Suppose p is a p.m.f. (p.d.f.) on X, and denote its i:th conditional with
respect to other variables as

) ey - P(E)
W )

Y

whenever the marginal p_;(z(~?) > 0, where

p—z(x(_Z)) = Zp<x(1)7 tet ax(i_l)a 2 x(H_l)a s >$(d))
ZEZ

(pi(a:(i)) = /p(x(1)7 R G Bl A 7$(d))dz).

Algorithm 6.33 ((Random scan) Metropolis-within-Gibbs). Suppose that
qi(z9, - | 9) determines a p.m.f. (p.d.f.) on X; for each x € X and for all
i=1,...,d. Choose some Xy = zo with p(z() > 0 and iterate for k =1,...,n

(a) Draw random coordinate index I}, ~U{1,...,d}.

(b) Set XM = x (70

(c) Simulate Y™ ~ g7 (X\™), - | X7y

(d) With probability az (X\™) v | X7y accept and set X\ = ;%)

otherwise set X ,EI’“) =X ,gl_kf, where

L COAP (=)
3 =1 z (2 Y
ai(z,y | 257) := min {1, Pi-ily | (_.)) %(y, | Z(_.)) }
pi-i(z | 209) g, y | 29)
NB: In practice, we calculate the ratio of conditionals as

pi|i—1<y | Z(ii)) pu(z(1)7 s 7Z(i_1)7 Y, Z(i+1)7 IR z(d))

pijim1(x | 209)  pu (20, 200 g 20D 2(d)))

and in case p(z) is defined as a product of terms, of which only few depend on
the 2:th coordinate, the ratio simplifies. ..

Proposition 6.34. Algorithm 6.33 is reversible with respect to p.

Proof. (Discrete case) We may write the Markov transition in Algorithm 6.33 as
follows

d
K(zy) =Y PXp=y|Xpm1 =2, L =i)P(ly =i | X4y =)

1=

ISR

1
d
Ki<x7 y)7
=1

where K;(x,y) = P(Xy =y | Xs_1 = x, [}, = i) are Markov transition probabili-
ties, which correspond to the steps (b), (c) and (d) of Algorithm 6.33.
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In fact, given I, = i and X _i = z(*i) (c) and (d) correspond a Metropolis-
Hastings algorithm targetting p;— ( | (=9 ) with proposals g;(x,y | 2079). If we
denote its transition probability Kz(x, y | 27), we have

Ki(z,y) = Ki(z9,y9 | 291 (y(—i) _ x(_i))

and then

where we first use reversibility of K;(-, - | -9 with respect to pi—i(+ | 29
and then the fact that the expression is non-zero with z(=% = (=9
The p-reversibility of K follows now easily:

Z %Z =p(y)K(y,x). O

Remark 6.35. In fact, the proof of Proposition 6.34 suggests that we may use
multiple possible MCMC transitions, which we use at random. The mixture tran-
sition probability is reversible as long as the component transition probabilities
are. And the mixing weights need not be uniform.

For instance, we could have K; being an independence sampler transition
and K, a random-walk Metropolis transition, and choose randomly which update
we follow.

&I*—‘

p(z)

Definition 6.36. Gibbs sampling is a specific instance of Metropolis-within-
Gibbs, where the proposal distributions are the conditional distributions,

¢i(z,y | Z(_i)) = pij-i(y | Z(_i))‘

Note that in Gibbs sampling, the acceptance probability a;(z,y | 2(7) = 1.

Remark 6.37 (*). Algorithm 6.33 is valid also in the continuous case X = R¢. We
cannot use Proposition 6.24 directly to verify reversibiity, but we need to check

that if Xy ~ p, then (X, X;) 4 (X1, Xo). The proof follows similarly as in the
discrete case

P(Xo € A, X, € B)

:/A [/ =iy | ) K@y | 2001 (y) = 20) dar| dy
B

=P(Xo € B, X1 € A).

Ezample 6.38 (Ising model). Let X = {0, 1}**™ the set of all £xm binary matrices.
We can think them as ‘images’ € X where 7(*7) = 0 or 1 corresponds to (i, j):th
pixel being black or white, respectively.
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Figure 13: Left: Example 4-by-4 configuration with #x = 12; right: realisation of
the Ising model in m = 32, § = 0.8.

For x € X, denote #x for the number of disagreeing neighbours in x, which
we may calculate by

b3

=1

-1 (-1

1 (209 4 gD 4 Zm: 1 (209 4 (19

1 j=1 i=1

3

<.
Il

The Ising model is defined as the following distribution on X:

p(x) o exp(—0#x),
where 6 > 0 is a ‘smoothing’ parameter.

Ezample 6.39 (MCMC for the Ising model). Let X" "% 24{0,1}, and do
(a) Draw random indices I, ~ U{1,..., 0}, Jp, ~ U{1,...,m}.
(b) Set Yk =1 — x(T/i)
(¢) Set X\ = X9 for all (i, 5) # (I, Ji).-
(d) With probability oy, s, (X,EI’“IJ’“), Yk(l’“"]’“) | X,E,:(ll’“"]’“))) set X,gl’“‘]"') = Yk(l’“"]’“);

otherwise set X ,Elk e ,EI_’HJ’“), where

0y | 269) = min {1, exp [ — B(#(y. =) — (a2 CM)] ),

where (x, 2(=(49)) stands for the image where the (i,7):th pixel equals =
and the rest are defined by z(~(%))

Remark 6.40. Note that g; ; here corresponds to a deterministic ‘flip’ of the (3, j):th
pixel value. In fact, we shall see later that this choice of ¢;; is the most efficient
in terms of the asymptotic variance.

Remark 6.41. Note that in practice one should not re-calculate #(y, z(=(+))) and
#(x, 2=0D)) but only their difference.
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Figure 14: Trajectories of f(Xj) = # X (top) and w(X}) (bottom).

m = 32; n = 32; theta = 0.8; n = 100_000
function hashdiff(y, X, i, j, m, n)
hash_y = 0; hash_x = 0; x = X[i,]j]
function check_ind!(i_, j_)
hash_y += (y != X[i_,j_]); hash_x += (x != X[i_,j_1)
end
if i>1 check_ind!(i-1,j) end
if i<m check_ind!(i+1,j) end
if j>1 check_ind!(i,j-1) end
if j<n check_ind!(i,j+1) end
hash_y - hash_x

X = [rand(0:1) for i=1:m, j=1:m] # Independent random initialisation
for k = 1:n
rand(1:m); j = rand(1:m) # Pick random index

.
]

y = 1-X[i,j] # Propose swap 0<->1
if rand() < exp(-theta*hashdiff(y, X, i, j, m, m))
X[i,j1 =y
end
end

What would be good indicators to monitor the convergence of the Ising
model simulation? We could look at:
e the function f(z) = #=,
e the function w(z) = Y7, .1 (#*) = 1), that is, the total number of white
pixels.

Ezample 6.42 (Bayesian image recovery). Let X be an unknown true image,
X ~ Ising(h),
with 6 known. Denote py(z) = P(X = z).
Suppose we do not observe X directly, but through a 'noisy channel’. At
pixel i,5 = 1,2,...,m we observe

O = X3) 4 () with €9 kg N(0,0%)
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Figure 15: From the left: Simulation of the Ising model X with 6 = 0.8; the noisy
observations O of X with o2 = 1; the posterior mean approximation by MCMC;
the MAP approximation by MCMC (estiamtes with ten million samples).

and with ¢ known. The likelihood for 27 is L(2(9); o)) = N(009); 20:9) 52) so

m (2069) — oi))2
L(z; — .
(x;0) H exp ( 52

1,7=1

If we observe O = o we are interested in the posterior distribution of X
given O = o,

p(r) =B(X =z | O = o) oc L(z;0)po(x),

so we have
log p (55) = - |x - 0|2 — O#x where ]g; — 0|2 — zm: (x(m’) _ O(i,j))2
“ 202 = .

We will simulate X1, ..., X,, ~ p with MCMC and use the samples to approximate
the posterior mean and pixel-wise maximum a Posteriori (MAP) estimates ¢ =
1,...,m?

o (i L i
X()::EZX,Q%E[X()]O:()]
k=1

1(X® >1/2) ~arg max P(X" =2 |0 = o).
z€{0,1}
In order to implement the MCMC, we can recycle the implementation in Example

6.39 only modifying the acceptance probability a(y | ) to incorporate —|z —
0?/(20?) factor.

Variants of Metropolis-within-Gibbs

Algorithm 6.33 introduced earlier is only variant of (Metropolis-within-)Gibbs

sampling, in terms how (Ij)r>1 are chosen.

Random scan means we choose [, at random, as in Algorithm 6.33. It is custom-
ary to take I, ~ U{1,...,d}, but I} can be chosen also from a non-uniform
distribution over {1,..., d}.
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Deterministic scan version of the algorithm means [ are not random, but de-
terministic. The common choice is to sweep I = (kK — 1 mod d) + 1.
Unlike the random scan version, the deterministic scan algorithm is time-
inhomogeneous, but the ‘skeleton’ chain (X )r>0, is homogeneous, with
composition of transition probabilities

P(Xar =y | Xag—1) = 2) = (K1 Ky -+ Kg)(7,y)

This transition probability is not reversible wrt. p in general, but is still
p-invariant.

Random sweep is a hybrid of the two above: Simulate a random permutation
of {1,...,d}, and sweep through once in the corresponding order; simulate
a new random permutation etc.

Remark 6.43. Metropolis-within-Gibbs moves can update a ‘block’ of coordinates
instead of a single coordinate. The blocks need not be fixed size, and there can be
moves with overlapping blocks (sharing same variables).

Convergence of Metropolis-within-Gibbs

Theorem 6.44. Suppose that the Metropolis-within-Gibbs chain is p-irreducible
and that starting from any x € supp(p), there is a positive probability of accept-
ing at least one move in each coordinate direction. Then, the strong law of large
numbers holds (see Theorem 6.26).

Proof. Theorem 12 of [23] shows that the chain is Harris recurrent!?, and the
SLLN is implied by [14, Theorem 17.0.1 (i)]. O

Remark 6.45 (*). Theorem 6.44 adds one natural (and practically non-restrictive)
condition over the irreducibility condition of Theorem 6.26, which only avoids some
pathological scenarios (like if z € supp(p) but the conditionals are well-defined. . . ).

Because all moves in the Gibbs sampler are accepted, we have:
Corollary 6.46. Any p-irreducible Gibbs sampler satisfies the SLLN.

We give next natural sufficient conditions which enable to check the p-
irreducibility of a (Metropolis-within-)Gibbs.

Definition 6.47 (Positivity of p). The distribution p satisfies the positivity con-
dition if the marginal distributions p;(z) satisfy for all z € R

supp(p) = supp(p1) X - - - X supp(pa).

In other words, p;(z®) > 0 for all i = 1,...,d if and only if p(zV, ..., z@) > 0.

Proposition 6.48. Ifp satisfies the positivity condition, then the conditional den-
sities p;—; are well-defined everywhere on the support of p and the Gibbs sampling
Markov chain is p-irreducible.

12. *From any initial point = € supp(p), the chain will visit each set A C X such that
J4 p(x)dz > 0 with probability one.
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