
Suppose p is a p.m.f. (p.d.f.) on X, and denote its i:th conditional with
respect to other variables as

pi|�i(x
(i) | x(�i)) =

p(x)

p�i(x(�i))
,

whenever the marginal p�i(x(�i)) > 0, where

p�i(x
(�i)) :=

X

z2Z

p(x(1), . . . , x(i�1), z, x(i+1), . . . , x(d))

✓
p�i(x

(�i)) :=

Z
p(x(1), . . . , x(i�1), z, x(i+1), . . . , x(d))dz

◆
.

Algorithm 6.33 ((Random scan) Metropolis-within-Gibbs). Suppose that
qi(x(i), · | x(�i)) determines a p.m.f. (p.d.f.) on X1 for each x 2 X and for all
i = 1, . . . , d. Choose some X0 ⌘ x0 with p(x0) > 0 and iterate for k = 1, . . . , n

(a) Draw random coordinate index Ik ⇠ U{1, . . . , d}.
(b) Set X(�Ik)

k = X(�Ik)
k�1

.

(c) Simulate Y (Ik)
k ⇠ qIk(X

(Ik)
k�1

, · | X(�Ik)
k�1

)

(d) With probability ↵Ik(X
(Ik)
k�1

, Y (Ik)
k | X(�Ik)

k�1
) accept and set X(Ik)

k = Y (Ik)
k ,

otherwise set X(Ik)
k = X(Ik)

k�1
, where

↵i(x, y | z(�i)) := min

⇢
1,

pi|�i(y | z(�i))

pi|�i(x | z(�i))

qi(y, x | z(�i))

qi(x, y | z(�i))

�
.

NB: In practice, we calculate the ratio of conditionals as

pi|i�1(y | z(�i))

pi|i�1(x | z(�i))
=

pu(z(1), . . . , z(i�1), y, z(i+1), . . . , z(d))

pu(z(1), . . . , z(i�1), x, z(i+1), . . . , z(d))
,

and in case p(x) is defined as a product of terms, of which only few depend on
the i:th coordinate, the ratio simplifies. . .

Proposition 6.34. Algorithm 6.33 is reversible with respect to p.

Proof. (Discrete case) We may write the Markov transition in Algorithm 6.33 as
follows

K(x, y) =
dX

i=1

P(Xk = y | Xk�1 = x, Ik = i)P(Ik = i | Xk�1 = x)

=
1

d

dX

i=1

Ki(x, y),

where Ki(x, y) = P(Xk = y | Xk�1 = x, Ik = i) are Markov transition probabili-
ties, which correspond to the steps (b), (c) and (d) of Algorithm 6.33.
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In fact, given Ik = i and X(�i)
k�1

= z(�i), (c) and (d) correspond a Metropolis-
Hastings algorithm targetting pi|�i( · | z(�i)) with proposals qi(x, y | z(�i)). If we

denote its transition probability K̂i(x, y | z(�i)), we have

Ki(x, y) = K̂i(x
(i), y(i) | x(�i))1

�
y(�i) = x(�i)

�

and then

p(x)Ki(x, y) = p�i(x
(�i))pi|�i(x

(i) | x(�i))K̂i(x
(i), y(i) | x(�i))1

�
y(�i) = x(�i)

�

= p�i(x
(�i))pi|�i(y

(i) | x(�i))K̂i(y
(i), x(i) | x(�i))1

�
y(�i) = x(�i)

�

= p�i(y
(�i))pi|�i(y

(i) | y(�i))K̂i(y
(i), x(i) | y(�i))1

�
x(�i) = y(�i)

�

= p(y)Ki(y, x),

where we first use reversibility of K̂i( · , · | x(�i)) with respect to pi|�i( · | x(�i))
and then the fact that the expression is non-zero with x(�i) = y(�i).

The p-reversibility of K follows now easily:

p(x)K(x, y) =
1

d

dX

i=1

p(x)Ki(x, y) =
1

d

dX

i=1

p(y)Ki(y, x) = p(y)K(y, x).

Remark 6.35. In fact, the proof of Proposition 6.34 suggests that we may use
multiple possible MCMC transitions, which we use at random. The mixture tran-
sition probability is reversible as long as the component transition probabilities
are. And the mixing weights need not be uniform.

For instance, we could have K1 being an independence sampler transition
and K2 a random-walk Metropolis transition, and choose randomly which update
we follow.

Definition 6.36. Gibbs sampling is a specific instance of Metropolis-within-
Gibbs, where the proposal distributions are the conditional distributions,

qi(x, y | z(�i)) = pi|�i(y | z(�i)).

Note that in Gibbs sampling, the acceptance probability ↵i(x, y | z(�i)) ⌘ 1.

Remark 6.37 (*). Algorithm 6.33 is valid also in the continuous case X = Rd. We
cannot use Proposition 6.24 directly to verify reversibiity, but we need to check

that if X0 ⇠ p, then (X0, X1)
d
= (X1, X0). The proof follows similarly as in the

discrete case

P(X0 2 A,X1 2 B)

=

Z

A

 Z

B

p�i(x
(�i))pi|�i(x

(i) | x(�i))K̂i(x
(i), y(i) | x(�i))1

�
y(�i) = x(�i)

�
dx

�
dy

= P(X0 2 B,X1 2 A).

Example 6.38 (Ising model). Let X = {0, 1}`⇥m the set of all `⇥m binary matrices.
We can think them as ‘images’ x 2 X where x(i,j) = 0 or 1 corresponds to (i, j):th
pixel being black or white, respectively.
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Figure 13: Left: Example 4-by-4 configuration with #x = 12; right: realisation of
the Ising model in m = 32, ✓ = 0.8.

For x 2 X, denote #x for the number of disagreeing neighbours in x, which
we may calculate by

#x =
X̀

i=1

m�1X

j=1

1
�
x(i,j) 6= x(i,j+1)

�
+

mX

j=1

`�1X

i=1

1
�
x(i,j) 6= x(i+1,j)

�
.

The Ising model is defined as the following distribution on X:

p(x) / exp(�✓#x),

where ✓ > 0 is a ‘smoothing’ parameter.

Example 6.39 (MCMC for the Ising model). Let X(i,j)
0

i.i.d.⇠ U{0, 1}, and do
(a) Draw random indices Ik ⇠ U{1, . . . , `}, Jk ⇠ U{1, . . . ,m}.
(b) Set Y (Ik,Jk)

k = 1�X(Ik,Jk)
k�1

.

(c) Set X(i,j)
k = X(i,j)

k�1
for all (i, j) 6= (Ik, Jk).

(d) With probability ↵Ik,Jk(X
(Ik,Jk)
k�1

, Y (Ik,Jk)
k | X(�(Ik,Jk))

k�1
) set X(Ik,Jk)

k = Y (Ik,Jk)
k ;

otherwise set X(Ik,Jk)
k = X(Ik,Jk)

k�1
, where

↵i,j(x, y | z(�(i,j))) = min
�
1, exp

⇥
� ✓

�
#(y, z(�(i,j)))�#(x, z(�(i,j)))

�⇤ 
,

where (x, z(�(i,j))) stands for the image where the (i, j):th pixel equals x
and the rest are defined by z(�(i,j)).

Remark 6.40. Note that qi,j here corresponds to a deterministic ‘flip’ of the (i, j):th
pixel value. In fact, we shall see later that this choice of qi,j is the most e�cient
in terms of the asymptotic variance.

Remark 6.41. Note that in practice one should not re-calculate #(y, z(�(i,j))) and
#(x, z(�(i,j))), but only their di↵erence.
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Figure 14: Trajectories of f(Xk) = #Xk (top) and w(Xk) (bottom).

m = 32; n = 32; theta = 0.8; n = 100_000
function hashdiff(y, X, i, j, m, n)

hash_y = 0; hash_x = 0; x = X[i,j]
function check_ind!(i_, j_)

hash_y += (y != X[i_,j_]); hash_x += (x != X[i_,j_])
end
if i>1 check_ind!(i-1,j) end
if i<m check_ind!(i+1,j) end
if j>1 check_ind!(i,j-1) end
if j<n check_ind!(i,j+1) end
hash_y - hash_x

end
X = [rand(0:1) for i=1:m, j=1:m] # Independent random initialisation
for k = 1:n
i = rand(1:m); j = rand(1:m) # Pick random index
y = 1-X[i,j] # Propose swap 0<->1
if rand() < exp(-theta*hashdiff(y, X, i, j, m, m))

X[i,j] = y
end

end

What would be good indicators to monitor the convergence of the Ising
model simulation? We could look at:

• the function f(x) = #x,
• the function w(x) =

P
i,j 1

�
x(i,j) = 1

�
, that is, the total number of white

pixels.

Example 6.42 (Bayesian image recovery). Let X be an unknown true image,

X ⇠ Ising(✓),

with ✓ known. Denote p0(x) = P(X = x).
Suppose we do not observe X directly, but through a ’noisy channel’. At

pixel i, j = 1, 2, . . .,m we observe

O(i,j) = X(i,j) + ✏(i,j), with ✏(i,j)
i.i.d.⇠ N(0, �2)
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Figure 15: From the left: Simulation of the Ising model X with ✓ = 0.8; the noisy
observations O of X with �2 = 1; the posterior mean approximation by MCMC;
the MAP approximation by MCMC (estiamtes with ten million samples).

and with � known. The likelihood for x(i,j) is L(x(i,j); o(i,j)) = N(o(i,j); x(i,j), �2) so

L(x; o) /
mY

i,j=1

exp

✓
� (x(i,j) � o(i,j))2

2�2

◆
.

If we observe O = o we are interested in the posterior distribution of X
given O = o,

p(x) = P(X = x | O = o) / L(x; o)p0(x),

so we have

log pu(x) = � |x� o|2

2�2
� ✓#x where |x� o|2 =

mX

i,j=1

(x(i,j) � o(i,j))2.

We will simulate X1, . . . , Xn ⇠ p with MCMC and use the samples to approximate
the posterior mean and pixel-wise maximum a Posteriori (MAP) estimates i =
1, . . . ,m2

X̄(i) :=
1

n

nX

k=1

X(i)
k ⇡ E[X(i) | O = o]

1
�
X̄(i) > 1/2

�
⇡ arg max

x2{0,1}
P(X(i) = x | O = o].

In order to implement the MCMC, we can recycle the implementation in Example
6.39 only modifying the acceptance probability ↵(y | x) to incorporate �|x �
o|2/(2�2) factor.

Variants of Metropolis-within-Gibbs

Algorithm 6.33 introduced earlier is only variant of (Metropolis-within-)Gibbs
sampling, in terms how (Ik)k�1 are chosen.
Random scan means we choose Ik at random, as in Algorithm 6.33. It is custom-

ary to take Ik ⇠ U{1, . . . , d}, but Ik can be chosen also from a non-uniform
distribution over {1, . . . , d}.
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Deterministic scan version of the algorithm means Ik are not random, but de-
terministic. The common choice is to sweep Ik = (k � 1 mod d) + 1.
Unlike the random scan version, the deterministic scan algorithm is time-

inhomogeneous, but the ‘skeleton’ chain (Xdk)k�0, is homogeneous, with
composition of transition probabilities

P(Xdk = y | Xd(k�1) = x) = (K1K2 · · ·Kd)(x, y)

This transition probability is not reversible wrt. p in general, but is still
p-invariant.

Random sweep is a hybrid of the two above: Simulate a random permutation
of {1, . . . , d}, and sweep through once in the corresponding order; simulate
a new random permutation etc.

Remark 6.43. Metropolis-within-Gibbs moves can update a ‘block’ of coordinates
instead of a single coordinate. The blocks need not be fixed size, and there can be
moves with overlapping blocks (sharing same variables).

Convergence of Metropolis-within-Gibbs

Theorem 6.44. Suppose that the Metropolis-within-Gibbs chain is p-irreducible
and that starting from any x 2 supp(p), there is a positive probability of accept-

ing at least one move in each coordinate direction. Then, the strong law of large

numbers holds (see Theorem 6.26).

Proof. Theorem 12 of [23] shows that the chain is Harris recurrent12, and the
SLLN is implied by [14, Theorem 17.0.1 (i)].

Remark 6.45 (*). Theorem 6.44 adds one natural (and practically non-restrictive)
condition over the irreducibility condition of Theorem 6.26, which only avoids some
pathological scenarios (like if x 2 supp(p) but the conditionals are well-defined. . . ).

Because all moves in the Gibbs sampler are accepted, we have:

Corollary 6.46. Any p-irreducible Gibbs sampler satisfies the SLLN.

We give next natural su�cient conditions which enable to check the p-
irreducibility of a (Metropolis-within-)Gibbs.

Definition 6.47 (Positivity of p). The distribution p satisfies the positivity con-

dition if the marginal distributions pi(x) satisfy for all x 2 R

supp(p) = supp(p1)⇥ · · ·⇥ supp(pd).

In other words, pi(x(i)) > 0 for all i = 1, . . . , d if and only if p(x(1), . . . , x(d)) > 0.

Proposition 6.48. If p satisfies the positivity condition, then the conditional den-

sities pi|�i are well-defined everywhere on the support of p and the Gibbs sampling

Markov chain is p-irreducible.

12. *From any initial point x 2 supp(p), the chain will visit each set A ⇢ X such thatR
A p(x)dx > 0 with probability one.
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