

Figure 4: All points $(Y_k, U_k Mq(Y_k))$ simulated in the rejection algorithm of Example 3.8 are distributed uniformly in between the x-axis and the function Mq(x)(the upper curve). The points that fall below the curve p(x) are accepted (green), others are rejected (red).

3.2 Unnormalised distributions and rejection sampling

A p.d.f. p(x) on X (resp. p.m.f. p(x) on X) must satisfy

$$\int_{\mathbb{X}} p(x) dx = 1 \qquad \left(\text{resp.} \quad \sum_{x \in \mathbb{X}} p(x) = 1 \right).$$

We can specify a p.d.f (resp. p.m.f.) by just giving a non-negative function $p_u(x)$, which is proportional to p(x). More specifically, if

$$p(x) \propto p_u(x)$$
 then $p(x) = \frac{p_u(x)}{Z_p}$,

with the normalising constant

$$Z_p := \int_{\mathbb{X}} p_u(x) dx.$$
 (resp. $Z_p = \sum_{x \in \mathbb{X}} p_u(x)$).

The distribution p(x) is fully determined by $p_u(x)$, even though we could not calculate values of p(x). (Of course, we must have $Z_p \in (0, \infty)$.)

Example 3.9. Suppose we know p(x), the density of random variable X, and we are interested in the conditional density of X given $X \ge t$, of the following form:

$$p_t(x) = \frac{p(x)\mathbf{1} \ (x \ge t)}{\int_t^\infty p(t) \mathrm{d}t} \propto p(x)\mathbf{1} \ (x \ge t) \,.$$

It is clear that we could sample from $(X_k)_{k\geq 1} \stackrel{\text{i.i.d.}}{\sim} p$, and accept only those for which $X_k \geq t$, which would be samples from p_t .

Example 3.10. In Bayesian inference, we are interested in a conditional distribution (the posterior)

$$p(x) = f_{X|Y}(x \mid y^*) = \frac{f_{Y|X}(y^* \mid x)f_X(x)}{\int_{\mathbb{X}} f_{Y|X}(y^* \mid \hat{x})f_X(\hat{x})d\hat{x}} \propto f_{Y|X}(y^* \mid x)f_X(x),$$

where y^* stands for the observed value of random variable Y and random variable X is the unknown. (Above, p(x) is the conditional density of $X \mid (Y = y^*)$ and $f_{X|Y}$ stands for the conditional density of X given Y.) We can only calculate $p_u(x) = f_{Y|X}(y^* \mid x) f_X(x).$

We would like an algorithm to simulate $X \sim p$ and use only the unnormalised density $p_u(x)$, without need to calculate p(x). The rejection algorithm can be used in such a case.

Algorithm 3.11 (Rejection sampling with unnormalised distributions). Suppose q and p are p.d.f.s (or p.m.f.s) such that $q \propto q_u$ and $p \propto p_u,$ with

Assumption:
$$\frac{p_u(x)}{q_u(x)} \le M$$
 for all $x \in \mathbb{X}$, (5)

and that $(Y_k)_{k\geq 1} \stackrel{\text{i.i.d.}}{\sim} q$ independent of $(U_k)_{k\geq 1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}(0,1)$. Set T=1 and

- (A) If $U_T \leq \frac{p_u(Y_T)}{Mq_u(Y_T)}$, then output $X = Y_T$.
- (B) Otherwise, increment T = T + 1 and retry (A).

Algorithm 3.11 is valid by the proof of Theorem 3.4, with minor adjustments. Namely,

$$\mathbb{P}(Y_t = x, B_t = 1) = \frac{1}{M}q(x)\frac{p_u(x)}{q_u(x)} = \left(\frac{1}{M} \cdot \frac{Z_p}{Z_q}\right)p(x),$$

from which we notice also that $T \sim \text{Geometric}(1/\hat{M})$ where $\hat{M} = MZ_q/Z_p$. (In fact, $\frac{p_u(y)}{Mq_u(y)} = \frac{p(y)}{\hat{M}q(y)}$, so Algorithm 3.11 coincides with Algorithm 3.2 with $\hat{M} = M$.)

Example 3.12. Consider the probability density

$$p(x) \propto p_u(x) := \frac{\sin^2(x)}{x^2} \mathbf{1} (x \neq 0), \qquad -\infty < x < \infty, \ (x \neq 0)$$

and the standard Cauchy distribution $q(x) \propto q_u(x) = (1+x^2)^{-1}$, which can be simulated with the inverse c.d.f. method (exercise). We have

$$\frac{p_u(x)}{q_u(x)} = \frac{\sin^2 x(1+x^2)}{x^2} \le \min\left\{\frac{1+x^2}{x^2}, 1+x^2\right\} \le 2,$$

because $|\sin x| \le \min\{1, x\}$. (Optimal bound is slightly less than 1.5.)

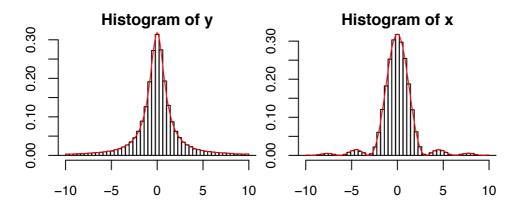


Figure 5: Simulated samples from the standard Cauchy distribution (left) and samples from $p(x) \propto \sin^2(x)/x^2$ (right) with corresponding densities.

```
using Distributions
max_n = 100_000; x = zeros(0) # Empty (zero-length) vector
for k = 1:max_n
    y = rand(Cauchy())
    ratio_pu_qu_M = sin(y)^2*(1+y^2) / (2y^2)
    if rand() <= ratio_pu_qu_M
        push!(x, y) # Append y to the end of vector x
    end
end</pre>
```

4 Importance sampling

All methods up to this point have aimed at simulating i.i.d. random variables $(X_k)_{k\geq 1} \stackrel{\text{i.i.d.}}{\sim} p$. It is possible to use an auxiliary distribution q for Monte Carlo integration similar to rejection sampling, but without an explicit accept-reject mechanism.

This can be of interest from different reasons, for instance:

- Being less wasteful by 'recycling' samples that would be rejected in rejection sampling.
- Reducing Monte Carlo variance.
- Use when M in (4) or (5) is unknown, or even when no such finite M exists.

4.1 Unbiased importance sampling

Definition 4.1 (Importance sampling). Suppose p and q are two p.d.f.s or p.m.f.s on X and $f : X \to \mathbb{R}$.

Assumption:
$$q(x) = 0 \implies p(x)f(x) = 0.$$
 (6)

Define

$$w(x) := \begin{cases} \frac{p(x)}{q(x)}, & \text{if } q(x) > 0, \\ 0, & \text{otherwise.} \end{cases}$$

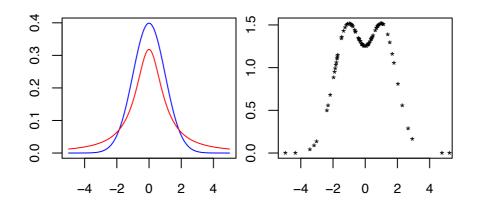


Figure 6: Importance sampling with p standard Normal (blue) and q Cauchy (red), as in Example 3.8). The importance weights $w(Y_k)$ are shown on the right.

Then, if $Y_1, Y_2, \ldots, Y_n \stackrel{\text{i.i.d.}}{\sim} q$, the estimator

$$I_{p,q}^{(n)}(f) := \frac{1}{n} \sum_{k=1}^{n} f(Y_k) w(Y_k)$$
(7)

is the (unbiased) importance sampling (IS) approximation of $\mathbb{E}_p[f(X)]$.

Remark 4.2. The distribution q is called the proposal distribution (sometimes also importance or instrumental). The term $w(Y_k)$ is called the (importance) weight related to the sample Y_k .

Theorem 4.3. Assuming (6) holds, then the IS estimator is

- (a) Unbiased: $\mathbb{E}[I_{p,q}^{(n)}(f)] = \mathbb{E}_p[f(X)]$, for all $n \in \mathbb{N}$ (b) Consistent: $I_{p,q}^{(n)}(f) \xrightarrow{n \to \infty} \mathbb{E}_p[f(X)]$ (almost surely).

Proof. Because the random variables $Z_k := f(Y_k)w(Y_k)$ are i.i.d., it is sufficient for (a) to check that $\mathbb{E}[Z_1] = \mathbb{E}_p[f(X)]$. In the discrete case,

$$\mathbb{E}[Z_1] = \sum_{y \in \mathbb{X}: q(y) > 0} f(y) \frac{p(y)}{q(y)} q(y) = \sum_{y \in \mathbb{X}} f(y) p(y) \mathrm{d}y = \mathbb{E}_p[f(X)],$$

and similarly in the continuous case, changing the sum to an integral. The almost sure convergence (b) follows from the strong law of large numbers.

Remark 4.4 (*). In terms of general probability, importance sampling is a *change* of measure, and the function w is the related Radon-Nikodym derivative.

Example 4.5 (Gamma distribution). Example 2.14 showed how to simulate $Y \sim$ $\Gamma(a, b)$ for $a \in \mathbb{N}_+$ and b > 0 by summing exponentials.

Suppose we have simulated $Y_1, \ldots, Y_n \stackrel{\text{i.i.d.}}{\sim} \Gamma(a, b)$, but want to estimate the expectation of f(X) where $X \sim \Gamma(\alpha, \beta)$, with some other parameters $\alpha, \beta > 0$.

Recall that the density of $\Gamma(\alpha, \beta)$ is

$$p(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x) \mathbf{1} (x > 0)$$

so the importance weights are given as

$$w(y) = \frac{p(y)}{q(y)} = \frac{\Gamma(a)\beta^{\alpha}}{\Gamma(\alpha)b^{a}}y^{\alpha-a}\exp\big(-(\beta-b)y\big), \quad \text{for } y > 0.$$

The importance sampling estimator is (NB: $\mathbb{P}(q(Y_i) = 0) = 0!)$)

$$I_{p,q}^{(n)}(f) = \frac{1}{n} \sum_{i=1}^{n} f(Y_i) w(Y_i)$$

= $\frac{\Gamma(a)\beta^{\alpha}}{\Gamma(\alpha)b^a} \cdot \frac{1}{n} \sum_{i=1}^{n} f(Y_i) Y_i^{\alpha-a} \exp\left(-(\beta-b)Y_i\right).$

We know that this is unbiased and (strongly) consistent estimator of $\mathbb{E}_p[f(X)]$.

Remark 4.6. In fact, we can 'recycle' the samples the $Y_1, \ldots, Y_n \stackrel{\text{i.i.d.}}{\sim} q$ in Example 4.5 to obtain estimates of $\mathbb{E}_{p_{\alpha,\beta}}[f(X)]$ with $p_{\alpha,\beta}$ corresponding to $\Gamma(\alpha,\beta)$, for a range of values α and $\beta \ldots$

Theorem 4.3 showed that IS is consistent with minimal conditions. How about the variance of IS?

Proposition 4.7. Suppose that (6) holds. Then, the variance of the IS estimator can be given as

$$\operatorname{Var}(I_{p,q}^{(n)}(f)) = \frac{\sigma_{p,q}^2}{n} \qquad where \qquad \sigma_{p,q}^2 := \mathbb{E}_p[f^2(X)w(X)] - \mathbb{E}_p[f(X)]^2.$$

Note that this permits the case $\sigma_{p,q}^2 = \infty \implies \operatorname{Var}(I_{p,q}^{(n)}(f)) = \infty \ \forall n \in \mathbb{N}.$ Proof. Denote $Z_k := f(Y_k)w(Y_k)$, then in the discrete case

$$\mathbb{E}[Z_1^2] = \sum_{y \in \mathbb{X} : q(y) > 0} f^2(y) \frac{p^2(y)}{q^2(y)} q(y) = \sum_{y \in \mathbb{X}} f^2(y) w(y) p(y) \mathrm{d}y = \mathbb{E}_p[f^2(X) w(X)].$$

Now, $\sigma_{p,q}^2 = \operatorname{Var}(Z_1) = \mathbb{E}Z_1^2 - (\mathbb{E}Z_1)^2$ and $\mathbb{E}Z_1 = \mathbb{E}_p[f(X)]$, and as (Z_k) are i.i.d., $\operatorname{Var}(I_{p,q}^{(n)(f)}) = \sigma_{p,q}^2/n$. The continuous case follows similarly.

Because $I_{p,q}^{(n)}(f)$ is a sum of i.i.d. random variables, the proof of Proposition 4.7 implies the following:

Corollary 4.8. Suppose (6) holds and

$$\mathbb{E}_p[f^2(X)w(X)] < \infty. \tag{8}$$

Then, $\sqrt{n}[I_{p,q}^{(n)}(f) - \mathbb{E}_p[f(X)]] \xrightarrow{n \to \infty} N(0, \sigma_{p,q}^2)$ in distribution.

Remark 4.9. Because IS is just usual Monte Carlo approximating $\mathbb{E}_q[g(X)]$ with g(x) = f(x)w(x), Proposition 1.13 holds, and gives confidence intervals also for the IS estimator.

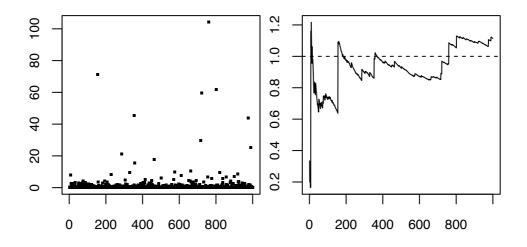


Figure 7: Example 4.10 with a = 2, b = 2 and $\beta = 2.5$, $\alpha = 0.5$ (NB $\alpha < a$) and $f(x) \equiv 1$. Values of the weights $w(Y_n)$ (left) and the sequence of estimates $I_{p,q}^{(n)}(f)$ (right) for n = 1, 2, ..., 1000.

Example 4.10 (Gamma distribution (cont.)). Let us consider the variance of the IS estimator for the Gamma distributions in Example 4.5. We may write

$$w(x)f^{2}(x) = \frac{\Gamma(a)\beta^{\alpha}}{\Gamma(\alpha)b^{a}}x^{\alpha-a}\exp(-(\beta-b)x)f^{2}(x),$$

 \mathbf{SO}

$$\mathbb{E}_p[w(X)f^2(X)] = c_{a,b,\alpha,\beta}\mathbb{E}_p[X^{\alpha-a}\exp(-(\beta-b)X)f^2(X)].$$

If $\alpha \geq a$ and $\beta > b$, then

$$\sup_{x>0} \left[x^{\alpha-a} \exp(-(\beta-b)x) \right] < \infty.$$

In this case $\mathbb{E}_p[w(X)f^2(X)] \leq c\mathbb{E}_p[f^2(X)]$, so if also $\operatorname{Var}_p(f(X)) < \infty \iff \mathbb{E}_p[f^2(X)] < \infty$, then we have $\mathbb{E}_p[w(X)f^2(X)] < \infty$ and the importance sampling estimator is guaranteed to have finite variance.

Figure 7 shows an example simulation where $\operatorname{Var}(I_{p,q}^{(n)}(f)) = \infty$. Exercise: What would happen if we used f(x) = x instead?

We formalise the sufficient condition found in the Gamma example above.

Proposition 4.11. Suppose (6) holds and

$$M := \sup_{x} w(x) = \sup_{x} \frac{p(x)}{q(x)} < \infty,$$
(9)

where the supremum is taken over all $x \in \mathbb{X}$ such that p(x)f(x) > 0. Then, if $\operatorname{Var}_p(f(X)) < \infty$, the variance of the IS estimator is finite, and can be upper bounded by

$$\sigma_{p,q}^2 \le M \mathbb{E}_p[f^2(X)] - \mathbb{E}_p[f(X)]^2$$

= $M \operatorname{Var}_p(f(X)) + (M-1) \mathbb{E}_p[f(X)]^2$.

23

Remark 4.12. If $\mathbb{E}_p[f(X)]^2 \ll \mathbb{E}_p[f^2(X)]$, Proposition 4.11 indicates that the IS estimator is (roughly) at most M times worse than the classical Monte Carlo estimate. How does this result relate with using rejection sampling instead of IS?

Rule of thumb: Try to make sure that (9) holds (unless you have a specific f in mind).

What is the best possible proposal density q for a specific f?

Proposition 4.13. Suppose that $f : \mathbb{X} \to \mathbb{R}$ satisfies $\mathbb{E}_p[|f(X)|] > 0$. Then, the proposal distribution

$$q_*(x) := \frac{p(x)|f(x)|}{\mathbb{E}_p[|f(X)|]} \propto p(x)|f(x)|$$

admits the minimum variance among all distributions q satisfying (6).

Proof. In the discrete case, we have with $w_*(x) = p(x)/q_*(x)$,

$$\mathbb{E}_p[f^2(X)w_*(X)] = \sum_{x \in \mathbb{X} : q_*(x) > 0} f^2(x) \frac{p^2(x)}{q_*(x)} = \left(\mathbb{E}_p[|f(X)|]\right)^2$$

On the other hand, for any q satisfying (6),

$$\left(\mathbb{E}_p[|f(X)|]\right)^2 = \left(\mathbb{E}_q[|f(X)|w(X)]\right)^2 \le \mathbb{E}_q[f^2(X)w^2(X)] = \mathbb{E}_p[f^2(X)w(X)],$$

by Jensen's inequality. This implies $\sigma_{p,q_*}^2 \leq \sigma_{p,q}^2$ by Proposition 4.7.

Remark 4.14. The result of Proposition 4.13 is, of course, mostly theoretical, but leads to:

Rule of thumb: Try to find q that is approximately proportional to p(x)|f(x)|.

In particular, if f is zero (or has very small absolute values) in some regions of the space, we avoid putting any (or put less) mass of q to such regions.

Remark 4.15. Note in particular that IS can have, in fact, a (significantly) smaller variance than the classical Monte Carlo estimate. We restate the main reasons to use IS rather than classical Monte Carlo:

- Use IS when we cannot sample (efficiently) from p.
- Use IS to reduce variance over the classical Monte Carlo estimator.
- Rejection sampling is not applicable (because we do not know $M < \infty$, or $M = \infty$)

4.2 Application: Rare event estimation

One important class of applications of IS as variance reduction is problems in which we estimate the probability of a rare event. In such scenarios, we may be able to sample from p directly but this leads to high variance.