```
n = 1000; q = 3/4
u = rand(n)
x = ceil.(log.(u)/log(q))
```

In fact, both the continuous and the discrete case follow as special cases from the following general inverse c.d.f. result.
Theorem $2.5\left(^{*}\right)$. Assume $U \sim \mathcal{U}(0,1)$ and let $F: \mathbb{R} \rightarrow[0,1]$ be a c.d.f. ${ }^{4}$. Define

$$
\begin{array}{rlrl}
X & :=F^{-1}(U) & & \text { where } \\
F^{-1}(u) & :=\min \{x \in \mathbb{R} & : F(x) \geq u\} \quad \text { for } 0<u<1 .{ }^{6}
\end{array}
$$

Then, $X \sim F$, that is, X has c.d.f. F.
Proof. Recall that a c.d.f. F is increasing and right-continuous (which implies that the the min above is well-defined). The proof follows as in the proof of Theorem 2.1 , by noticing that

$$
F^{-1}(u) \leq x \Longleftrightarrow u \leq F(x) \quad \text { for all } x \in \mathbb{R} \text { and } u \in(0,1)
$$

Namely, suppose $F^{-1}(u) \leq x$ and denote $x_{u}:=F^{-1}(u) \leq x$, then $F(x) \geq F\left(x_{u}\right) \geq$ u. Conversely, if $u \leq F(x)$, then $F^{-1}(u)=\min \{y \in \mathbb{R}: F(y) \geq u\} \leq x$, because x is included in the set which is minimised.

Example $2.6\left(^{*}\right)$. Consider the following c.d.f.:

$$
F(x):=\left(\frac{1}{2}+\frac{1}{2}(1-\exp (-x))\right) \mathbf{1}(x \geq 0) .
$$

Its generalised inverse is

$$
F^{-1}(u)=-\log (2(1-u)) \mathbf{1}(u>1 / 2) .
$$

We may replace U with $1-U$ again, resulting in the following:

```
u = rand(1000)
x = -log.(2u) .* (u .<= 1/2)
```


2.2 Distribution of transformed random variables

The inverse c.d.f. method provides a general result to transform $\mathcal{U}(0,1)$ random variables into scalar random variables, provided that the (inverse) c.d.f. is accessible. In a multivariate setting, or when c.d.f. is inaccessible, other transformations can be useful.

[^0]Suppose that $X \sim p_{X}$, the function $g: \mathbb{R} \rightarrow \mathbb{R}$ is strictly increasing and continuously differentiable. Let $Y=g(X)$, then

$$
F_{Y}(y):=\mathbb{P}(Y \leq y)=\mathbb{P}(g(X) \leq y)=F_{X}\left(g^{-1}(y)\right)
$$

where $F_{X}(x):=P(X \leq x)$ is the c.d.f. of X. Now, the p.d.f. of Y is

$$
p_{Y}(y)=F_{Y}^{\prime}(y)=F_{X}^{\prime}\left(g^{-1}(y)\right)\left(g^{-1}\right)^{\prime}(y)=\frac{p_{X}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)},
$$

because $\left(g^{-1}\right)^{\prime}(y)=1 / g^{\prime}\left(g^{-1}(y)\right)$.
Recall the following multivariate generalisation of the above, which we use without proof.
Theorem 2.7. Suppose $X \sim p_{X}$ and $S:=\operatorname{supp}(p):=\left\{x \in \mathbb{R}^{d}: p_{X}(x)>0\right\}$ is an open set. If $g: S \rightarrow \mathbb{R}^{d}$ is one-to-one and continuously differentiable such that its Jacobian $D g$ is invertible, $\operatorname{det}(D g(x)) \neq 0$ for all $x \in S$, then $Y=g(X)$ has density p_{Y} given as follows,

$$
p_{Y}(y)= \begin{cases}p_{X}\left(g^{-1}(y)\right)\left|\operatorname{det}\left(D g^{-1}\right)(y)\right|, & y \in g(S) \\ 0, & y \notin g(S)\end{cases}
$$

where $D g^{-1}$ stands for the Jacobian of g^{-1}.
Remark 2.8. By the inverse function theorem, for all $y \in g(S)$,

$$
\left(D g^{-1}\right)(y)=[(D g)(x)]^{-1}
$$

where $y=g(x)$ (or $\left.x=g^{-1}(y)\right)$. Also, $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$, so we have

$$
\left|\operatorname{det}\left(D g^{-1}\right)(y)\right|=\frac{1}{|\operatorname{det}(D g)(x)|}
$$

Remark $2.9\left(^{*}\right)$. If $\operatorname{supp}(p)$ can be partitioned (up to set of volume (measure) zero) into disjoint open sets S_{1}, S_{2}, \ldots such that g satisfies the conditions required in Theorem 2.7, then Theorem 2.7 can be applied piecewise, leading into

$$
p_{Y}(y)=\sum_{i} p_{X}\left(g^{-1}(y)\right) \mid \operatorname{det}\left(D g^{-1}(y) \mid \mathbf{1}\left(y \in g\left(S_{i}\right)\right) .\right.
$$

2.3 (Multivariate) normal random variables

Normal distribution is, of course, particularly important in applications. The inverse c.d.f. method is not (directly) applicable because the c.d.f. is not available in a closed form. However, it is possible to generate normal random variables by a simple bivariate transformation.

Recall that the standard normal $N(0,1)$ p.d.f. is

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

and the general multivariate normal $N(\mu, \Sigma)$ p.d.f. is

$$
p(x)=\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) .
$$

The random vector $X:=\left(X_{1}, \ldots, X_{d}\right)^{T}$, where $\left(X_{k}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$ is distributed by $\mathcal{N}\left(0, I_{d}\right)$, that is, the standard multivariate Gaussian distribution with zero mean vector and identity covariance matrix.

Theorem 2.10 (Box-Muller transform). Let $U_{1}, U_{2} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}(0,1)$ and define

$$
\begin{array}{lll}
X_{1}:=R \cos (T) & & \\
X_{2} & :=R \sin (T), & \text { where }
\end{array} \quad \begin{aligned}
& R:=\sqrt{-2 \ln U_{1}} \\
& T:=2 \pi U_{2} .
\end{aligned}
$$

Then, $X_{1}, X_{2} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$.
Proof. The density of (R, T) is (exercise)

$$
p_{R, T}(r, t)= \begin{cases}\frac{1}{2 \pi} r e^{-r^{2} / 2}, & 0<t<2 \pi, 0<r<\infty, \\ 0, & \text { otherwise } .\end{cases}
$$

Now, $(X, Y)=h(R, T)$ with $h(r, t):=(r \cos t, r \sin t)$ (polar-to-Cartesian transform), with

$$
|\operatorname{det}(D h)(r, t)|=\left|\operatorname{det}\left(\begin{array}{cc}
\cos t, & -r \sin t \\
\sin t, & r \cos t
\end{array}\right)\right|=r .
$$

Now we may apply Theorem 2.7 and Remark 2.8 to deduce that

$$
p_{X, Y}(x, y)=p_{R, T}(r(x, y), t(x, y)) \frac{1}{r(x, y)}=\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)}, \quad(x, y) \neq 0,
$$

where $r(x, y):=\sqrt{x^{2}+y^{2}}$ and $t(x, y):=\operatorname{atan} 2(y, x)$.
Proposition 2.11 (Generic multivariate Gaussian distribution). Let $\mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ be a positive definite matrix, and let $L \in \mathbb{R}^{d \times d}$ be the Cholesky factor of Σ (lower-triangular matrix satisfying $L L^{T}=\Sigma$). Then, if $Z \sim N\left(0, I_{d}\right)$,

$$
\begin{equation*}
X:=\mu+L Z \quad \text { satisfies } \quad X \sim \mathcal{N}(\mu, \Sigma) . \tag{3}
\end{equation*}
$$

Proof. The Jacobian of $g(z)=\mu+L z$ is $|\operatorname{det}(L)|=\sqrt{\operatorname{det}(\Sigma)}>0$ and the inverse $g^{-1}(x)=L^{-1}(x-\mu)$.

$$
\begin{aligned}
p_{X}(x) & =p_{Z}\left(L^{-1}(x-\mu)\right) / \sqrt{\operatorname{det}(\Sigma)} \\
& =\frac{1}{(2 \pi)^{d / 2} \sqrt{\operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(x-\mu)^{T}\left(L^{-1}\right)^{T} L^{-1}(x-\mu)\right),
\end{aligned}
$$

and $\left(L^{-1}\right)^{T} L^{-1}=\left(L^{T}\right)^{-1} L^{-1}=\left(L L^{T}\right)^{-1}=\Sigma^{-1}$.
Remark 2.12. We could use, of course, any matrix $L \in \mathbb{R}^{d \times d}$ satisfying $L L^{T}=\Sigma$, but the Cholesky factor is both easy to compute and the lower-triagular structure allows for some savings when computing the transform (3).
Example 2.13. Generating bivariate Gaussians.

Figure 3: Standard bivariate samples $\left(Z_{k}\right)_{k \geq 1}$ (left) and $N(m, S)$ samples $\left(X_{k}\right)$ generated in Example 2.13.

```
using LinearAlgebra
n = 1000; d = 2 # Number of samples E dimension
m = [-1,1] # Mean vector
S = [5 -3; -3 4] # Covariance matrix
L = cholesky(S).L # (Lower-triangular) Cholesky factor
X = zeros(d, n) # Initialise output space
for k = 1:n
    X[:,k] = m + L*randn(d)
end
```


2.4 Relations of probability distributions (*)

Known relationships between probability distributions may yield useful transformations.
Example 2.14. [Gamma distribution with integer shape] Consider $\Gamma(\alpha, \beta)$ distribution with $\alpha \in \mathbb{N}$ and $\beta>0$ with p.d.f.

$$
p(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \mathbf{1}(x \geq 0)
$$

Inverse c.d.f. method is not easily applicable. Instead,
(a) Simulate $Y_{1}, \ldots, Y_{\alpha} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Exp}(1)$.
(b) Set $X:=\frac{1}{\beta} \sum_{i=1}^{\alpha} Y_{i}$.

Then $X \sim p$.
Proof. We can check that $X \sim p$ by inspecting moment generating functions. The m.g.f. of $Y \sim \operatorname{Exp}(1)$ is

$$
M_{Y}(t)=\mathbb{E}\left(e^{t Y}\right)=\frac{1}{1-t}, \quad t \in[0,1)
$$

so the m.g.f. of X is

$$
M_{X}(t)=\mathbb{E}\left(e^{t X}\right)=\prod_{i=1}^{\alpha} \mathbb{E}\left(e^{t Y_{i} / \beta}\right)=\prod_{i=1}^{\alpha} M_{Y_{i}}(t / \beta)=\frac{1}{(1-t / \beta)^{\alpha}},
$$

for $t \in[0, \beta)$, which is the m.g.f. of $\Gamma(\alpha, \beta)$.

2.5 Spherically/elliptically symmetric distributions (*)

Example 2.15 (Uniform distribution on a ($d-1$)-sphere). Suppose $X \sim N(0, I)$, a standard Gaussian distribution in \mathbb{R}^{d}. Then, $V=X /\|X\| \sim \mathcal{U}\left(S^{d-1}\right)$, that is, V is uniformly distributed on the unit sphere $S^{d-1}:=\left\{x \in \mathbb{R}^{d}:\|x\|=1\right\}$, because the Gaussian distribution is spherically symmetric.

If p is a spherically symmetric distribution, then it is possible to draw independent 'direction vector' $V \sim \mathcal{U}\left(S^{d-1}\right)$ and a 'radius' $R \geq 0$ so that $R V \sim p$. The density of the radius q can be found by polar integration.
Proposition 2.16. Assume that p is a spherically symmetric probability density on \mathbb{R}^{d}, that is,

$$
p(x)=c \hat{p}(\|x\|) \quad \text { for all } \quad x \in \mathbb{R}^{d}
$$

where $c>0$ is a constant. Suppose q is a probability density on $[0, \infty)$ satisfying

$$
q(r)=c^{\prime} r^{d-1} \hat{p}(r) \quad \text { for all } \quad r \in[0, \infty)
$$

for some constant $c^{\prime}>0$. Then, if $V \sim \mathcal{U}\left(S^{d-1}\right)$ and $R \sim q$, the random variable $X:=R V \sim p$.
Proof. Let $A \subset[0, \infty)$, then by polar integration

$$
\int_{\|x\| \in A} p(x) \mathrm{d} x=c C_{d} \int_{r \in A} r^{d-1} \hat{p}(r) \mathrm{d} r
$$

where C_{d} is the surface area of the $(d-1)$-sphere. That is, we know that the right density q of R should satisfy

$$
q(r)=c^{\prime} r^{d-1} \hat{p}(r)
$$

where $c^{\prime}=c C_{d}$. The constant is unique, because q is a probability density. In fact,

$$
c^{\prime}=\left(\int_{0}^{\infty} r^{d-1} \hat{p}(r) \mathrm{d} r\right)^{-1}
$$

Example 2.17 (Uniform distribution on a d-ball). If $V \sim \mathcal{U}\left(S^{d-1}\right)$ and $U \sim \mathcal{U}(0,1)$, then $Z=U^{1 / d} V \sim \mathcal{U}\left(B^{d}\right)$, where $B^{d}:=\left\{x \in \mathbb{R}^{d}:\|x\| \leq 1\right\}$.

```
n = 1000; d = 2
X = zeros(d, n)
for k = 1:n
    u = rand(); z = randn(d); v = z/sqrt(sum(z. `2))
    X[:,k] = u^(1/d) * v
end
```

Remark 2.18. Elliptically symmetric densities of the form $p(x)=c \hat{p}\left(\| L^{-1}(x-\right.$ $m) \|$) with location $m \in \mathbb{R}^{d}$ and non-singular shape $L L^{T} \in \mathbb{R}^{d \times d}$ can be simulated by drawing X from the corresponding spherically symmetric distribution with radial decay \hat{p} as in Proposition 2.16 and then transforming $Y=m+L X$; the argument is identical with Proposition 2.11.

3 Rejection sampling

When it is not possible (or efficient) to do transformations of variables to produce variables that are distributed according to a given distribution, rejection sampling (or the 'accept-reject' method) can make sampling possible (or more efficient).
Example 3.1 (Uniform distribution on a disc). Consider the raindrops in Example 1.4, and assume $\left(V_{k}\right)_{k \geq 1} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}\left([0,1]^{2}\right)$. Let $\left(\hat{V}_{k}\right)_{k \geq 1}$ consist of those V_{k} that fall within the unit disc $D:=\left\{\left(w_{1}, w_{2}\right) \in \mathbb{R}^{2}: w_{1}^{2}+w_{2}^{2}<1\right\}$. Then, $\left(\hat{V}_{k}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}(D)$, a uniform distribution on the unit disc D.

3.1 Rejection sampling algorithm

To give the general form of rejection sampling, assume that both p and q are p.d.f.s or p.m.f.s on a common space \mathbb{X}, and suppose that $M \in[1, \infty)$ is a constant such that

$$
\begin{equation*}
\text { Assumption: } \frac{p(x)}{q(x)} \leq M \quad \text { for all } x \in \mathbb{X} \tag{4}
\end{equation*}
$$

where by convention $0 / 0=0$ and $a / 0=\infty$ for $a>0$.
Algorithm 3.2 (Rejection sampling). Let $\left(Y_{k}\right)_{k \geq 1} \stackrel{\text { i.i.d. }}{\sim} q$ which are independent of $\left(U_{k}\right)_{k \geq 1} \stackrel{\text { i.i.d. }}{\sim} \mathcal{U}(0,1)$. Set $T=1$ and
(A) If $U_{T} \leq \frac{p\left(Y_{T}\right)}{M q\left(Y_{T}\right)}$, then output $X=Y_{T}$.
(R) Otherwise, increment $T=T+1$ and retry (A).

Remark 3.3. The distribution q in rejection sampling is often called the proposal distribution (or the instrumental distribution).
Theorem 3.4. Suppose (4) holds and consider $X=Y_{T}$ of Algorithm 3.2.
(i) The running time $T \sim$ Geometric $(1 / M)$.
(ii) The simulated sample $X \sim p$.

Proof (discrete case). Define

$$
h(x):= \begin{cases}\frac{p(x)}{M q(x)}, & \text { whenever } q(x)>0 \\ 1, & \text { otherwise }\end{cases}
$$

Denote the 'acceptance indicators' $B_{k}:=\mathbf{1}\left(U_{k} \leq h\left(Y_{k}\right)\right)$, then B_{k} are independent Bernoulli random variables, with

$$
\begin{aligned}
\mathbb{P}\left(B_{k}=1\right) & =\sum_{y \in \mathbb{X}} \mathbb{P}\left(B_{k}=1, Y_{k}=y\right)=\sum_{y \in \mathbb{X}} \mathbb{P}\left(B_{k}=1 \mid Y_{k}=y\right) \mathbb{P}\left(Y_{k}=y\right) \\
& =\sum_{y \in \mathbb{X}} \mathbb{P}\left(U_{k} \leq h(y)\right) q(y)=\frac{1}{M} \sum_{y \in \mathbb{X}} p(y)=\frac{1}{M} .
\end{aligned}
$$

That is, $\mathbb{P}(T=t)=\mathbb{P}\left(B_{t}=1\right) \mathbb{P}\left(B_{1}=0\right) \cdots \mathbb{P}\left(B_{t-1}=0\right)$ which proves (i).

Let then $x \in \mathbb{X}$, and calculate for any $t \in \mathbb{N}$,

$$
\begin{aligned}
\mathbb{P}(X=x \mid T=t) & =\mathbb{P}\left(Y_{t}=x \mid B_{1}=0, \ldots, B_{t-1}=0, B_{t}=1\right) \\
& =\mathbb{P}\left(Y_{t}=x \mid B_{t}=1\right) \\
& =\frac{\mathbb{P}\left(Y_{t}=x, B_{t}=1\right)}{\mathbb{P}\left(B_{t}=1\right)} .
\end{aligned}
$$

Similarly as above, for any $x \in \mathbb{X}$, we get

$$
\mathbb{P}\left(Y_{t}=x, B_{t}=1\right)=q(x) h(x)=p(x) / M
$$

We conclude that $\mathbb{P}(X=x \mid T=t)=p(x)$.
Remark 3.5. Note that because $\mathbb{P}(X=x \mid T=t)=\mathbb{P}(X=x)$, the running time T and the sample X produced by Algorithm 3.2 are independent.

Because $T \sim$ Geometric $(1 / M)$, the expected running time (expected number of iterations before stopping) is $\mathbb{E}[T]=M$. Therefore, smaller M leads to a more efficient algorithm.
Remark 3.6. The proof in the continuous case is essentially identical, by considering $A \subset \mathbb{X}$ (or cylindrical sets) and calculating $\mathbb{P}(X \in A \mid T=t)$. In particular, notice that

$$
\mathbb{P}\left(Y_{t} \in A, B_{t}=1\right)=\int_{A} q(y) h(y) \mathrm{d} y=\frac{1}{M} \int_{A} p(y) \mathrm{d} y
$$

from which with $A=\mathbb{X}$ we also deduce that $\mathbb{P}\left(B_{t}=1\right)=1 / M$.
Remark 3.7 (*) *. It is not difficult to see that the proof of rejection sampling generalises directly into general state spaces. A similar idea, called thinning is used in a point process context, in order to simulate a non-homogeneous Poisson process by discarding some points of a homogeneous Poisson process.
Example 3.8. Suppose we want to use rejection sampling to simulate from $N(0,1)$ using standard Cauchy proposals. We have

$$
\frac{p(x)}{q(x)}=\sqrt{\frac{\pi}{2}}\left(1+x^{2}\right) \exp \left(-\frac{x^{2}}{2}\right) \leq \sqrt{\frac{2 \pi}{e}}=: M
$$

because the ratio is maximised with $x= \pm 1$ (derivative zero also at $x=0$).

```
using Distributions # Package w/ all 'standard' distributions; install by:
                # using Pkg; Pkg.add("Distributions")
function cauchy_normal(n)
    M = sqrt(2pi)*exp(-.5)
    x = zeros(n)
    while n>0
        y = rand(Cauchy())
        if M*rand() < exp(logpdf(Normal(),y) - logpdf(Cauchy(), y))
                x[n] = y; n = n-1
        end
    end
    x
end
x = cauchy_normal(10_000)
```


[^0]: 4. Recall that F is a c.d.f. if it is increasing ${ }^{5}$, right-continuous, $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$.
 5. The function F^{-1} is called the generalised inverse c.d.f..
