
n = 1000; q = 3/4

u = rand(n)

x = ceil.(log.(u)/log(q))

In fact, both the continuous and the discrete case follow as special cases
from the following general inverse c.d.f. result.

Theorem 2.5 (*). Assume U ∼ U(0, 1) and let F : R→ [0, 1] be a c.d.f.4. Define

X := F−1(U) where

F−1(u) := min{x ∈ R : F (x) ≥ u} for 0 < u < 1.6

Then, X ∼ F , that is, X has c.d.f. F .

Proof. Recall that a c.d.f. F is increasing and right-continuous (which implies that
the the min above is well-defined). The proof follows as in the proof of Theorem
2.1, by noticing that

F−1(u) ≤ x ⇐⇒ u ≤ F (x) for all x ∈ R and u ∈ (0, 1).

Namely, suppose F−1(u) ≤ x and denote xu := F−1(u) ≤ x, then F (x) ≥ F (xu) ≥
u. Conversely, if u ≤ F (x), then F−1(u) = min{y ∈ R : F (y) ≥ u} ≤ x, because
x is included in the set which is minimised.

Example 2.6 (*). Consider the following c.d.f.:

F (x) :=

(
1

2
+

1

2

(
1− exp(−x)

))
1 (x ≥ 0) .

Its generalised inverse is

F−1(u) = − log
(
2(1− u)

)
1 (u > 1/2) .

We may replace U with 1− U again, resulting in the following:

u = rand(1000)

x = -log.(2u) .* (u .<= 1/2)

2.2 Distribution of transformed random variables

The inverse c.d.f. method provides a general result to transform U(0, 1) random
variables into scalar random variables, provided that the (inverse) c.d.f. is accessi-
ble. In a multivariate setting, or when c.d.f. is inaccessible, other transformations
can be useful.

4. Recall that F is a c.d.f. if it is increasing5, right-continuous, limx→−∞ F (x) = 0 and
limx→∞ F (x) = 1.
6. The function F−1 is called the generalised inverse c.d.f..

11



Suppose that X ∼ pX , the function g : R → R is strictly increasing and
continuously differentiable. Let Y = g(X), then

FY (y) := P(Y ≤ y) = P
(
g(X) ≤ y

)
= FX

(
g−1(y)

)
,

where FX(x) := P (X ≤ x) is the c.d.f. of X. Now, the p.d.f. of Y is

pY (y) = F ′Y (y) = F ′X
(
g−1(y)

)
(g−1)′(y) =

pX
(
g−1(y)

)
g′(g−1(y))

,

because (g−1)′(y) = 1/g′
(
g−1(y)

)
.

Recall the following multivariate generalisation of the above, which we use
without proof.

Theorem 2.7. Suppose X ∼ pX and S := supp(p) := {x ∈ Rd : pX(x) > 0} is
an open set. If g : S → Rd is one-to-one and continuously differentiable such that
its Jacobian Dg is invertible, det(Dg(x)) 6= 0 for all x ∈ S, then Y = g(X) has
density pY given as follows,

pY (y) =

{
pX(g−1(y))| det(Dg−1)(y)|, y ∈ g(S)

0, y /∈ g(S),

where Dg−1 stands for the Jacobian of g−1.

Remark 2.8. By the inverse function theorem, for all y ∈ g(S),

(Dg−1)(y) = [(Dg)(x)]−1,

where y = g(x) (or x = g−1(y)). Also, det(A−1) = 1/ det(A), so we have

| det(Dg−1)(y)| = 1

| det(Dg)(x)|
.

Remark 2.9 (*). If supp(p) can be partitioned (up to set of volume (measure)
zero) into disjoint open sets S1, S2, . . . such that g satisfies the conditions required
in Theorem 2.7, then Theorem 2.7 can be applied piecewise, leading into

pY (y) =
∑
i

pX(g−1(y))| det(Dg−1(y)|1 (y ∈ g(Si)) .

2.3 (Multivariate) normal random variables

Normal distribution is, of course, particularly important in applications. The in-
verse c.d.f. method is not (directly) applicable because the c.d.f. is not available
in a closed form. However, it is possible to generate normal random variables by
a simple bivariate transformation.

Recall that the standard normal N(0, 1) p.d.f. is

p(x) =
1√
2π

exp
(
− x2

2

)
,

12



and the general multivariate normal N(µ,Σ) p.d.f. is

p(x) =
1

(2π)d/2
√

det(Σ)
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
.

The random vector X := (X1, . . . , Xd)
T , where (Xk)

i.i.d.∼ N (0, 1) is distributed by
N (0, Id), that is, the standard multivariate Gaussian distribution with zero mean
vector and identity covariance matrix.

Theorem 2.10 (Box-Muller transform). Let U1, U2
i.i.d.∼ U(0, 1) and define

X1 := R cos(T )
X2 := R sin(T ),

where
R :=

√
−2 lnU1

T := 2πU2.

Then, X1, X2
i.i.d.∼ N (0, 1).

Proof. The density of (R, T ) is (exercise)

pR,T (r, t) =

{
1

2π
re−r

2/2, 0 < t < 2π, 0 < r <∞,
0, otherwise.

Now, (X, Y ) = h(R, T ) with h(r, t) := (r cos t, r sin t) (polar-to-Cartesian trans-
form), with

| det(Dh)(r, t)| =
∣∣∣∣ det

(
cos t, −r sin t
sin t, r cos t

) ∣∣∣∣ = r.

Now we may apply Theorem 2.7 and Remark 2.8 to deduce that

pX,Y (x, y) = pR,T (r(x, y), t(x, y))
1

r(x, y)
=

1

2π
e−

1
2

(x2+y2), (x, y) 6= 0,

where r(x, y) :=
√
x2 + y2 and t(x, y) := atan2(y, x).

Proposition 2.11 (Generic multivariate Gaussian distribution). Let µ ∈ Rd and
Σ ∈ Rd×d be a positive definite matrix, and let L ∈ Rd×d be the Cholesky factor of
Σ (lower-triangular matrix satisfying LLT = Σ). Then, if Z ∼ N(0, Id),

X := µ+ LZ satisfies X ∼ N (µ,Σ). (3)

Proof. The Jacobian of g(z) = µ+Lz is | det(L)| =
√

det(Σ) > 0 and the inverse
g−1(x) = L−1(x− µ).

pX(x) = pZ(L−1(x− µ))/
√

det(Σ)

=
1

(2π)d/2
√

det(Σ)
exp

(
− 1

2
(x− µ)T (L−1)TL−1(x− µ)

)
,

and (L−1)TL−1 = (LT )−1L−1 = (LLT )−1 = Σ−1.

Remark 2.12. We could use, of course, any matrix L ∈ Rd×d satisfying LLT = Σ,
but the Cholesky factor is both easy to compute and the lower-triagular structure
allows for some savings when computing the transform (3).

Example 2.13. Generating bivariate Gaussians.
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Figure 3: Standard bivariate samples (Zk)k≥1 (left) and N(m,S) samples (Xk)
generated in Example 2.13.

using LinearAlgebra

n = 1000; d = 2 # Number of samples & dimension

m = [-1,1] # Mean vector

S = [5 -3; -3 4] # Covariance matrix

L = cholesky(S).L # (Lower-triangular) Cholesky factor

X = zeros(d, n) # Initialise output space

for k = 1:n

X[:,k] = m + L*randn(d)

end

2.4 Relations of probability distributions (*)

Known relationships between probability distributions may yield useful transfor-
mations.

Example 2.14. [Gamma distribution with integer shape] Consider Γ(α, β) distri-
bution with α ∈ N and β > 0 with p.d.f.

p(x) =
βα

Γ(α)
xα−1e−βx1 (x ≥ 0) .

Inverse c.d.f. method is not easily applicable. Instead,

(a) Simulate Y1, . . . , Yα
i.i.d.∼ Exp(1).

(b) Set X := 1
β

∑α
i=1 Yi.

Then X ∼ p.

Proof. We can check that X ∼ p by inspecting moment generating functions. The
m.g.f. of Y ∼ Exp(1) is

MY (t) = E
(
etY
)

=
1

1− t
, t ∈ [0, 1),

so the m.g.f. of X is

MX(t) = E
(
etX
)

=
α∏
i=1

E
(
etYi/β

)
=

α∏
i=1

MYi(t/β) =
1

(1− t/β)α
,
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for t ∈ [0, β), which is the m.g.f. of Γ(α, β).

2.5 Spherically/elliptically symmetric distributions (*)

Example 2.15 (Uniform distribution on a (d− 1)-sphere). Suppose X ∼ N(0, I),
a standard Gaussian distribution in Rd. Then, V = X/‖X‖ ∼ U(Sd−1), that is, V
is uniformly distributed on the unit sphere Sd−1 := {x ∈ Rd : ‖x‖ = 1}, because
the Gaussian distribution is spherically symmetric.

If p is a spherically symmetric distribution, then it is possible to draw
independent ‘direction vector’ V ∼ U(Sd−1) and a ‘radius’ R ≥ 0 so that RV ∼ p.
The density of the radius q can be found by polar integration.

Proposition 2.16. Assume that p is a spherically symmetric probability density
on Rd, that is,

p(x) = cp̂(‖x‖) for all x ∈ Rd,

where c > 0 is a constant. Suppose q is a probability density on [0,∞) satisfying

q(r) = c′rd−1p̂(r) for all r ∈ [0,∞),

for some constant c′ > 0. Then, if V ∼ U(Sd−1) and R ∼ q, the random variable
X := RV ∼ p.

Proof. Let A ⊂ [0,∞), then by polar integration∫
‖x‖∈A

p(x)dx = cCd

∫
r∈A

rd−1p̂(r)dr,

where Cd is the surface area of the (d− 1)-sphere. That is, we know that the right
density q of R should satisfy

q(r) = c′rd−1p̂(r),

where c′ = cCd. The constant is unique, because q is a probability density. In fact,

c′ =

(∫ ∞
0

rd−1p̂(r)dr

)−1

.

Example 2.17 (Uniform distribution on a d-ball). If V ∼ U(Sd−1) and U ∼ U(0, 1),
then Z = U1/dV ∼ U(Bd), where Bd := {x ∈ Rd : ‖x‖ ≤ 1}.

n = 1000; d = 2

X = zeros(d, n)

for k = 1:n

u = rand(); z = randn(d); v = z/sqrt(sum(z.^2))

X[:,k] = u^(1/d) * v

end

Remark 2.18. Elliptically symmetric densities of the form p(x) = cp̂(‖L−1(x −
m)‖) with location m ∈ Rd and non-singular shape LLT ∈ Rd×d can be simulated
by drawing X from the corresponding spherically symmetric distribution with
radial decay p̂ as in Proposition 2.16 and then transforming Y = m + LX; the
argument is identical with Proposition 2.11.
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3 Rejection sampling

When it is not possible (or efficient) to do transformations of variables to produce
variables that are distributed according to a given distribution, rejection sampling
(or the ‘accept-reject’ method) can make sampling possible (or more efficient).

Example 3.1 (Uniform distribution on a disc). Consider the raindrops in Example

1.4, and assume (Vk)k≥1
i.i.d.∼ U([0, 1]2). Let (V̂k)k≥1 consist of those Vk that fall

within the unit disc D := {(w1, w2) ∈ R2 : w2
1 + w2

2 < 1}. Then, (V̂k)
i.i.d.∼ U(D),

a uniform distribution on the unit disc D.

3.1 Rejection sampling algorithm

To give the general form of rejection sampling, assume that both p and q are p.d.f.s
or p.m.f.s on a common space X, and suppose that M ∈ [1,∞) is a constant such
that

Assumption:
p(x)

q(x)
≤M for all x ∈ X, (4)

where by convention 0/0 = 0 and a/0 =∞ for a > 0.

Algorithm 3.2 (Rejection sampling). Let (Yk)k≥1
i.i.d.∼ q which are independent

of (Uk)k≥1
i.i.d.∼ U(0, 1). Set T = 1 and

(A) If UT ≤
p(YT )

Mq(YT )
, then output X = YT .

(R) Otherwise, increment T = T + 1 and retry (A).

Remark 3.3. The distribution q in rejection sampling is often called the proposal
distribution (or the instrumental distribution).

Theorem 3.4. Suppose (4) holds and consider X = YT of Algorithm 3.2.

(i) The running time T ∼ Geometric(1/M).

(ii) The simulated sample X ∼ p.

Proof (discrete case). Define

h(x) :=

{
p(x)
Mq(x)

, whenever q(x) > 0,

1, otherwise.

Denote the ‘acceptance indicators’ Bk := 1 (Uk ≤ h(Yk)), then Bk are independent
Bernoulli random variables, with

P(Bk = 1) =
∑
y∈X

P(Bk = 1, Yk = y) =
∑
y∈X

P(Bk = 1 | Yk = y)P(Yk = y)

=
∑
y∈X

P(Uk ≤ h(y))q(y) =
1

M

∑
y∈X

p(y) =
1

M
.

That is, P(T = t) = P(Bt = 1)P(B1 = 0) · · ·P(Bt−1 = 0) which proves (i).
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Let then x ∈ X, and calculate for any t ∈ N,

P(X = x | T = t) = P(Yt = x | B1 = 0, . . . , Bt−1 = 0, Bt = 1)

= P(Yt = x | Bt = 1)

=
P(Yt = x,Bt = 1)

P(Bt = 1)
.

Similarly as above, for any x ∈ X, we get

P(Yt = x,Bt = 1) = q(x)h(x) = p(x)/M.

We conclude that P(X = x | T = t) = p(x).

Remark 3.5. Note that because P(X = x | T = t) = P(X = x), the running time
T and the sample X produced by Algorithm 3.2 are independent.

Because T ∼ Geometric(1/M), the expected running time (expected num-
ber of iterations before stopping) is E[T ] = M . Therefore, smaller M leads to a
more efficient algorithm.

Remark 3.6. The proof in the continuous case is essentially identical, by consid-
ering A ⊂ X (or cylindrical sets) and calculating P(X ∈ A | T = t). In particular,
notice that

P(Yt ∈ A,Bt = 1) =

∫
A

q(y)h(y)dy =
1

M

∫
A

p(y)dy,

from which with A = X we also deduce that P(Bt = 1) = 1/M .

Remark 3.7 (*). It is not difficult to see that the proof of rejection sampling
generalises directly into general state spaces. A similar idea, called thinning is
used in a point process context, in order to simulate a non-homogeneous Poisson
process by discarding some points of a homogeneous Poisson process.

Example 3.8. Suppose we want to use rejection sampling to simulate from N(0, 1)
using standard Cauchy proposals. We have

p(x)

q(x)
=

√
π

2
(1 + x2) exp

(
− x2

2

)
≤
√

2π

e
=: M,

because the ratio is maximised with x = ±1 (derivative zero also at x = 0).

using Distributions # Package w/ all 'standard' distributions; install by:

# using Pkg; Pkg.add("Distributions")

function cauchy_normal(n)

M = sqrt(2pi)*exp(-.5)

x = zeros(n)

while n>0

y = rand(Cauchy())

if M*rand() < exp(logpdf(Normal(),y) - logpdf(Cauchy(), y))

x[n] = y; n = n-1

end

end

x

end

x = cauchy_normal(10_000)
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