
g(u) � 0 for u > u0. Assume u0 < 1/2 and notice that then

Z
1/2

0

g(u)g(1� u)du =

Z u0

0

g(u)g(1� u)du+

Z
1/2

u0

g(u)g(1� u)du


Z u0

0

g(u)g(1� u0)du+

Z
1/2

u0

g(u)g(1� u0)du

 g(1� u0)

Z
1

0

g(u)du = 0.

The case u0 = 1/2 is easy, and if u0 > 1/2, then we may use the proof above with
g̃(u) := �g(1� u).

5.4 Control variates (*)

Definition 5.15 (Control variates). Suppose (Xk,Wk)k�1

i.i.d.⇠ p̂ with Xk ⇠ p
(X-valued) and Wk is a zero-mean random number. Let � 2 R, then

I(n)p,ctrl(f) :=
1

n

nX

k=1

⇥
f(Xk) + �Wk

⇤
.

is an unbiased and strongly constent estimator of Ep[f(X)].

Example 5.16. Suppose that we are interested in estimation of Ep[f(X)], where
p is N(µ, �2), but f is a complicated function. Then Xk ⇠ N(µ, �2) and we may
use Wk = Xk � µ as a control variate.

Example 5.17. Suppose that Xk = F�1(Uk), where Uk ⇠ U(0, 1). We can always
use Wk = Uk � 0.5 as control variates.

Proposition 5.18. We have the expression of the variance

Var
�
I(n)p,ctrl(f)

�
=

1

n

⇥
Varp(f(X)) + �2Var(W1) + 2�Cov(f(X1),W1)

⇤
.

If Cov(f(X1),W1) 6= 0, it is possible (in principle) to choose � such that
the variance is reduced.

Remark 5.19. Theoretically, the best value is

�⇤ = �Cov(f(X1),W1)/Var(W1),

which leads into

Var
�
I(n)p,ctrl(f)

�
=

1

n

⇥
(1� Corr(f(X1),W1)

2)Varp(f(X))
⇤
.

Remark 5.20. The value �⇤ is often unknown, but � may be chosen as an empirical
approximation of �⇤ based on preliminary simulation of (Xk,Wk). Finding suitable
control variates is problem-specific.
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6 Markov chain Monte Carlo

Up to this point, we have considered only methods based on i.i.d. random se-
quences. Sometimes it is useful to construct non-i.i.d. sequence X1, X2, . . . such
that we can approximate as before

1

n

nX

k=1

f(Xk) ⇡ Ep[f(X)].

In this section, we will focus on Markov chains like this.
Intuitively, Xk are going to be ‘approximately from p’ for large k and Xk

will be ‘approximately independent’ of Xj if |k � j| is large.

6.1 Recap of some Markov chain theory

We will restate some concepts and key results related to (time-homogeneous)
Markov chains, which you may have seen in earlier courses8. We focus here on
countable or finite S.
Definition 6.1 (Markov chain). The random variables (Xk)k�0 form a Markov
chain, if for all k 2 N and x0, . . . , xk 2 S,

P(Xk = xk | X0 = x0, . . . , Xk�1 = xk�1) = P(Xk = xk | Xk�1 = xk�1).

Definition 6.2 (Transition probability, initial distribution). The transition prob-

ability or transition matrix P of a (time-homogeneous) Markov chain (Xk)k�0 on
S consists of

P (x, y) = P(Xk+1 = y | Xk = x) for all k 2 N and x, y 2 S.

The distribution of (Xk)k�0 is called initial distribution �(x) = P(X0 = x) for all
x 2 S.

Recall that � and P characterise the distribution of (Xk)k�0.
Taking � as a row vector and P as a matrix (you can think of finite, but

the same ideas work with countable case), then

(�P )(x) =
X

y2S

�(y)P (y, x) =
X

y2S

P(X1 = x,X0 = y) = P(X1 = x).

This argument can be iterated to find out that (�

k timesz }| {
P · · ·P )(x) = (�P k)(x) =

P(Xk = x).

Definition 6.3 (Invariant distribution). If ⇡ =
�
⇡(x)

�
x2S is a p.m.f. on S taken

as a row vector, and if

⇡P = ⇡, (that is, (⇡P )(x) = ⇡(x) for all x 2 S),

then ⇡ is the invariant or stationary distribution of P .

8. MATA271 Stochastic Models.
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Definition 6.4 (Irreducibility). Markov chain, or equivalently its transition prob-
ability, is irreducible if for any x, y 2 S there exists n = n(x, y) 2 N such that

P(Xn = y | X0 = x) > 0.

We state the following well-known theorem without proof:

Theorem 6.5 (Markov chain strong law of large numbers). Suppose ⇡ is a p.m.f.

on S and that P is an irreducible transition probability on S with invariant distri-

bution ⇡.
Let (Xk)k�0 be a Markov chain with transition probability P and with any

initial distribution, then for any f : S ! R such that E⇡[f(X)] is finite,

1

n

nX

k=1

f(Xk)
n!1���! E⇡[f(X)] almost surely.

For completeness, let us restate also convergence in distribution, which is
often of considered instead of Theorem 6.5 in Markov chain theory.

Definition 6.6 (Periodicity, aperiodicity). A Markov chain (Xk)k�0 is periodic

with period m 2 N if there exists a partition S0, . . . , Sm�1 of S, where Sk are
non-empty, such that

P(Xn 2 S(nmodm) | X0 2 S0) = 1 for all n 2 N.

The chain is aperiodic if it is not periodic with any period m � 2.

Theorem 6.7. Suppose P is irreducible and aperiodic, with invariant distribu-

tion ⇡. If Xn is a Markov chain with transition probability P with any initial

distribution,

P(Xn = x)
n!1���! ⇡(x) for any x 2 S.

Remark 6.8. Usually in sampling, we are rather more interested in SLLN in Theo-
rem 6.5, but in some cases Theorem 6.7 may be of interest as well. MCMC chains
are rarely periodic, so we usually get Theorem 6.7 automatically. We shall not
consider aperiodicity in detail further.

6.2 Reversibility

We shall consider next a Markov chain concept, which may not appear in a general
course on Markov chain theory, but proves very useful in checking invariance in
the MCMC context.

Definition 6.9 (Reversibility). Suppose P is a transition probability and ⇡ is a
p.m.f. on S. If

⇡(x)P (x, y) = ⇡(y)P (y, x) for all x, y 2 S, (13)

then P is reversible with respect to ⇡, or ⇡-reversible. (Condition (13) is also
known as the detailed balance.)

Proposition 6.10. If P is ⇡-reversible, then ⇡ is invariant for P .
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Proof. (⇡P )(x) =
P

y ⇡(y)P (y, x) = ⇡(x)
P

y P (x, y) = ⇡(x).

Remark 6.11. The contrary does not hold true. That is, if ⇡ is invariant for P , it
does not imply ⇡-reversibility.

Remark 6.12. Suppose P is reversible with respect to ⇡ and X0 ⇠ ⇡. Then the
joint distribution of (X0, X1) is symmetric,

P(X0 = x, X1 = y) = ⇡(x)P (x, y) = ⇡(y)P (y, x) = P(X0 = y, X1 = x).

In other words, (X0, X1)
d
= (X1, X0). This generalises to

(X0, X1, . . . , Xn)
d
= (Xn, Xn�1, . . . , X0),

which can be understood so that the Markov chain initialised from the stationarity

distribution can be ‘time-reversed’ without a↵ecting its distribution.
The reversibility can also be understood in terms of the ‘backwards’ tran-

sition probability being equal to the ‘forward’ transition probability (assuming
again X0 ⇠ ⇡),

P(X0 = i | X1 = j) =
P(X0 = i, X1 = j)

P(X1 = j)
=

⇡(j)P (j, i)

⇡(j)

= P(X1 = i | X0 = j).

6.3 The Metropolis-Hastings algorithm on discrete X
Assume X is discrete and p is a p.m.f. on X, and for each x 2 X we have a proposal
p.m.f. q(x, · ) on X which we can draw samples from.

Algorithm 6.13 (Metropolis-Hastings). Choose some initial value X0 ⌘ x0 with
p(x0) > 0 and iterate for k = 1, 2, . . .

(a) Generate Yk ⇠ q(Xk�1, · ).
(b) Generate Uk ⇠ U(0, 1), and if Uk  ↵(Xk�1, Yk) accept and set Xk = Yk,

otherwise reject and set Xk = Xk�1, where the acceptance probability ↵ is
defined as follows:

↵(x, y) :=

8
<

:
min

⇢
1,

p(y)

p(x)

q(y, x)

q(x, y)

�
, p(x)q(x, y) > 0,

0, otherwise.

Finally, for some function f : X ! R, report

I(n)p,q,MH
(f) :=

1

n

nX

k=1

f(Xk)

as the Metropolis-Hastings approximation of Ep[f(X)].

Remark 6.14. In Algorithm 6.13,
(i) The distribution p is called the target distribution.
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(ii) Unnormalised distributions pu(x) = Zpp(x) and qu(x, y) = Zqq(x, y) can
be used, because

pu(y)

pu(x)

qu(y, x)

qu(x, y)
=

Zpp(y)

Zpp(x)

Zqq(y, x)

Zqq(x, y)
=

p(y)

p(x)

q(y, x)

q(x, y)
.

(iii) The accept-reject step (b) is implemented in practice by drawing Uk ⇠
U(0, 1) and setting

Xk :=

8
<

:
Yk, if Uk <

pu(Yk)

pu(Xk�1)

qu(Yk, Xk�1)

qu(Xk�1, Yk)
Xk�1, otherwise.

In many cases, it is easier (and numerically more stable) to compute

ru(x, y) := log pu(y) + log qu(y, x)� log pu(x)� log qu(x, y),

and then accept if Uk < exp
�
ru(Xk�1, Yk)

�
and reject otherwise.

(iv) There is no need to define ↵(x, y) for p(x)q(x, y) = 0 in practice, because
p(Xk�1)q(Xk�1, Yk) = 0 never occurs (almost surely).

Proposition 6.15. The Metropolis-Hastings algorithm:

(i) Defines a Markov chain on the support of p,

S := {x 2 X : p(x) > 0}.

(ii) Has transition probability K given as

K(x, y) = q(x, y)↵(x, y) + ⇢(x)1 (y = x) , x, y 2 S,

where the probability of rejection ⇢(x) can be given as

⇢(x) = 1�
X

y2X

q(x, y)↵(x, y).

Proof. The transition probability is straightforward to write. Let us then check
that Xn 2 S. For any x 2 S and y 2 X \ S

P(Xn+1 = y | Xn = x) = q(x, y)↵(x, y) = 0,

because ↵(x, y) = 0. This means P(Xn+1 2 S) = 1 if Xn 2 S, and by definition,
X0 = x0 2 S.

Proposition 6.16. The Metropolis-Hastings transition probability K is reversible

with respect to the target distribution p.

Proof. Exercise.

Now, Propositions 6.15 and 6.10 applied with Theorem 6.5 imply the strong
consistency.
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