
5 Variance reduction techniques

Small variance is vital with Monte Carlo methods, because m-fold reduction of
variance means that we may use m-fold less samples to get an estimator with same
variance. We saw above that importance sampling can be used to reduce variance
of the Monte Carlo estimate. There are other useful techniques which we consider
next.

5.1 Rao-Blackwellisation

Recall the law of total variance.

Proposition 5.1. If Var(Z) < 1, then

Var(Z) = E[Var(Z | Y )] + Var(E[Z | Y ]),

where Var(Z | Y ) = E[Z2 | Y ]� (E[Z | Y ])2 � 0.

Corollary 5.2. If Var(Z) < 1, then

Var(E[Z | Y ]) = Var(Z)� E[Var(Z | Y )]  Var(Z).

That is, conditioning can only decrease variance.

Example 5.3 (Rao-Blackwellisation in R2). Suppose that p is a p.d.f. in R2, and
we would like to compute

Ep[f(X, Y )] =

ZZ
f(x, y)p(x, y)dxdy.

Simple Monte Carlo would be to simulate (Xk, Yk)
i.i.d.⇠ p and then compute the

average I(n)p (f) = n�1
Pn

k=1
f(Xk, Yk).

However, if the conditional law pX|Y (x | y) is available, and we can calculate
the conditional expectation

h(y) := Ep[f(X, y) | Y = y],

(that is, with Z = f(X, Y ), we have E[Z | Y ] = h(Y )), we may use instead

I(n)p,RB
(f) :=

1

n

nX

k=1

h(Yk), (12)

which approximates the desired quantity Ep[f(X, Y )] and has smaller variance

than I(n)p (f) (and the improvement can be significant).

Remark 5.4. In Example 5.3, we need only the samples (Yk)k�1 which are dis-
tributed according to the marginal disrtribution pY (y) :=

R
p(x, y)dx. We have a

choice to simulate either (Xk, Yk)k�1

i.i.d.⇠ p and throwing away Xk, or simulating

directly from the marginal distribution (Yk)
i.i.d.⇠ pY , whichever is easier.

Remark 5.5. Rao-Blackwellisation applies similarly also with importance sam-
pling, and with other Monte Carlo methods, such as Markov chain Monte Carlo
introduced later.
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Remark 5.6 (*). The term Rao-Blackwellisation is used, because the method is of-
ten associated with su�cient statistics and the Rao-Blackwell theorem. Marginal-

isation or conditioning might be more appropriate, but Rao-Blackwellisation is
widely used for historical reasons.

Remark 5.7 (*). Sometimes, it may be useful to employ some (biased) approx-
imations ĥ(y) ⇡ E[f(X) | Y = y] in place of the true conditional expectation.
Theoretical guarantees for such ‘approximate Rao-Blackwellisation’ are usually
not available, but empirically this type of schemes may be useful.

5.2 Stratification

Example 5.8. Suppose we are interested to estimate Ep[f(X)] with

p(x) =
1

2
p1(x) +

1

2
p2(x),

where p1 and p2 are distributions on X.
(a) We know how to sample X1, . . . , Xn ⇠ p using Z(i)

k
i.i.d.⇠ pi and Uk

i.i.d.⇠
U(0, 1):

I(n)p (f) =
1

n

 nX

k=1

1

✓
Uk 

1

2

◆
f(Z(1)

k ) + 1

✓
Uk >

1

2

◆
f(Z(2)

k )

�

d
=

1

n

N1X

k=1

f(Z̃(1)

k ) +
1

n

N2X

k=1

f(Z̃(2)

k ),

where (Z̃(i)
k )

i.i.d.⇠ pi, N1 =
Pn

k=1
1
�
Uk  1

2

�
⇠ Binom(n, 1/2) and N2 = n�

N1 ⇠ Binom(n, 1/2) (note that N1 and N2 are not independent though!).
(b) Notice that Ep[f(X)] = (1/2)Ep1 [f(X)] + (1/2)Ep2 [f(X)], so we may use

I(n/2,n/2)p (f) =
1

2
I(n/2)p1 (f) +

1

2
I(n/2)p2 (f)

=
1

n

n/2X

k=1

f(Z(1)

k ) +
1

n

n/2X

k=1

f(Z(2)

k ).

Which estimator should we use? The estimator I(n/2,n/2)p (f), because it turns out

that Var
�
I(n/2,n/2)p (f)

�
 Var(I(n)p (f)). This is an example of stratification (with

proportional allocation).

Theorem 5.9. Suppose the distribution p is of the following mixture form:

p(x) =
mX

i=1

wipi(x),

where wi > 0 and
P

i wi = 1 and p1, . . . , pm are distributions.

Let `1, . . . , `m 2 N with
P

i `i = n, and define the stratified estimator

I(`1,...,`m)

p
(f) :=

mX

i=1

wi

✓
1

`i

`iX

j=1

f(X(i)
j )

◆
,
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where (X(i)
j )i,j are all independent and (X(i)

j )
i.i.d.⇠ pi. The estimator satisfies

(i) Unbiasedness: E[I(`1,...,`m)

p (f)] = Ep[f(X)].

(ii) If `i = win (proportional allocation), then

Var
�
I(`1,...,`m)

p
(f)

�
 Var

�
I(n)p (f)

�
.

Proof. Unbiasedness (i) is direct, and

Var
�
I(`1,...,`m)

p
(f)

�
=

mX

i=1

w2

iVar

✓
1

`i

`iX

j=1

f(X(i)
j )

◆

=
mX

i=1

w2

i

`i
Varpi

�
f(X)

�

=
1

n

mX

i=1

wiVarpi
�
f(X)

�
,

because `i = win. Consider then X =
Pm

i=1
1 (si�1  U < si)X(i), where U ⇠

U(0, 1), s0 = 0, si =
Pi

k=1
wi and X(i) ⇠ pi, then X ⇠ p (exercise!) and we notice

that
mX

i=1

wiVarpi
�
f(X)

�
= E[Var(f(X) | U)]  Varp

�
f(X)

�
.

Example 5.10 (Stratification with inverse c.d.f.). Suppose F�1 is the (gener-
alised) inverse c.d.f. corresponding to a distribution p, and we try to approximate
Ep[f(X)]. We may use the following stratified estimator

I(n)p,strat(f) :=
1

n

nX

k=1

f(Xk), Xk := F�1(Ũk), Ũk :=
k � 1 + Uk

n
,

where (Uk)
i.i.d.⇠ U(0, 1).

This is, in fact, proportionally allocated stratification, which follows by
writing Ep[f(X)] = Eu[f(F�1(U)], where the uniform density can be written as

u(t) := 1 (0 < t  1) =
nX

k=1

wkũk(t),

where wk = 1/n and ũk(t) = n1
�
k�1

n < t  k
n

�
are the densities of Ũk.

Remark 5.11 (*). Stratification with proportional allocation is guaranteed to pro-
vide at least as good estimates as without stratification, but optimal allocation
strategy would be `i / wi

p
Varpi(f(X)). Because this depends on f and we may

be interested in several f , and because Varpi(f(X)) is usually not known, propor-
tional allocation is often a safe choice.
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5.3 Introducing dependence: antithetic variables

In some cases, it is possible to use the dependence of random variables to help
decrease the variance. First such technique is so-called ‘antithetic’ variables.

Definition 5.12 (Antithetic variables). Suppose p̂(x, y) is a joint distribution
with p as its marginals7. In the discrete case, this means that for all x, y 2 X,

p(x) =
X

z2X

p̂(x, z) and p(y) =
X

z2X

p̂(z, y).

Suppose that (Xn, Yn)n�1

i.i.d.⇠ p̂, then clearly (Xn)n�1

i.i.d.⇠ p and (Yn)n�1

i.i.d.⇠ p, but
each Xk typically depends on the corresponding ‘pair’ Yk. The antithetic variable
estimator

I(n)p̂,anti(f) :=
1

2n

nX

k=1

[f(Xk) + f(Yk)]

is clearly unbiased and strongly consistent estimator of Ep[f(X)].

Proposition 5.13. The variance of the antithetic variable estimator is

Var
�
I(n)p̂,anti(f)

�
=

1

2n

⇥
Varpf(X) + Covp̂

�
f(X), f(Y )

�⇤
.

Therefore, if Covp̂
�
f(X), f(Y )

�
= Cov

�
f(X1), f(Y1)

�
 0 then Var

�
I(n)p̂,anti(f)

�


Var
�
I(2n)p (f)

�
.

Note that I(2n)p (f) has the same total number of samples as I(n)p̂,anti(f), so
they have roughly equal computational complexity.

Useful antithetic variables can be found with the inverse c.d.f. method.

Proposition 5.14. Suppose F�1
is a generalised inverse c.d.f. of p, and f : R !

R is monotonic. Define Xk = F�1(Uk) and Yk = F�1(1 � Uk) where (Uk)k�0

i.i.d.⇠
U(0, 1). Then, Cov(f(X1), f(Y1))  0.

Proof. (*) Without loss of generality, we may assume f increasing. Then also
f̄(x) = f(x) � Ep[f(X)] and g := f̄ � F�1 are increasing. If Var(g(U)) = 0, the
claim is trivial, so assume Var(g(U)) > 0.

Because of symmetry

Cov(f(X1), f(Y1)) =

Z
1

0

g(u)g(1� u)du = 2

Z
1/2

0

g(u)g(1� u)du.

Recall E[g(U)] = 0, so there exists u0 2 (0, 1) such that g(u)  0 for u < u0 and

7. Such p̂ is also known as a coupling of p with itself.
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