1000; q = 3/4
rand (n)
ceil. (log. (u)/log(q))

c
monon

In fact, both the continuous and the discrete case follow as special cases
from the following general inverse c.d.f. result.

Theorem 2.5 (*). Assume U ~U(0,1) and let F : R — [0,1] be a c.d.f.*. Define

X = F}U) where
F'u):=min{z €R : F(z)>u} for0O<u<15

Then, X ~ F, that is, X has c.d.f. F.

Proof. Recall that a c.d.f. F'is increasing and right-continuous (which implies that
the the min above is well-defined). The proof follows as in the proof of Theorem
2.1, by noticing that

Flu) <z <= u< F(x) for all x € R and u € (0, 1).

Namely, suppose F~!(u) < z and denote z,, :== F~!(u) < z, then F(z) > F(x,) >
u. Conversely, if u < F(z), then F~'(u) = min{y € R: F(y) > u} < z, because
z is included in the set which is minimised. O

Ezample 2.6 (*). Consider the following c.d.f.:

F(z) = <% + %(1 - exp(—x))) 1(z>0).

Its generalised inverse is
F~Hu) = —log (2(1 —w))1 (u > 1/2).
We may replace U with 1 — U again, resulting in the following:

rand (1000)
-log.(2u) .* (u .<= 1/2)

u
X

2.2 Distribution of transformed random variables

The inverse c.d.f. method provides a general result to transform (0, 1) random
variables into scalar random variables, provided that the (inverse) c.d.f. is accessi-
ble. In a multivariate setting, or when c.d.f. is inaccessible, other transformations
can be useful.

4. Recall that F is a c.d.f. if it is increasing®, right-continuous, lim, , . F(z) = 0 and
lim, 0 F(z) = 1.
6. The function F~! is called the generalised inverse c.d.f..
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Suppose that X ~ px, the function g : R — R is strictly increasing and
continuously differentiable. Let Y = g(X), then

Fy(y) =P <y)=P(9(X) <y) = Fx (9 (v)),

where Fx(z) := P(X < ) is the c.d.f. of X. Now, the p.d.f. of Y is

_ Px (9_1(3/))

py(y) = Fy(y) = Fx (97 () (g7 (v) W)

because (97')'(y) = 1/9'(97' (%))
Recall the following multivariate generalisation of the above, which we use
without proof.

Theorem 2.7. Suppose X ~ px and S := supp(p) := {x € R? : px(x) > 0} is
an open set. If g - S — R% is one-to-one and continuously differentiable such that
its Jacobian Dg is invertible, det(Dg(x)) # 0 for all x € S, then Y = g(X) has
density py given as follows,

) ox(97'(y)ldet(Dg= ") ()], v € g(S)
priv) = {07 v ¢ 9(9),

where Dg~' stands for the Jacobian of g~ '.

Remark 2.8. By the inverse function theorem, for all y € ¢(5),

(Dg~")(y) = [(Dg) ()],
where y = g(x) (or x = g~ !(y)). Also, det(A™') = 1/det(A), so we have

1
- [ det(Dg)()|
Remark 2.9 (*). If supp(p) can be partitioned (up to set of volume (measure)

zero) into disjoint open sets Sp, Sa, . .. such that g satisfies the conditions required
in Theorem 2.7, then Theorem 2.7 can be applied piecewise, leading into

| det(Dg™")(y)]

py(y) = pr(g‘l(y))l det(Dg~'(y)[1 (y € g(S))).-

2.3  (Multivariate) normal random variables

Normal distribution is, of course, particularly important in applications. The in-
verse c.d.f. method is not (directly) applicable because the c.d.f. is not available
in a closed form. However, it is possible to generate normal random variables by
a simple bivariate transformation.

Recall that the standard normal N(0,1) p.d.f. is

2

p(z) = \/12—7Te><p<—%>,

12



and the general multivariate normal N (u, X) p.d.f. is

p(x) = ! !

SN exp ( — i(q; — )’z — ,u))

The random vector X := (X,..., X4)7, where (X}) N0, 1) s distributed by

N(0, 1), that is, the standard multivariate Gaussian distribution with zero mean
vector and identity covariance matrix.

Theorem 2.10 (Box-Muller transform). Let Uy, Us R U(0,1) and define

X; = Rcos(T) R =+y—2Inl,

where

Xy = Rsin(T), T =2nUs.

.3.d.

Th6’fl Xl,XQ ~ N(O 1)
Proof. The density of (R,T) is (exercise)

Lre 2 0<t<2m,0<7r<o0,

prr(r,t) = {2”

0, otherwise.

Now, (X,Y) = h(R,T) with h(r,t) := (rcost,rsint) (polar-to-Cartesian trans-

form), with
det CQSt, —rsint
sint, rcost

Now we may apply Theorem 2.7 and Remark 2.8 to deduce that

| det(Dh)(r, t)| =

=T

1 1 12,2
- " I 1 ) 0
pxy(@,y) = pro(r(z,y), (I,y))r(%y) 5-€ , (z,y) #0,
where r(z,y) := /22 + y? and t(x,y) := atan2(y, ). O

Proposition 2.11 (Generic multivariate Gaussian distribution). Let u € R? and
¥ € R™? be a positive definite matriz, and let L € R™? be the Cholesky factor of
Y (lower-triangular matriz satisfying LLT = %). Then, if Z ~ N(0, 1),

X =u+LZ satisfies X ~ N(u,X). (3)

Proof. The Jacobian of g(z) = p+ Lz is |det(L)| = /det(X) > 0 and the inverse
g @) = Lz — ).

px(z) = pz(L 1))/ / det(E

1 T/r—I\NT 71 -1
T (2n)42/det(2) eXp(_E(x_“) (L)L <x_“))’

and (L)TL™! = (LT)"'L~' = (LLT)' = 5. O

Remark 2.12. We could use, of course, any matrix L € R¥? satisfying LLT = ¥,
but the Cholesky factor is both easy to compute and the lower-triagular structure
allows for some savings when computing the transform (3).

Example 2.13. Generating bivariate Gaussians.
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Figure 3: Standard bivariate samples (Zj)r>1 (left) and N(m,S) samples (Xj)
generated in Example 2.13.

using LinearAlgebra

= 1000; d = 2 # Number of samples & dimension
[-1,1] # Mean wvector

[65 -3; -3 4] # Cowvariance matriz

cholesky(S).L # (Lower-triangular) Cholesky factor
= zeros(d, n) # Initialise output space

Hh M B B

or k = 1:n
X[:,k] = m + L*xrandn(d)
end

2.4  Relations of probability distributions (*)
Known relationships between probability distributions may yield useful transfor-
mations.

Ezample 2.14. [Gamma distribution with integer shape| Consider I'(«, 3) distri-
bution with o € N and § > 0 with p.d.f.

p(x) = %xaleﬁzl (x>0).
Inverse c.d.f. method is not easily applicable. Instead,

(a) Simulate Yy,...,Y, e Exp(1).

(b) Set X := %Z?:l Y.
Then X ~ p.
Proof. We can check that X ~ p by inspecting moment generating functions. The
m.g.f. of Y ~ Exp(1) is

My(t) =E (") = — tel0,1),
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for t € [0, 8), which is the m.g.f. of I'(a, ). O

2.5  Spherically/elliptically symmetric distributions (*)

Ezample 2.15 (Uniform distribution on a (d — 1)-sphere). Suppose X ~ N(0,1),
a standard Gaussian distribution in R%. Then, V = X/||X|| ~ U(S41), that is, V
is uniformly distributed on the unit sphere S¢! := {z € R? : ||z|| = 1}, because
the Gaussian distribution is spherically symmetric.

If p is a spherically symmetric distribution, then it is possible to draw
independent ‘direction vector’ V ~ U(S%!) and a ‘radius’ R > 0 so that RV ~ p.
The density of the radius ¢ can be found by polar integration.

Proposition 2.16. Assume that p is a spherically symmetric probability density
on R?, that is,
p(x) = cp(l|zl)) ~ forall xR

where ¢ > 0 is a constant. Suppose q is a probability density on [0,00) satisfying
q(r) = r*tp(r) forall — r€]0,00),

for some constant ¢ > 0. Then, if V ~ U(S¥1) and R ~ q, the random variable
X =RV ~p.

Proof. Let A C [0,00), then by polar integration

/ p(r)de = ch/ rd_lﬁ(r)dr,
[|z]|e A reA

where Cj is the surface area of the (d — 1)-sphere. That is, we know that the right
density ¢ of R should satisfy

q(r) = r?tp(r),

where ¢ = ¢Cy. The constant is unique, because ¢ is a probability density. In fact,

d = (/Ooo rd_lﬁ(r)dr)_l. O

Ezample 2.17 (Uniform distribution on a d-ball). If V ~ U (S ) and U ~ U(0,1),
then Z = UYYV ~ U(B?), where B := {z ¢ R?: ||z|| < 1}.

n = 1000; d = 2

X = zeros(d, n)

for k = 1:n
u = rand(); z = randn(d); v = z/sqrt(sum(z."2))
X[:,k] = u " (1/d) * v

end

Remark 2.18. Elliptically symmetric densities of the form p(x) = cp(||L~(z —
m)||) with location m € R? and non-singular shape LLT € R?*¢ can be simulated
by drawing X from the corresponding spherically symmetric distribution with
radial decay p as in Proposition 2.16 and then transforming Y = m + LX; the
argument is identical with Proposition 2.11.
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3 Rejection sampling

When it is not possible (or efficient) to do transformations of variables to produce
variables that are distributed according to a given distribution, rejection sampling
(or the ‘accept-reject’ method) can make sampling possible (or more efficient).
Ezample 3.1 (Uniform distribution on a disc). Consider the raindrops in Example
1.4, and assume (Vj)g>1 S U([0,1]%). Let (Vi)r>1 consist of those Vj that fall
within the unit disc D := {(w,ws) € R? : w? 4+ w? < 1}. Then, (V}) LRS- UD),
a uniform distribution on the unit disc D.

3.1 Rejection sampling algorithm

To give the general form of rejection sampling, assume that both p and ¢ are p.d.f.s
or p.m.f.s on a common space X, and suppose that M € [1,00) is a constant such
that

~—

p(x
q(x

Assumption: <M for all z € X, (4)

~—

where by convention 0/0 = 0 and a/0 = oo for a > 0.

1

Algorithm 3.2 (Rejection sampling). Let (Yi)r>1 5 g which are independent

iid.

of (Up)g>1 ~ U(0,1). Set T'=1 and
p(Yr)
A) IfUr < , then output X = Y7 .
( ) T > Mq(YT) p T

(R) Otherwise, increment 7' =T + 1 and retry (A).

Remark 3.3. The distribution ¢ in rejection sampling is often called the proposal
distribution (or the instrumental distribution).

Theorem 3.4. Suppose (4) holds and consider X = Yr of Algorithm 3.2.
(i) The running time T' ~ Geometric(1/M).
(ii) The simulated sample X ~ p.

Proof (discrete case). Define

B(e) e Aﬁéﬁ), whenever ¢(z) > 0,
(x) .
1, otherwise.

Denote the ‘acceptance indicators’ By, := 1 (U, < h(Y})), then By are independent
Bernoulli random variables, with

P(Br=1)=> P(By,=1Y:=y)=> P(B=1[Y;=y)P(Y; =y

— %P(Uk < h(y))aly) = % %p(w - %

That is, P(T'=t) = P(B; = 1)P(B; = 0) - - - P(B;—1 = 0) which proves (i).
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Let then z € X, and calculate for any ¢t € N,
P(X=2|T=t)=P(Y,=2|B,=0,...,Bi_, =0,B, = 1)
=PY,=x| B, =1)
B P(Y, =z,B, =1)
Similarly as above, for any x € X, we get
P(Y: =z, B, = 1) = q(z)h(z) = p(x)/M.
We conclude that P(X =2 | T =t) = p(x). O
Remark 3.5. Note that because P(X = x | T =t) = P(X = z), the running time
T and the sample X produced by Algorithm 3.2 are independent.
Because T' ~ Geometric(1/M), the expected running time (expected num-

ber of iterations before stopping) is E[T] = M. Therefore, smaller M leads to a
more efficient algorithm.

Remark 3.6. The proof in the continuous case is essentially identical, by consid-
ering A C X (or cylindrical sets) and calculating P(X € A | T = t). In particular,
notice that

PO e A B = 1) = [ iy =57 [ s

from which with A = X we also deduce that P(B; =1) = 1/M.

Remark 3.7 (*). It is not difficult to see that the proof of rejection sampling
generalises directly into general state spaces. A similar idea, called thinning is
used in a point process context, in order to simulate a non-homogeneous Poisson
process by discarding some points of a homogeneous Poisson process.

Ezample 3.8. Suppose we want to use rejection sampling to simulate from N (0, 1)
using standard Cauchy proposals. We have

M s e (- 5) < 2=

because the ratio is maximised with x = £1 (derivative zero also at z = 0).

using Distributions # Package w/ all 'standard' distridbutions; install by:
# using Pkg,; Pkg.add("Distributions”)
function cauchy_normal(n)
M = sqrt(2pi)*exp(-.5)
x = zeros(n)
while n>0
y = rand(Cauchy())
if M*rand() < exp(logpdf (Normal(),y) - logpdf (Cauchy(), y))
x[n] =y; n=n-1
end
end
X
end
x = cauchy_normal (10_000)
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