
For example, suppose X ⇠ p and we want to estimate

P(X � x0) = Ep[1 (X � x0)]

with x0 in the extreme upper tail of p(x). If X1, . . . , Xn
i.i.d.⇠ p, we may not get any

samples Xi � x0 and the usual Monte Carlo estimate

I(n)p (f) =
1

n

nX

i=1

1 (Xi � x0)

is zero with high probability. We can take an proposal density q that puts more
probability at large Y , and then reweight to get expectations in X. By using IS,
we can reduce the variance significantly.

Example 4.16. Say p(x) is the standard normal density and we want to estimate
✓ = P(X � x0) for some x0 � 3.

Take q as the shifted exponential,

q(y) := r exp
�
� r(y � x0)

�
1 (y � x0) .

Let us determine r so that q approximates the optimal distribution (the conditional
tail of p) locally: (log p)0 = (log q)0 at x0, that is,

r = g0(x0), g(x) = � log p(x) =
x2

2
=) r = x0.

The weights are, for y � x0,

w(y) =
p(y)

q(y)

=
1

r
p
2⇡

exp

✓
� y2

2
+ r(y � x0)

◆

and the IS estimator of ✓ is 1

n

Pn
i=1

w(Yi)1 (Yi � x0); See Figure 8.

4.3 Self-normalised importance sampling

The rejection sampling algorithm is straightforward to apply in case of unknown
normalising constants, that is, when only the unnormalised densities pu(x) / p(x)
and qu(x) / q(x) are available.

In importance sampling, this means that we can access the unnormalised

importance weights

wu(x) :=
pu(x)

qu(x)
=

Zp

Zq
w(x), q(x) > 0,

and wu(x) := 0 when q(x) = 0. In order to apply (unbiased) importance sampling,
we would need w. We can get around by simultaneously estimating the ratio
Zp/Zq, with a cost of introducing a bias (which is asymptotically vanishing).
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Figure 8: Five trajectories of classical Monte Carlo (left) and IS of Example 4.16
(right) with x0 = 3. Number of samples in x-axis and value of estimate in y-axis.

Definition 4.17 (Self-normalised importance sampling). Suppose p and q are
p.d.f.s or p.m.f.s, such that

Assumption: q(x) = 0 =) p(x) = 0. (10)

Then, if Y1, Y2, . . .
i.i.d.⇠ q,

Î(n)p,q (f) :=
nX

k=1

f(Yk)W
(n)
k , (11)

where W (n)
k :=

(
wu(Yk)Pn
j=1 wu(Yj)

, if wu(Yj) > 0 for some 1  j  n

1 (k = 1) , otherwise

is the self-normalised (or rescaled) IS approximation of Ep[f(X)].

Remark 4.18. Note that
(a) � = Pq(wu(Yj) > 0) = Pq(p(Yj) > 0) > 0, and therefore

Pq

�
wu(Yj) > 0 for some 1  j  n

�
= 1� (1� �)n

n!1���! 1.

(b) We always have
Pn

k=1
W (n)

k = 1.

The drawback of the self-normalised IS is that the estimator Î(n)p,q (f) is
generally biased for finite n. However, the estimator is (strongly) consistent.

Theorem 4.19. Suppose (10) holds. Then, Î(n)p,q (f)
n!1���! Ep[f(X)] (almost

surely).

Proof. Because wu(Yj) > 0 for some 1  j  n eventually (almost surely; cf. Re-
mark 4.18), we may consider only such n.

Î(n)p,q (f) =

Pn
k=1

f(Yk)wu(Yk)Pn
k=1

wu(Yk)
=

1

n

Pn
k=1

f(Yk)w(Yk)
1

n

Pn
k=1

w(Yk)
=

I(n)p,q (f)

I(n)p,q (1)
.

Theorem 4.3 (b) implies that I(n)p,q (f)
n!1���! Ep[f(X)] almost surely and

I(n)p,q (1)
n!1���! Ep[1] = 1 almost surely.
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Remark 4.20. In the proof of Theorem 4.19, we need the condition q(x) = 0 =)
p(x) = 0 in order to ensure I(n)p,q (1) ! 1. This is more stringent than with unbiased

IS, where we only need q(x) = 0 =) p(x)f(x) = 0 which ensures I(n)p,q (f) !
Ep[f(X)].

Remark 4.21. Note that

Eq[wu(Y )] =
Zp

Zq
Eq[w(Y )] =

Zp

Zq
,

so the mean of unnormalised SNIS weights is unbiased and (strongly) consistent
estimator of the ratio of normalising constants,

1

n

nX

k=1

wu(Yk)
n!1���! Zp

Zq
(almost surely).

This is important in certain applications.

Example 4.22. We saw in Example 4.5 that if Yi ⇠ �(a, b) and

w(y) =
�(a)�↵

�(↵)ba
y↵�a exp(�(� � b)y)

then

I(n)p,q (f) =
1

n

nX

i=1

f(Yi)w(Yi)

is unbiased and consistent estimator of Ep[f(X)] with p = �(↵, �).
To avoid calculating �(a)/�(↵), we can use

wu(y) = y↵�a exp(�(� � b)y)

and then the self-normalised IS estimator

Î(n)p,q (f) :=

Pn
i=1

f(Yi)wu(Yi)Pn
i=1

wu(Yi)

is a consistent estimator of Ep[f(X)].

function snis_gamma(n, alpha, beta, f)
y = -log.(rand(n)) # y ~ Exp(1) = Gamma(1,1)
w_u = y.^(alpha-1) .* exp.(-(beta-1)*y) # Unnormalised w
w = w_u/sum(w_u) # Normalised w
sum(f.(y) .* w) # SNIS estimate

end
# Use the function f(x)=x to estimate mean:
snis_gamma(1000, 2, 4, x -> x)

The self-normalised IS satisfies a CLT with same variance as the unbiased
IS for zero mean functions, in which case they are asymptotically equally e�cient.
A consistent confidence interval can also be easily constructed.
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Theorem 4.23. Suppose (10) holds and �̄2

p,q := Ep[w(X)f̄ 2(X)] < 1, where

f̄(x) = f(x)� Ep[f(X)].

(i)
p
n
�
Î(n)p,q (f)� Ep[f(X)]

� n!1���! N(0, �̄2

p,q) in distribution.

(ii) If also Ep[w(X)] < 1, then the following hold:

• nv(n)p,q
n!1���! �̄2

p,q (a.s.), where v(n)p,q :=
Pn

k=1
(W (n)

k )2
⇥
f(Yk) � Î(n)p,q (f)

⇤2
,

and

• P
⇣
Ep[f(X)] 2

h
Î(n)p,q (f)±↵

q
v(n)p,q

i⌘
! 1�2�(�↵) for any ↵ 2 (0,1).

Proof. (i) Because
Pn

k=1
W (n)

k = 1, Î(n)p,q (f) � Ep[f(X)] = Î(n)p,q (f̄). Now, as in

the proof of Theorem 4.19,
p
nÎ(n)p,q (f̄) =

p
nI(n)p,q (f̄)/I

(n)
p,q (1). Corollary 4.8 implies

that the numerator converges in distribution to N(0, �̄2

p,q) and the denominator
converges to 1 almost surely. Slutsky’s theorem (Lemma 1.14) concludes the proof.

The first part of (ii), that is, nv(n)p,q ! �̄2

p,q is an exercise, and the second claim
follows from (i), as in the proof of Proposition 1.13 (iii).

Remark 4.24 (*). The quantity ne↵ =
�Pn

k=1
(W (n)

k )2
��1 2 [1, n] is widely known

as the e↵ective sample size of (self-normalised) IS.
This may be (loosely) justified when the function is of the form f(x) :=

c1 (x 2 A) with c > 0 and A such that Ep[1 (X 2 A)] = 1/2. In this case, f̄(x) ⌘ c
2
,

and standard Monte Carlo estimator I(n)p (f) would have variance Varp(f(X))/n =
(c/2)2/n, but the corresponding limiting CLT variance of the SNIS estimator is
Ep[w(X)f̄ 2(X)]/n. It is not hard to see (cf. the proof of Theorem 4.23 (ii)) that
then

n

ne↵

n!1���! Ep[w(X)],

so Ep[w(X)]/n ⇡ Varp(f(X))/ne↵ for large n. Therefore, the self-normalised IS
with n samples may be (loosely) thought of as having ne↵ ‘e↵ective independent
samples’.

Remark 4.25 (*). It is sometimes useful to consider the SNIS as an empirical
approximation of the distribution p. That is,

µ̂(n)
p,q (A) :=

nX

k=1

W (n)
k 1 (Yk 2 A) ⇡ P(X 2 A), A ⇢ X,

where X ⇠ p. The approximation is consistent assuming (10), in the following
sense:

µ̂(n)
p,q (A)

n!1���! P(X 2 A) almost surely,

for any (measurable) A ⇢ X.
With unbiased IS, we have

µ(n)
p,q (A) :=

1

n

nX

k=1

w(Yk)1 (Yk 2 A) .

Given (10) this is consistent and also unbiased E[µ(n)
p,q (A)] = P(X 2 A), but unlike

self-normalised IS and plain MC, µ(n)
p,q is not a probability distribution, because

µ(n)
p,q (X) 6= 1 in general.
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