For example, suppose $X \sim p$ and we want to estimate

$$\mathbb{P}(X \ge x_0) = \mathbb{E}_p[\mathbf{1} (X \ge x_0)]$$

with x_0 in the extreme upper tail of p(x). If $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} p$, we may not get any samples $X_i \ge x_0$ and the usual Monte Carlo estimate

$$I_p^{(n)}(f) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \, (X_i \ge x_0)$$

is zero with high probability. We can take an proposal density q that puts more probability at large Y, and then reweight to get expectations in X. By using IS, we can reduce the variance significantly.

Example 4.16. Say p(x) is the standard normal density and we want to estimate $\theta = \mathbb{P}(X \ge x_0)$ for some $x_0 \ge 3$.

Take q as the shifted exponential,

$$q(y) \coloneqq r \exp\left(-r(y-x_0)\right) \mathbf{1} (y \ge x_0)$$

Let us determine r so that q approximates the optimal distribution (the conditional tail of p) locally: $(\log p)' = (\log q)'$ at x_0 , that is,

$$r = g'(x_0), \qquad g(x) = -\log p(x) = \frac{x^2}{2} \implies r = x_0$$

The weights are, for $y \ge x_0$,

$$w(y) = \frac{p(y)}{q(y)}$$
$$= \frac{1}{r\sqrt{2\pi}} \exp\left(-\frac{y^2}{2} + r(y - x_0)\right)$$

and the IS estimator of θ is $\frac{1}{n} \sum_{i=1}^{n} w(Y_i) \mathbf{1} (Y_i \ge x_0)$; See Figure 8.

4.3 Self-normalised importance sampling

The rejection sampling algorithm is straightforward to apply in case of unknown normalising constants, that is, when only the unnormalised densities $p_u(x) \propto p(x)$ and $q_u(x) \propto q(x)$ are available.

In importance sampling, this means that we can access the *unnormalised* importance weights

$$w_u(x) := \frac{p_u(x)}{q_u(x)} = \frac{Z_p}{Z_q} w(x), \qquad q(x) > 0,$$

and $w_u(x) := 0$ when q(x) = 0. In order to apply (unbiased) importance sampling, we would need w. We can get around by *simultaneously* estimating the ratio Z_p/Z_q , with a cost of introducing a bias (which is asymptotically vanishing).

Figure 8: Five trajectories of classical Monte Carlo (left) and IS of Example 4.16 (right) with $x_0 = 3$. Number of samples in x-axis and value of estimate in y-axis.

Definition 4.17 (Self-normalised importance sampling). Suppose p and q are p.d.f.s or p.m.f.s, such that

Assumption:
$$q(x) = 0 \implies p(x) = 0.$$
 (10)

Then, if $Y_1, Y_2, \ldots \overset{\text{i.i.d.}}{\sim} q$,

$$\hat{I}_{p,q}^{(n)}(f) := \sum_{k=1}^{n} f(Y_k) W_k^{(n)},$$
where $W_k^{(n)} := \begin{cases} \frac{w_u(Y_k)}{\sum_{j=1}^{n} w_u(Y_j)}, & \text{if } w_u(Y_j) > 0 \text{ for some } 1 \le j \le n \\ \mathbf{1} (k = 1), & \text{otherwise} \end{cases}$
(11)

is the self-normalised (or rescaled) IS approximation of $\mathbb{E}_p[f(X)]$. Remark 4.18. Note that

(a) $\beta = \mathbb{P}_q(w_u(Y_j) > 0) = \mathbb{P}_q(p(Y_j) > 0) > 0$, and therefore

$$\mathbb{P}_q(w_u(Y_j) > 0 \text{ for some } 1 \le j \le n) = 1 - (1 - \beta)^n \xrightarrow{n \to \infty} 1.$$

(b) We always have $\sum_{k=1}^{n} W_k^{(n)} = 1$.

The drawback of the self-normalised IS is that the estimator $\hat{I}_{p,q}^{(n)}(f)$ is generally biased for finite *n*. However, the estimator is (strongly) consistent.

Theorem 4.19. Suppose (10) holds. Then, $\hat{I}_{p,q}^{(n)}(f) \xrightarrow{n \to \infty} \mathbb{E}_p[f(X)]$ (almost surely).

Proof. Because $w_u(Y_j) > 0$ for some $1 \le j \le n$ eventually (almost surely; cf. Remark 4.18), we may consider only such n.

$$\hat{I}_{p,q}^{(n)}(f) = \frac{\sum_{k=1}^{n} f(Y_k) w_u(Y_k)}{\sum_{k=1}^{n} w_u(Y_k)} = \frac{\frac{1}{n} \sum_{k=1}^{n} f(Y_k) w(Y_k)}{\frac{1}{n} \sum_{k=1}^{n} w(Y_k)} = \frac{I_{p,q}^{(n)}(f)}{I_{p,q}^{(n)}(1)}$$

Theorem 4.3 (b) implies that $I_{p,q}^{(n)}(f) \xrightarrow{n \to \infty} \mathbb{E}_p[f(X)]$ almost surely and $I_{p,q}^{(n)}(1) \xrightarrow{n \to \infty} \mathbb{E}_p[1] = 1$ almost surely.

Remark 4.20. In the proof of Theorem 4.19, we need the condition $q(x) = 0 \implies p(x) = 0$ in order to ensure $I_{p,q}^{(n)}(1) \to 1$. This is more stringent than with unbiased IS, where we only need $q(x) = 0 \implies p(x)f(x) = 0$ which ensures $I_{p,q}^{(n)}(f) \to \mathbb{E}_p[f(X)]$.

Remark 4.21. Note that

$$\mathbb{E}_q[w_u(Y)] = \frac{Z_p}{Z_q} \mathbb{E}_q[w(Y)] = \frac{Z_p}{Z_q},$$

so the mean of unnormalised SNIS weights is unbiased and (strongly) consistent estimator of the ratio of normalising constants,

$$\frac{1}{n} \sum_{k=1}^{n} w_u(Y_k) \xrightarrow{n \to \infty} \frac{Z_p}{Z_q} \qquad \text{(almost surely)}.$$

This is important in certain applications.

Example 4.22. We saw in Example 4.5 that if $Y_i \sim \Gamma(a, b)$ and

$$w(y) = \frac{\Gamma(a)\beta^{\alpha}}{\Gamma(\alpha)b^{a}}y^{\alpha-a}\exp(-(\beta-b)y)$$

then

$$I_{p,q}^{(n)}(f) = \frac{1}{n} \sum_{i=1}^{n} f(Y_i) w(Y_i)$$

is unbiased and consistent estimator of $\mathbb{E}_p[f(X)]$ with $p = \Gamma(\alpha, \beta)$.

To avoid calculating $\Gamma(a)/\Gamma(\alpha)$, we can use

$$w_u(y) = y^{\alpha - a} \exp(-(\beta - b)y)$$

and then the self-normalised IS estimator

$$\hat{I}_{p,q}^{(n)}(f) := \frac{\sum_{i=1}^{n} f(Y_i) w_u(Y_i)}{\sum_{i=1}^{n} w_u(Y_i)}$$

is a consistent estimator of $\mathbb{E}_p[f(X)]$.

The self-normalised IS satisfies a CLT with same variance as the unbiased IS for zero mean functions, in which case they are asymptotically equally efficient. A consistent confidence interval can also be easily constructed.

Theorem 4.23. Suppose (10) holds and $\bar{\sigma}_{p,q}^2 := \mathbb{E}_p[w(X)\bar{f}^2(X)] < \infty$, where $\bar{f}(x) = f(x) - \mathbb{E}_p[f(X)]$. (i) $\sqrt{n}(\hat{I}_{p,q}^{(n)}(f) - \mathbb{E}_p[f(X)]) \xrightarrow{n \to \infty} N(0, \bar{\sigma}_{p,q}^2)$ in distribution. (ii) If also $\mathbb{E}_p[w(X)] < \infty$, then the following hold: • $nv_{p,q}^{(n)} \xrightarrow{n \to \infty} \bar{\sigma}_{p,q}^2$ (a.s.), where $v_{p,q}^{(n)} := \sum_{k=1}^n (W_k^{(n)})^2 [f(Y_k) - \hat{I}_{p,q}^{(n)}(f)]^2$, and

•
$$\mathbb{P}\Big(\mathbb{E}_p[f(X)] \in \left[\hat{I}_{p,q}^{(n)}(f) \pm \alpha \sqrt{v_{p,q}^{(n)}}\right]\Big) \to 1 - 2\Phi(-\alpha) \text{ for any } \alpha \in (0,\infty).$$

Proof. (i) Because $\sum_{k=1}^{n} W_k^{(n)} = 1$, $\hat{I}_{p,q}^{(n)}(f) - \mathbb{E}_p[f(X)] = \hat{I}_{p,q}^{(n)}(\bar{f})$. Now, as in the proof of Theorem 4.19, $\sqrt{n}\hat{I}_{p,q}^{(n)}(\bar{f}) = \sqrt{n}I_{p,q}^{(n)}(\bar{f})/I_{p,q}^{(n)}(1)$. Corollary 4.8 implies that the numerator converges in distribution to $N(0, \bar{\sigma}_{p,q}^2)$ and the denominator converges to 1 almost surely. Slutsky's theorem (Lemma 1.14) concludes the proof. The first part of (ii), that is, $nv_{p,q}^{(n)} \to \bar{\sigma}_{p,q}^2$ is an exercise, and the second claim follows from (i), as in the proof of Proposition 1.13 (iii).

Remark 4.24 (*). The quantity $n_{\text{eff}} = \left(\sum_{k=1}^{n} (W_k^{(n)})^2\right)^{-1} \in [1, n]$ is widely known as the effective sample size of (self-normalised) IS.

This may be (loosely) justified when the function is of the form $f(x) := c\mathbf{1}$ $(x \in A)$ with c > 0 and A such that $\mathbb{E}_p[\mathbf{1} (X \in A)] = 1/2$. In this case, $\bar{f}(x) \equiv \frac{c}{2}$, and standard Monte Carlo estimator $I_p^{(n)}(f)$ would have variance $\operatorname{Var}_p(f(X))/n = (c/2)^2/n$, but the corresponding limiting CLT variance of the SNIS estimator is $\mathbb{E}_p[w(X)\bar{f}^2(X)]/n$. It is not hard to see (cf. the proof of Theorem 4.23 (ii)) that then

$$\frac{n}{n_{\text{eff}}} \xrightarrow{n \to \infty} \mathbb{E}_p[w(X)],$$

so $\mathbb{E}_p[w(X)]/n \approx \operatorname{Var}_p(f(X))/n_{\text{eff}}$ for large *n*. Therefore, the self-normalised IS with *n* samples may be (loosely) thought of as having n_{eff} 'effective independent samples'.

Remark 4.25 (*). It is sometimes useful to consider the SNIS as an empirical approximation of the distribution p. That is,

$$\hat{\mu}_{p,q}^{(n)}(A) := \sum_{k=1}^{n} W_k^{(n)} \mathbf{1} \left(Y_k \in A \right) \approx \mathbb{P}(X \in A), \qquad A \subset \mathbb{X},$$

where $X \sim p$. The approximation is consistent assuming (10), in the following sense:

$$\hat{\mu}_{p,q}^{(n)}(A) \xrightarrow{n \to \infty} \mathbb{P}(X \in A)$$
 almost surely,

for any (measurable) $A \subset \mathbb{X}$.

With unbiased IS, we have

$$\mu_{p,q}^{(n)}(A) := \frac{1}{n} \sum_{k=1}^{n} w(Y_k) \mathbf{1} (Y_k \in A).$$

Given (10) this is consistent and also unbiased $\mathbb{E}[\mu_{p,q}^{(n)}(A)] = \mathbb{P}(X \in A)$, but unlike self-normalised IS and plain MC, $\mu_{p,q}^{(n)}$ is not a probability distribution, because $\mu_{p,q}^{(n)}(\mathbb{X}) \neq 1$ in general.