
Remark 8.14 (*). In self-normalised IS, we have almost sure convergence instead
of in distribution. We state the results here using the latter, because we regard
now Algorithm 8.15 to be run with a fixed n — and therefore ‘adding samples’
does not make immediate sense, but the algorithm may just be repeated with a
higher n. . .

8.4 The particle filter

Algorithm 8.15 (Particle filter). In each line of the algorithm, i = 1, . . . , n:

(i) Sample X(i)
1

⇠ M1 and set X(i)
1

= X(i)
1
.

(ii) Calculate !(i)
1

:= G1(X
(i)
1
) and set !̄(i)

1
:= !(i)

1
/!⇤

1
where !⇤

1
=

Pn
j=1

!(j)
1
.

For t = 2, . . . , T , do:
(iii) Sample A(i)

t�1
⇠ Categorical(!̄(1:N)

t�1
), that is, P(A(i)

t�1
= j) = !̄(j)

t�1
.

(iv) Sample X(i)
t ⇠ Mt(· | X

(A
(i)
t�1)

t�1
) and set X(i)

t = (X
(A

(i)
t�1)

t�1
, X(i)

t).

(v) Calculate !(i)
t := Gt(X

(i)
t) and set !̄(i)

t := !(i)
t /!⇤

t where !⇤
t =

Pn
j=1

!(j)
t .

Report (V (1:n),X(1:n)) where V (j) :=
�QT

t=1

1

n!
⇤
t

�
!̄(j)
T and X(j) := X(j)

T .
(In case !⇤

t = 0, the algorithm is terminated with V (i) = 0 and with arbitrary
X(i) 2 ST .)

Remark 8.16. The proposal Mt(xt | x1:t�1) and the potential Gt(x1:t) typically
depend on xt and perhaps xt�1, but not x1:t�2. In such a case, it is not necessary

to explicitly store X(i)
t , because !(i)

t = Gt(X
(A

(i)
t�1)

t�1
, Xt) and X(i) = X(i)

T may be

recovered from X(j)
1:T and A(j)

1:T�1
.

Example 8.17. Implementation withMt(xt | x1:t�1) = Mt(xt | xt�1) andGt(x1:t) =
Gt(xt):

function norm_logw(logw) # Normalised probabilities from log weights ('log-sum-trick')
m = maximum(logw); u = exp.(logw.-m); return m+log(mean(u)), u/sum(u)

end
function pf(M, logG, n, T) # Univariate particle filter

X = zeros(n, T); A = zeros(Int, n, T); wu = zeros(n)
for i = 1:n

X[i,1] = x = M(1); wu[i] = logG(1, x)
end
V, omega = norm_logw(wu);
for t = 2:T

a = rand(Categorical(omega), n); A[:,t-1] = a
for i = 1:n

X[i,t] = x = M(t, X[a[i],t-1]); wu[i] = logG(t, x)
end
V_, omega = norm_logw(wu); V += V_

end
XT = zeros(n,T); XT[:,T]=X[:,T]; a = collect(1:n) # Trace back X^{(i)}
for t = T-1:-1:1 a = A[a,t]; XT[:,t] = X[a,t] end
(logV=V.+log.(omega), XT=XT, X=X)

end

Application in Example 8.6, with an estimate for Ep[X]:

65

using Distributions, Random, Plots
Random.seed!(42); T=50; x0=0; rho=sigma_x=sigma_y=1
function M(t, x=0.0) # Generate observations from M_t(.|x)

rand(Normal(x, sigma_x))
end
x_true = zeros(T); x_true[1] = M(1) # Generate synthetic data:
for t = 2:T x_true[t] = M(t, x_true[t-1]) end # trajectory of x_{1:T}
y = x_true + rand(Normal(0, sigma_y), T) # and corresponding observations
function logG(t, x) # Calculate log G_t(x)

logpdf(Normal(y[t], sigma_y), x)
end
o = pf(M, logG, 100, T)
scatter(o.X', color=:black); plot!(o.XT', width=2, legend=false)
sum(norm_logw(o.logV)[2] .* o.XT[:,T])

Under certain technical assumptions [cf. 7]:

PF(n)
M1:T ,G1:T

(f) :=

Pn
k=1

V (k)f(X(k))Pn
j=1

V (j)
=

nX

k=1

!̄(i)
T f(X(k)

T)
n!1���! Ep[f(X1:T)], (23)

in distribution.

Remark 8.18. While (23) holds quite generally, the estimator PF(n)
M1:T ,G1:T

(f) typ-
ically converges

• quickly for functions that depend only on the last variable (or few last
variables), that is, f(x1:T) = f(xT) (or f(x1:T) = f(x(T�l):T) for l ⌧ T).
[In the PF, the ‘intermediate’ distributions ⇡t are called the filtering dis-
tributions, from which the name particle filter arises.]

• much slower for f(x1:T) = f(x1) when T is large.
In the latter case, instead of increasing n in a single run of PF, the algorithm may
be run several times with fixed n. . .

Remark 8.19 (*). The step (iii) in Algorithm 8.15 is called resampling or selec-

tion. Algorithm 8.15 was introduced for SSMs in [10], using the specific choice
Mt = mt; this algorithm is known as the bootstrap filter. The rationale of resam-
pling is, in intuitive terms, to discard ‘unlikely paths’, and concentrate on ‘good
candidates.’ Similar procedure is used also in genetic algorithms, which aim for
(global) optimisation.

Remark 8.20 (*). In fact, the multinomial resampling (iii) may be replaced with

another procedure drawing non-independent set of indices A(1:n)
t�1

, which still satisfy
unbiasedness, in the following sense:

E

1

n

nX

i=1

1
⇣
A(i)

t�1
= j

⌘ ����X
(1:n)
1

, X(1:n)
t�1

, A(1:n)
1

, . . . , A(1:n)
t�2

�
= !̄(j)

t�1
.

For instance, stratified sampling is commonly used, and other choices are pos-
sible [cf. 4]. (NB: Even though stratification makes one-step conditional vari-
ance smaller, this does not necessarily mean more e�cient overall estimator
PF(n)

M1:T ,G1:T
(f), even though this is commonly observed empirically. . .)

66

0 5 10 15

−5

−4

−3

−2

−1

0

1

2

3

4

n

Figure 26: Some samples corresponding to the PF in Example 8.21. The grey
paths show the ‘dead branches’: the ones that were not selected in resampling.

0.5

1

1.5

2

2.5

1 2 3 4 5 6
log

10
(n)

X
1
5
 |
 Y

1
:1

5

2

2.5

3

3.5

1 2 3 4 5 6
log

10
(n)

X
3
0
 |
 Y

1
:3

0

(a) (b)

Figure 27: Box plot of the PF estimates with Mt corresponding to the prior, Ex-
ample 8.6. Compare with 21. The estimates outperform also SIS with the ‘optimal’
proposal density in Example 8.7; see Figure 23.

Example 8.21. Let us revisit Example 8.6 with the particle filter; Figure 26 shows
the samples produced. It is clear that the resampling helps to concentrate paths
(compare with Figure 22). Figure 27 shows a summary of estimates, analogous to
Figure 21, and Figure 28 demonstrates that the PF is reliable even for long series
of observations, even with this simple proposal distribution.

(Choosing Mt to be qt as in Example 8.7 would make the results even
better, but it is noteworthy that even with Mt = mt, the PF appears to perform
reasonably well for bigger T . . .)

8.5 Unbiasedness of the particle filter

We shall not pursue a detailed proof of (23), but instead focus on the following
non-asymptotic unbiasedness property of the PF [cf. 7, Theorem 7.4.2], which
turns out to be key property for particle MCMC, which we discuss later.

67

3.5

4

4.5

5

5.5

1 2 3 4 5 6
log

10
(n)

X
7
0
 |
 Y

1
:7

0

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6
log

10
(n)

X
1
0
0
 |
 Y

1
:1

0
0

(a) (b)

Figure 28: Box plot of the particle filter estimates with Mt corresponding to the
prior, Compare with Figure 25. True value for T = 100 is approximately 4.514.

Theorem 8.22. Under assumption (22), for any f : ST ! R with Ep[f(X)] < 1,

and any n 2 N, the following holds for the output of Algorithm 8.15:

E
 nX

k=1

V (k)f(X(k))

�
=

Z
pu(x1:T)f(x1:T)dx1:T .

Proof. (*) Define the functions fT (x1:T) := f(x1:T), and for t = T, . . . , 2

ft�1(x1:t�1) :=

Z
ft(x1:t)Mt(xt | x1:t�1)Gt(x1:t)dxt.

Assumption (22) implies that f0 :=
R
M1(x1)G1(x1)f1(x1)dx1 coincides with the

desired integral, and all ft are necessarily (almost everywhere) well-defined if the
latter integral is well-defined.

Let us denote X(⇤)
1:t := {X(i)

1:t , i 2 {1:n}} and similarly A(⇤)
1:t , and observe first

that for t = 2, . . . , T and i 2 {1:n},

E
⇥
!(i)
t ft(X

(i)
t)

�� X(⇤)
1:t�1

, A(⇤)
1:t�2

⇤

= E
h
E
⇥
!(i)
t ft(X

(A
(i)
t�1)

t�1
, X(i)

t)
�� X(⇤)

1:t�1
, A(⇤)

1:t�1

⇤ ��� X(⇤)
1:t�1

, A(⇤)
1:t�2

i

= E
 Z

Mt(xt | X
(A

(i)
t�1)

t�1
)Gt(X

(A
(i)
t�1)

t�1
, xt)ft(X

(A
(i)
t�1)

t�1
, xt)dxt

���� X
(⇤)
1:t�1

, A(⇤)
1:t�2

�

=
nX

j=1

P
�
A(i)

t�1
= j | X(⇤)

1:t�1
, A(⇤)

1:t�2

�
ft�1(X

(j)
t�1

),

so we may conclude that

E

1

n

nX

i=1

!(i)
t ft(X

(i)
t)

���� X
(⇤)
1:t�1

, A(⇤)
1:t�2

�
=

nX

j=1

!̄(j)
t�1

ft�1(X
(j)
t�1

). (24)

68

We may apply (24) recursively with t = T, . . . , 2, yielding

E
 nX

k=1

V (k)f(X(k)
T)

�
= E

✓ T�1Y

t=1

1

n
!⇤
t

◆
E
h⇣ 1

n
!⇤
T

⌘ nX

i=1

!̄(i)
T fT (X

(i)
T)

��� X(⇤)
1:T�1

, A(⇤)
1:T�2

i�

= E
✓ T�1Y

t=1

1

n
!⇤
t

◆ nX

i=1

!̄(i)
T�1

fT�1(X
(i)
T�1

)

�
= . . .

=
1

n

nX

i=1

E
h
!⇤
1
!̄(i)
1
f1(X

(i)
1
)
i
,

which equals to f0 by a similar calculation as above.

One immediate consequence of the unbiasedness is that we may combine

easily the output of independent particle filters, and deduce a consistent estimator
as in self-normalised IS:

Corollary 8.23 (*). Fix n 2 N and suppose (V (1:n),X(1:n)) is the output of Al-

gorithm 8.15. Let ⇣(f) :=
Pn

k=1
V (k)f(X(k)) and ⇣(1) :=

Pn
k=1

V (k)
. Suppose

(⇣i(f), ⇣i(1))i�1 are independent realisations of (⇣(f), ⇣(1)), then

(i) E(N,n)
M1:T ,G1:T

(f) :=

PN
i=1

⇣i(f)PN
j=1

⇣j(1)

N!1���! Ep[f(X)] a.s.

(ii) If E
⇥
|⇣(f)� ⇣(1)Ep[f(X)]|2 + |⇣(1)|2

⇤
< 1, then for any ↵ 2 (0,1),

P
⇣
Ep[f(X)] 2

h
E(N,n)

M1:T ,G1:T
(f)± ↵

p
v̂(N,n)

i⌘
N!1���! 1� 2�(�↵), where

v̂(N,n) :=

PN
i=1

�
⇣i(f)� ⇣i(1)E

(N,n)
M1:T ,G1:T

(f)
�2

�PN
j=1

⇣k(1)
�2 .

Proof. (i) follows from Theorem 8.22, because E[⇣(f)]/E[⇣(1)] = Ep[f(X)], and
(ii) follows similarly as Theorem 4.23, once we observe that as N ! 1,

Nv̂(N,n) =
1

N

PN
i=1

�
⇣i(f)� ⇣i(1)E

(N,n)
M1:T ,G1:T

(f)
�2

�
1

N

PN
j=1

⇣k(1)
�2 !

E
⇥
(⇣(f)� ⇣(1)Ep[f(X)])2

⇤

Ep[⇣(1)]2
.

Remark 8.24 (*). Suppose PF(n,i)
M1:T ,G1:T

(f) are independent realisations of

PF(n)
M1:T ,G1:T

(f) in (23), then, unlike E(N,n)
M1:T ,G1:T

(f), the naive combination
1

N

PN
i=1

PF(n,i)
M1:T ,G1:T

(f) is not consistent, because E[PF(n)
M1:T ,G1:T

(f)] 6= Ep[f(X)]

in general (even though, under general conditions, E[PF(n)
M1:T ,G1:T

(f)] ! Ep[f(X)]

as n ! 1). On the contrary, the estimator E(N,n)
M1:T ,G1:T

(f) is consistent with any n,
and only requires an asymptotic in N .

9 Particle MCMC

As a final topic of the course, we discuss a particle MCMC algorithm introduced
in the seminal paper [3]. It is based on a combination of MCMC and particle filter,
in a way that allows for Bayesian inference in a parameterised SSM.

69

