
Corollary 6.17. If the Metropolis-Hastings transition probability K targetting p
is irreducible on S = supp(p), then for any function f : X ! R with Ep[f(X)]
finite

I(n)p,q,MH
(f) =

1

n

nX

k=1

f(Xk)
n!1���! Ep[f(X)] (almost surely).

Remark 6.18. Irreducibility is ensured by proper choice of proposal distributions
q(x, y). The proposal distributions need to be defined so that every point y 2 S is
reachable from any x 2 S in n = n(x, y) steps.

Example 6.19. Let p(x) = x/Zp for x 2 X := {1, . . . ,m} with Zp =
Pm

x=1
x. Let

us design a Metropolis-Hastings algorithm targetting p.
Step 1: Choose a proposal distribution q(x, y). It needs to be easy to simu-

late and to determine an irreducible chain. A simple distribution that ’will do’ is
drawing Yk ⇠ U(X) independent of Xk�1, so

q(x, y) = q(y) = 1/m, y 2 X

This proposal scheme is irreducible, because for all x, y 2 X,

P(X1 = y | X0 = x) � q(x, y)min

⇢
1,

p(y)

p(x)

q(y, x)

q(x, y)

�

=
1

m
min

⇢
1,

y

x

�
> 0.

That is, we can get from any x 2 S to any y 2 S in one step (we can take
n(x, y) ⌘ 1 in Definition 6.4).

Step 2: write down the algorithm. Start from X0 = 1 (say), and for k =
1, . . . , n do

(a) Simulate Yk ⇠ U{1, 2, ...,m}.
(b) Simulate Uk ⇠ U(0, 1) and if

Uk Yk

Xk�1

set Xk = Yk, otherwise set Xk = Xk�1.

function imh_example(m=30, n=10_000)
X = zeros(n); X[1] = 1
for k = 2:n

x = X[k-1]
y = ceil(m*rand()) # y ~ U{1,2,...,m}
if (rand() < y/x)

X[k] = y
else

X[k] = x
end

end
X

end

38

0 50 100 200 300

0
5

15
25

X_1,...,X_300 Histogram of X

D
en
si
ty

0 5 10 15 20 25 30

0.
00

0.
02

0.
04

0.
06

Figure 9: Left: x-axis is Markov chain step counter k = 1, 2, . . ., 300 and y-axis is
Markov chain state Xk. Right: histogram of X1, X2, . . ., Xn for n = 10, 000 along
with p.

Example 6.19 is an instance of the following class of Metropolis-Hastings
algorithms.

Definition 6.20. Metropolis-Hastings algorithm with q(x, y) = q(y), that is,
proposal is independent of current state, is referred to as independence sampler

or independent Metropolis-Hastings (IMH).

The IMH acceptance probability takes the form

↵(x, y) = min

⇢
1,

p(y)q(x)

p(x)q(y)

�
= min

⇢
1,

w(y)

w(x)

�
,

where w(x) = p(x)/q(x) for q(x) > 0. In order the IMH to be irreducible, we need
q(x) = 0 implies p(x) = 0.

Remark 6.21. (Self-normalised) importance sampling can always be used instead
of the IMH.

6.4 The Metropolis-Hastings algorithm on X = Rd

The Metropolis-Hastings (Algorithm 6.13) generalises directly to continuous set-
ting, that is, X = Rd:

(i) p is a probability density on Rd.
(ii) q(x, ·) is a probability density on Rd for each x 2 Rd.

Everything else in Algorithm 6.13 remains unchanged.

Fact 6.22. The MH algorithm defines a Markov chain on S := {x 2 Rd : p(x) >
0}. The transition probability K can be written as

P(Xn 2 A | Xn�1 = x) =: K(x,A) =

Z

A

k(x, y)dy + ⇢(x)1 (x 2 A) , (14)

where k(x, y) := q(x, y)↵(x, y) is a sub-probability density for each x 2 X and
⇢(x) = 1�

R
k(x, y)dy is the probability of rejection.

39

Precise definition of Markov chains on S ⇢ Rd will be out of the scope of
the course, but we shall see how the necessary ingredients are defined in this case.
The article [17] by Nummelin contains a minimal self-contained proofs about the
strong law of large numbers and more.

Definition 6.23. The Rd-valued Markov chain is (Xk)k�1 is p-reversible, if X0 ⇠
p then (X0, X1)

d
= (X1, X0). That is, P(X0 2 A,X1 2 B) = P(X0 2 B,X1 2 A).

Proposition 6.24. Markov transition probability defined as in (14) is reversible

with respect to a p.d.f. p on X if

p(x)k(x, y) = p(y)k(y, x) for all x, y 2 X. (15)

The condition (15), sometimes also called as detailed balance, is essentially
equivalent9 with reversibility with transition probabilities of the form (14). This is
identical to the definition of reversibility in the discrete case for x 6= y, which turns
out to be su�cient. The proof of reversibility of Metropolis-Hastings is identical
to the discrete case.

The irreducibility condition in the continuous case is likewise slightly dif-
ferent, as there is zero probability of reaching any single state from other states.
Rather, any set of positive p-probability have to be reachable from everywhere.

Definition 6.25 (p-irreducibility). Suppose that p is a p.d.f. on S. The Markov
chain X0, X1, . . . if p-irreducible if for any x 2 S and any set A ⇢ S such thatR
A p(y)dy > 0, there exists n = n(x,A) < 1 such that

P(Xn 2 A | X0 = x) > 0.

The proposal densities q(x, y) are chosen to satisfy this condition.
We state the following general consistency theorem without proof10

Theorem 6.26. If the Metropolis-Hastings algorithm is p-irreducible, then for

any function f with Ep|f(X)| < 1, the MH-estimate is (strongly) consistent

I(n)p,q,MH
(f) =

1

n

nX

k=1

f(Xk)
n!1���! Ep[f(X)] (almost surely).

Note that Theorem 6.26 holds both when X is discrete or when X = Rd.

Example 6.27. Suppose want to simulate the standard normal distribution X ⇠
N(0, 1). The target density is

p(x) / pu(x) = exp(�x2/2).

Step 1: Choose the proposal distribution. We need something simple that
can ‘take us everywhere’ (for irreducibility). Fix a constant a > 0 and choose

9. To be precise, the continuous part k(x, y) in the representation of (14) is unique only up to
a set of measure zero. So the statement would be ‘there exists a k such that. . . ’.
10. The proof follows, for example, from Corollary 2 of Tierney [26] along with Theorem 17.0.1
of Meyn and Tweedie [14]

40

0 50 100 200 300

−2
−1

0
1

2 X_1,...,X_300 Histogram of X

D
en
si
ty

−4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 10: Simulation of Example 6.27: MCMC samples (left) and histogram ap-
proximation of the theoretical density (right).

a new point uniformly at random in a window of length 2a centred at x. The
proposal density is

q(x, y) =
1

2a
1 (x� a < y < x+ a) .

Notice that q(x, y) = q(y, x); this simplifies the acceptance probability

↵(x, y) = min

⇢
1,

p(y)

p(x)

�
.

Step 2: Write the MCMC algorithm. Start from X0 = 0 (say), and iterate for
k = 1, . . . , n:

(a) Simulate Zk ⇠ U(�a, a) and set Yk = Xk�1 + Zk.
(b) Simulate Uk ⇠ U(0, 1) and set

Xk =

(
Yk, if Uk exp

�
r(Xk�1, Yk)

�
,

Xk�1, otherwise.

where r(x, y) = log pu(y)� log pu(x) = �y2/2 + x2/2.

function rwm_example(a=3, n=10_000)
X = zeros(n); x = 0; L_px = -.5*x^2
for k = 1:n

y = x + (2rand()-1)*a
L_py = -.5*y^2 # NB L_px calculated only once!
if (rand() < exp(L_py-L_px))

x = y; L_px = L_py
end
X[k] = x

end
X

end

Example 6.27 belongs to the following class of Metropolis-Hastings algo-
rithms.

41

Definition 6.28. If q(x, y) = q(y, x) for all x, y 2 X, then ↵(x, y) =
min{1, p(y)/p(x)}. Such an algorithm is often called a Metropolis algorithm. More
specifically, in a symmetric random walk Metropolis algorithm

Yn = Xn�1 + Zn, Zn ⇠ q̃,

where the increment density q̃ is symmetric: q̃(z) = q̃(�z) for all z 2 Rd.

The symmetricity of q̃ implies q(x, y) = q̃(y� x) = q̃(x� y) = q(y, x). It is
common to take q̃ to be density of N(0,⌃), which implies that Yn | (Xn�1 = x) ⇠
N(x,⌃).

Example 6.29 (Bivariate distribution with Gaussian random walk Metropolis).

log pu(x) = �1

2
y(x)T

✓
1 0.9
0.9 1

◆�1

y(x), where y(x) =

✓
a�1x1

ax2 + ab(x2

1
+ a2)

◆
,

and with a = b = 1.
For a proposal distribution q we want something simple to sample. Let’s

try bivariate standard normal, that is,

Yk = Xk�1 + Zk, Zk ⇠ N(0, I2).

Note that this is symmetric random walk Metropolis algorithm. We choose to
start from x0 = (0, 0)T .

using Distributions
function log_p(x; a=1, b=1) # Log-pdf of a 'banana-shaped' distribution
y = [x[1]/a, x[2]*a + a*b*(x[1]^2 + a^2)]
logpdf(MvNormal([1 0.9; 0.9 1]), y)

end
function metropolis(n=10_000, d=2, log_p=log_p)

X = zeros(d,n); x = zeros(d); px = log_p(x)
for k = 1:n

y = x + randn(2); py = log_p(y) # Proposal & its density value
if rand() < exp(py-px)

x = y; px = py # Accept
end
X[:,k] = x # Save output

end
X

end

6.5 On tuning of random-walk Metropolis (*)

Suppose that q̂ is some symmetric distribution, that is, q̂(z) = q̂(�z), and let
L 2 Rd⇥d be an invertible matrix. If the proposals Yk are formed as follows

Yk = Xk�1 + LẐk, Ẑk ⇠ q̂.

The question is how the proposal ‘shape/size’ L should be chosen so that the
algorithm would be ‘e�cient’.

42

0 100 200 300 400 500

−4
−3

−2
−1

0

−2 −1 0 1 2

−6
−4

−2
0

Figure 11: Simulation of Example 6.29: Second coordinate of the MCMC (left);
The samples and the density contours (right).

−2 0 2
−10

−8

−6

−4

−2

0

−2 0 2
−10

−8

−6

−4

−2

0

−2 0 2
−10

−8

−6

−4

−2

0

⌃ = (0.01)2 ⇥ I ⌃ = (1.1)2 ⇥ I ⌃ = (10)2 ⇥ I

Figure 12: 1000 samples of the random walk Metropolis algorithm in R2 with
q̃ = N(0,⌃). Contours of ‘banana-shaped’ p are shown in black.

43

Remark 6.30. There are some theoretical optimality results determining which L
is ‘the best’ when q̂ is standard normal [e.g. 24].

(a) First rule of thumb: Set LLT ⇡ ✓Cov(p) where ✓ 2 (0,1) is a scaling
parameter.

(b) Second rule of thumb: Set ✓ such that around 25% of the samples should
be accepted on average.11

These heuristics are often useful when p is (close to) unimodal.
Because Cov(p) is usually not available, Cov(p) is often estimated by a

‘trial’ MCMC targetting p, and ✓ is found also by trial and error.

Remark 6.31. There are various adaptive MCMC algorithms which can be used
to automatise this process, and learn L ‘progressively’ [e.g. 10, 2]. Such methods
have been observed to work well in practice, but the theoretical results ensuring
the validity of the methods require subtle technical conditions.

Example 6.32. Implementation of an adaptive MCMC which finds ‘good’ L auto-
matically [28].

using LinearAlgebra
function ram_adapt!(C, z, k, acc; gam=0.66, acc_opt=0.234)
nz = norm(z); u = nz>0 ? z/nz : 0*z; step = (k+1)^(-gam); fact = acc-acc_opt
dx = sqrt(step*abs(fact))*(C.L * (z/nz))
if fact >= 0 lowrankupdate!(C, dx) else lowrankdowndate!(C, dx) end

end
function adapt_mcmc(log_p, x0, n)
d = length(x0); x = x0; p_x = log_p(x); C = cholesky(diagm(ones(d)))
X = zeros(d, n); acc = 0; z = zeros(d)
for k = 1:n

z = randn(d); y = x + C.L * z # Proposal
p_y = log_p(y); alpha = min(1, exp(p_y-p_x)) # Acc.prob.
if (rand() <= alpha)

x = y; p_x = p_y; acc += 1
end
X[:,k] = x
ram_adapt!(C, z, k, alpha) # Adapt the proposal covariance

end
(X=X, L=C.L, acc_rate=acc/n)

end

6.6 Componentwise updates

In higher dimensions, it is often di�cult to design e�cient proposal distributions
q(x, y). Instead, it is easier to design rules to update a single coordinate or a block

of coordinates in each iteration.
In order to consider such updates, consider X to be d-dimensional, X = Xd

1
;

for instance, X = Zd or X = Rd. Let us introduce the following shorthand notation

x(�i) := (x(1), . . . , x(i�1), x(i+1), . . . , x(d))

for the vector x 2 X with i:th coordinate omitted.

11. The theoretical value, 0.234, is optimal in high dimensions under very strong assumptions.

44

