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Figure 4: All points (Yk, UkMq(Yk)) simulated in the rejection algorithm of Ex-
ample 3.8 are distributed uniformly in beteeen the x-axis and the function Mq(x)
(the upper curve). The points that fall below the curve p(x) are accepted (green),
others are rejected (red).

3.2 Unnormalised distributions and rejection sampling

A p.d.f. p(x) on X (resp. p.m.f. p(x) on X) must satisfy

Z

X
p(x)dx = 1

✓
resp.

X

x2X

p(x) = 1

◆
.

We can specify a p.d.f (resp. p.m.f.) by just giving a non-negative function pu(x),
which is propotional to p(x). More specifically, if

p(x) / pu(x) then p(x) =
pu(x)

Zp
,

with the normalising constant

Zp :=

Z

X
pu(x)dx.

✓
resp. Zp =

X

x2X

pu(x)

◆
.

The distribution p(x) is fully determined by pu(x), even though we could not
calculate values of p(x). (Of course, we must have Zp 2 (0,1).)

Example 3.9. Suppose we know p(x), the density of random variable X, and we
are interested in the conditional density of X given X � t, of the following form:

pt(x) =
p(x)1 (x � t)R1

t p(t)dt
/ p(x)1 (x � t) .

It is clear that we could sample from (Xk)k�1

i.i.d.⇠ p, and accept only those for
which Xk � t, which would be samples from pt.
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Example 3.10. In Bayesian inference, we are interested in a conditional distribu-
tion (the posterior)

p(x) = fX|Y (x | y⇤) =
fY |X(y⇤ | x)fX(x)R

X fY |X(y⇤ | x̂)fX(x̂)dx̂
/ fY |X(y

⇤ | x)fX(x),

where y⇤ stands for the observed value of random variable Y and random variable
X is the unknown. (Above, p(x) is the conditional density of X | (Y = y⇤) and
fX|Y stands for the conditional density of X given Y .) We can only calculate
pu(x) = fY |X(y⇤ | x)fX(x).

We would like an algorithm to simulate X ⇠ p and use only the unnor-
malised density pu(x), without need to calculate p(x). The rejection algorithm can
be used in such a case.

Algorithm 3.11 (Rejection sampling with unnormalised distributions). Suppose
q and p are p.d.f.s (or p.m.f.s) such that q / qu and p / pu, with

Assumption:
pu(x)

qu(x)
 M for all x 2 X, (5)

and that (Yk)k�1

i.i.d.⇠ q independent of (Uk)k�1

i.i.d.⇠ U(0, 1). Set T = 1 and

(A) If UT  pu(YT )

Mqu(YT )
, then output X = YT .

(B) Otherwise, increment T = T + 1 and retry (A).

Algorithm 3.11 is valid by the proof of Theorem 3.4, with minor adjust-
ments. Namely,

P(Yt = x,Bt = 1) =
1

M
q(x)

pu(x)

qu(x)
=

✓
1

M
· Zp

Zq

◆
p(x),

from which we notice also that T ⇠ Geometric(1/M̂) where M̂ = MZq/Zp.

(In fact, pu(y)
Mqu(y)

= p(y)

M̂q(y)
, so Algorithm 3.11 coincides with Algorithm 3.2

with M̂ = M .)

Example 3.12. Consider the probability density

p(x) / pu(x) :=
sin2(x)

x2
1 (x 6= 0) , �1 < x < 1, (x 6= 0)

and the standard Cauchy distribution q(x) / qu(x) = (1 + x2)�1, which can be
simulated with the inverse c.d.f. method (exercise). We have

pu(x)

qu(x)
=

sin2 x(1 + x2)

x2
 min

⇢
1 + x2

x2
, 1 + x2

�
 2,

because | sin x|  min{1, x}. (Optimal bound is slightly less than 1.5.)
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Figure 5: Simulated samples from the standard Cauchy distribution (left) and
samples from p(x) / sin2(x)/x2 (right) with corresponding densities.

using Distributions
max_n = 100_000; x = zeros(0) # Empty (zero-length) vector
for k = 1:max_n

y = rand(Cauchy())
ratio_pu_qu_M = sin(y)^2*(1+y^2) / (2y^2)
if rand() <= ratio_pu_qu_M

push!(x, y) # Append y to the end of vector x
end

end

4 Importance sampling

All methods up to this point have aimed at simulating i.i.d. random variables

(Xk)k�1

i.i.d.⇠ p. It is possible to use an auxiliary distribution q for Monte Carlo
integration similar to rejection sampling, but without an explicit accept-reject
mechanism.

This can be of interest from di↵erent reasons, for instance:
• Being less wasteful by ‘recycling’ samples that would be rejected in rejection
sampling.

• Reducing Monte Carlo variance.
• Use when M in (4) or (5) is unknown, or even when no such finite M exists.

4.1 Unbiased importance sampling

Definition 4.1 (Importance sampling). Suppose p and q are two p.d.f.s or p.m.f.s
on X and f : X ! R.

Assumption: q(x) = 0 =) p(x)f(x) = 0. (6)

Define

w(x) :=

(
p(x)
q(x) , if q(x) > 0,

0, otherwise.
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Figure 6: Importance sampling with p standard Normal (blue) and q Cauchy (red),
as in Example 3.8). The importance weights w(Yk) are shown on the right.

Then, if Y1, Y2, . . . , Yn
i.i.d.⇠ q, the estimator

I(n)p,q (f) :=
1

n

nX

k=1

f(Yk)w(Yk) (7)

is the (unbiased) importance sampling (IS) approximation of Ep[f(X)].

Remark 4.2. The distribution q is called the proposal distribution (sometimes also
importance or instrumental). The term w(Yk) is called the (importance) weight

related to the sample Yk.

Theorem 4.3. Assuming (6) holds, then the IS estimator is

(a) Unbiased: E[I(n)p,q (f)] = Ep[f(X)], for all n 2 N
(b) Consistent: I(n)p,q (f)

n!1���! Ep[f(X)] (almost surely).

Proof. Because the random variables Zk := f(Yk)w(Yk) are i.i.d., it is su�cient
for (a) to check that E[Z1] = Ep[f(X)]. In the discrete case,

E[Z1] =
X

y2X : q(y)>0

f(y)
p(y)

q(y)
q(y) =

X

y2X

f(y)p(y)dy = Ep[f(X)],

and similarly in the continuous case, changing the sum to an integral. The almost
sure convergence (b) follows from the strong law of large numbers.

Remark 4.4 (*). In terms of general probability, importance sampling is a change

of measure, and the function w is the related Radon-Nikodym derivative.

Example 4.5 (Gamma distribution). Example 2.14 showed how to simulate Y ⇠
�(a, b) for a 2 N+ and b > 0 by summing exponentials.

Suppose we have simulated Y1, . . . , Yn
i.i.d.⇠ �(a, b), but want to estimate the

expectation of f(X) where X ⇠ �(↵, �), with some other parameters ↵, � > 0.
Recall that the density of �(↵, �) is

p(x) =
�↵

�(↵)
x↵�1 exp(��x)1 (x > 0)
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so the importance weights are given as

w(y) =
p(y)

q(y)
=

�(a)�↵

�(↵)ba
y↵�a exp

�
� (� � b)y

�
, for y > 0.

The importance sampling estimator is (NB: P(q(Yi) = 0) = 0!)

I(n)p,q (f) =
1

n

nX

i=1

f(Yi)w(Yi)

=
�(a)�↵

�(↵)ba
· 1
n

nX

i=1

f(Yi)Yi
↵�a exp

�
� (� � b)Yi

�
.

We know that this is unbiased and (strongly) consistent estimator of Ep[f(X)].

Remark 4.6. In fact, we can ‘recycle’ the samples the Y1, . . . , Yn
i.i.d.⇠ q in Example

4.5 to obtain estimates of Ep↵,�
[f(X)] with p↵,� corresponding to �(↵, �), for a

range of values ↵ and �. . .

Theorem 4.3 showed that IS is consistent with minimal conditions. How
about the variance of IS?

Proposition 4.7. Suppose that (6) holds. Then, the variance of the IS estimator

can be given as

Var
�
I(n)p,q (f)

�
=

�2

p,q

n
where �2

p,q := Ep[f
2(X)w(X)]� Ep[f(X)]2.

Note that this permits the case �2

p,q = 1 =) Var
�
I(n)p,q (f)

�
= 1 8n 2 N.

Proof. Denote Zk := f(Yk)w(Yk), then in the discrete case

E[Z2

1
] =

X

y2X : q(y)>0

f 2(y)
p2(y)

q2(y)
q(y) =

X

y2X

f 2(y)w(y)p(y)dy = Ep[f
2(X)w(X)].

Now, �2

p,q = Var(Z1) = EZ2

1
� (EZ1)2 and EZ1 = Ep[f(X)], and as (Zk) are i.i.d.,

Var(I(n)(f)p,q ) = �2

p,q/n. The continuous case follows similarly.

Because I(n)p,q (f) is a sum of i.i.d. random variables, the proof of Proposition
4.7 implies the following:

Corollary 4.8. Suppose (6) holds and

Ep[f
2(X)w(X)] < 1. (8)

Then,
p
n[I(n)p,q (f)� Ep[f(X)]]

n!1���! N(0, �2

p,q) in distribution.

Remark 4.9. Because IS is just usual Monte Carlo approximating Eq[g(X)] with
g(x) = f(x)w(x), Proposition 1.13 holds, and gives confidence intervals also for
the IS estimator.
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Figure 7: Example 4.10 with a = 2, b = 2 and � = 2.5, ↵ = 0.5 (NB ↵ < a) and

f(x) ⌘ 1. Values of the weights w(Yn) (left) and the sequence of estimates I(n)p,q (f)
(right) for n = 1, 2, . . ., 1000.

Example 4.10 (Gamma distribution (cont.)). Let us consider the variance of the
IS estimator for the Gamma distributions in Example 4.5. We may write

w(x)f 2(x) =
�(a)�↵

�(↵)ba
x↵�a exp(�(� � b)x)f 2(x),

so

Ep[w(X)f 2(X)] = ca,b,↵,�Ep

⇥
X↵�a exp(�(� � b)X)f 2(X)

⇤
.

If ↵ � a and � > b, then

sup
x>0

⇥
x↵�a exp(�(� � b)x)

⇤
< 1.

In this case Ep[w(X)f 2(X)]  cEp[f 2(X)], so if also Varp(f(X)) < 1 ()
Ep[f 2(X)] < 1, then we have Ep[w(X)f 2(X)] < 1 and the importance sampling
estimator is guaranteed to have finite variance.

Figure 7 shows an example simulation where Var(I(n)p,q (f)) = 1. Exercise:
What would happen if we used f(x) = x instead?

We formalise the su�cient condition found in the Gamma example above.

Proposition 4.11. Suppose (6) holds and

M := sup
x

w(x) = sup
x

p(x)

q(x)
< 1, (9)

where the supremum is taken over all x 2 X such that p(x)f(x) > 0. Then, if
Varp(f(X)) < 1, the variance of the IS estimator is finite, and can be upper

bounded by

�2

p,q  MEp[f
2(X)]� Ep[f(X)]2

= MVarp(f(X)) + (M � 1)Ep[f(X)]2.
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Remark 4.12. If Ep[f(X)]2 ⌧ Ep[f 2(X)], Proposition 4.11 indicates that the IS
estimator is (roughly) at most M times worse than the classical Monte Carlo
estimate. How does this result relate with using rejection sampling instead of IS?

Rule of thumb: Try to make sure that (9) holds (unless you have a specific f
in mind).

What is the best possible proposal density q for a specific f?

Proposition 4.13. Suppose that f : X ! R satisfies Ep[|f(X)|] > 0. Then, the
proposal distribution

q⇤(x) :=
p(x)|f(x)|
Ep[|f(X)|] / p(x)|f(x)|

admits the minimum variance among all distributions q satisfying (6).

Proof. In the discrete case, we have with w⇤(x) = p(x)/q⇤(x),

Ep[f
2(X)w⇤(X)] =

X

x2X : q⇤(x)>0

f 2(x)
p2(x)

q⇤(x)
=

�
Ep[|f(X)|]

�2

On the other hand, for any q satisfying (6),

�
Ep[|f(X)|]

�2
=

✓
Eq[|f(X)|w(X)]

◆2

 Eq[f
2(X)w2(X)] = Ep[f

2(X)w(X)],

by Jensen’s inequality. This implies �2

p,q⇤  �2

p,q by Proposition 4.7.

Remark 4.14. The result of Proposition 4.13 is, of course, mostly theoretical, but
leads to:

Rule of thumb: Try to find q that is approximately proportional to p(x)|f(x)|.

In particular, if f is zero (or has very small absolute values) in some regions
of the space, we avoid putting any (or put less) mass of q to such regions.

Remark 4.15. Note in particular that IS can have, in fact, a (significantly) smaller
variance than the classical Monte Carlo estimate. We restate the main reasons to
use IS rather than classical Monte Carlo:

• Use IS when we cannot sample (e�ciently) from p.
• Use IS to reduce variance over the classical Monte Carlo estimator.
• Rejection sampling is not applicable (because we do not know M < 1, or
M = 1)

4.2 Application: Rare event estimation

One important class of applications of IS as variance reduction is problems in
which we estimate the probability of a rare event. In such scenarios, we may be
able to sample from p directly but this leads to high variance.
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