropolis-Hastings Markov chain (Xk) on finite X is irre-

ducible and aperiodic, then

p
n
⇥
I(n)p,q,MH

(f)� Ep[f(X)]
⇤ n!1���! N(0, �2

MH
), (18)

with �2

MH
= limn!1 nVar

�
I(n)p,MH

(f)
�
<1.

Remark 7.3. The CLT (18) holds quite generally, under certain technical regu-

larity conditions. Because there are no general and easily verifiable conditions
available, we shall not detail a more general form of the CLT, but assume it to
hold.

We shall look next at an expression of the CLT variance (when finite),
which gives a method to estimate the CLT variance.

Theorem 7.4. Let X0, X1, . . . be a stationary Markov chain, that is, X0 ⇠ p,
where p is the invariant distribution. Suppose f : S! R such that Ep[f 2(X)] <1
and denote Yk = f(Xk).

Assuming
P1

k=1
⇢k <1 where ⇢k := Corr

�
Y0, Yk

�
, we have

lim
n!1

nVar

✓
1

n

nX

k=1

f(Xk)

◆
= Varp(f(X))

✓
1 + 2

1X

k=1

⇢k

◆
.

Remark 7.5. With MCMC, X0 is of course never exactly a sample of p, but as
discussed earlier, Xb can be regarded to have approximately the distribution p
whenever b is large. Therefore, if we apply Theorem 7.4 to X̃n := Xb+n for n �
0, the result is still relevant. (Rigorous extension to arbitrary initial measure is
possible, but we shall not consider it here.)

Remark 7.6. Theorem 7.4 holds more generally, for any (weak-sense) stationary
process (Yk)k�1.

Proof of Theorem 7.4. Let us define Yk = f(Xk), and Ȳk = Yk � E[Yk], then

Var

✓
1

n

nX

k=1

f(Xk)

◆
=

1

n2
E
✓ nX

k=1

Ȳk

◆2�

=
1

n2

nX

i=1

nX

j=1

E[ȲiȲj]

=
Varp

�
f(X)

�

n
+

2

n2

nX

i=1

nX

j=i+1

Cov(Yi, Yj)

=
Varp

�
f(X)

�

n

✓
1 +

2

n

n�1X

h=1

(n� h)⇢h

◆
.

Multiply with n and take limits, and apply Lemma 7.7 to show that
n�1

Pn�1

h=1
h⇢h

n!1���! 0.

55

Lemma 7.7 (Kronecker). Suppose (xk)k�1 is a sequence of real numbers withP1
k=1

xk = s 2 R. Then, n�1
Pn

k=1
kxk

n!1���! 0.

Definition 7.8. The integrated autocorrelation time of (Yi) and the e↵ective

sample size of (Y1, . . . , Yn) are defined, respectively, as

IACT := 1 + 2
1X

i=1

⇢i and ne↵ :=
n

IACT
.

The definitions of ‘e↵ective sample size’ makes sense when we use Theorem
7.4 to deduce that for n large enough

Var(I(n)p,q,MH
) ⇡ IACT

n
Varp

�
f(X)

�
=

1

ne↵

Varp
�
f(X)

�
.

Suppose then (Z1, . . . , Zbne↵c) are independent from p, the classical Monte Carlo
satisfies

Var
⇣ 1

bne↵c

bne↵cX

k=1

f(Zk)
⌘
=

1

bne↵c
Varp

�
f(X)

�
.

So, the mean estimator based on the sample X1, . . . , Xn from MCMC is (asymp-

totically) as e�cient as the one based on Z1, . . . , Zbne↵c
i.i.d.⇠ p.

Remark 7.9 (*). Simple (and traditional) way to estimate IACT (and equivalently
the asymptotic variance or ne↵) is to sum sample autocorrelations up to a trunca-
tion point, which is chosen based on an inspection of the sample autocorrelations.
However, there are also reasonably straightforward and provably consistent esti-
mators of the asymptotic variance [9].

Remark 7.10. Note that a MCMC sample (Xk)k=1,...,n does not have a single
e↵ective sample size ne↵, but ne↵ depends on the function. So if you are interested
in di↵erent functions f1, . . . , fm : X! R, you need to calculate n(1)

e↵
, . . . , n(m)

e↵
! This

is particularly important if X = Rd, and fi(x) = xi, in which case the e↵ective
sample size of di↵erent coordinates may di↵er significantly.

7.3 Practical summary

When using MCMC, always do the following checks:
(i) Plot MCMC traces of the variables and key functions of the variables. They

should look stationary after burn-in.
(ii) Make multiple MCMC runs from di↵erent initial state x0 and check that

the marginal distributions (or the estimators) look similar.
This test reveals if your chain is ‘almost reducible’.

(iii) Plot sample autocorrelations of the variables and functions (e.g. autocor
of StatsBase).

(iv) Calculate ne↵ and check that it is reasonably large. Use it to construct a
CI:

Ip,q,MH(f)± �
�̂np
ne↵

�
,

56

