Remark 8.14 (*). In self-normalised IS, we have almost sure convergence instead
of in distribution. We state the results here using the latter, because we regard
now Algorithm 8.15 to be run with a fixed n — and therefore ‘adding samples’
does not make immediate sense, but the algorithm may just be repeated with a
higher n. ..

8.4 The particle filter

Algorithm 8.15 (Particle filter). In each line of the algorithm, i = 1,... n:

(i) Sample XY) ~ M and set ng) = Xl(l).

(i) Caleulate w” := G (X\") and set @ == w{ Jwi where w = 32" W',
Fort=2,...,7T, do: ' '

(iii) Sample AEZ_)l ~ Categorical(@ﬁziv)), that is,]P’(Al(f_)1 =j)= (Dt(_)l.

‘ (i) . ; .

(iv) Sample Xt(z) ~ My(- | thfl)) and set Xgl) = (Xi ’i’l),Xt(Z)). ‘

(v) Caleculate w!” := G,(X!") and set @ := w” Jw? where w} = POy w?.
Report (V™) X1M) where VU = (], %w?)w(T]) and X@) = X9
(In case w; = 0, the algorithm is terminated with V) = 0 and with arbitrary
X® g ST
Remark 8.16. The proposal M;(x; | x1,-1) and the potential G;(x1.) typically
depend on x; and perhaps x;_1, but not z1;_». In such a case, it is not necessary

. . @) A .

to explicitly store X\”, because w!” = Gt(Xt(ff’l),Xt) and X = Xg) may be
recovered from X\ and AY). .

Ezample 8.17. Implementation with My (z; | x1.4—1) = My(xy | x4—1) and Gy(x1,4) =
Gt($t)l

function norm_logw(logw) # Normalised probabilities from log weights ('log-sum-trick')
m = maximum(logw); u = exp.(logw.-m); return m+log(mean(u)), u/sum(u)
end
function pf(M, logG, n, T) # Univariate particle filter
X = zeros(n, T); A = zeros(Int, n, T); wu = zeros(n)
for i = 1:n
X[i,1] = x = M(1); wuli]l = logG(l, x)

end
V, omega = norm_logw(wu) ;
for t = 2:T
a = rand(Categorical(omega), n); A[:,t-1] = a
for i = 1:n
X[i,t] = x = M(t, X[a[il,t-1]); wuli]l = logG(t, x)

end
V_, omega = norm_logw(wu); V += V_
end
XT = zeros(n,T); XT[:,T]=X[:,T]; a = collect(l:n) # Trace back X { (i)}
for t = T-1:-1:1 a = Ala,t]; XT[:,t] = X[a,t] end
(logV=V.+log. (omega), XT=XT, X=X)
end

Application in Example 8.6, with an estimate for E,[X]:

65

using Distributions, Random, Plots

Random.seed! (42); T=50; x0=0; rho=sigma_x=sigma_y=1

function M(t, x=0.0) # Generate observations from M_t(.[z)
rand (Normal (x, sigma_x))

end

x_true = zeros(T); x_true[1] = M(1) # Generate synthetic data:

for t = 2:T x_truel[t] = M(t, x_truelt-1]) end # trajectory of z_{1:T}

y = x_true + rand(Normal(0, sigma_y), T) # and corresponding observations

function logG(t, x) # Calculate log G_t(z)
logpdf (Normal(y[t], sigma_y), x)
end
o = pf(M, logG, 100, T)
scatter(o.X', color=:black); plot!(o.XT', width=2, legend=false)
sum(norm_logw(o.logV) [2] .* o.XT[:,T])

Under certain technical assumptions [cf. 7]:

no k) £(x (k) n . nesoo
P nr () = Z'Fim% Do) S B, (29
J= k=1

in distribution.

Remark 8.18. While (23) holds quite generally, the estimator PFS\ZT,GLT< f) typ-
ically converges
e quickly for functions that depend only on the last variable (or few last
variables), that is, f(z1.r) = f(ar) (or f(z1.7) = f(x@_y.r) for | K T).
[In the PF, the ‘intermediate’ distributions m; are called the filtering dis-
tributions, from which the name particle filter arises.|
e much slower for f(x1.7) = f(x1) when T is large.
In the latter case, instead of increasing n in a single run of PF, the algorithm may
be run several times with fixed n. ..

Remark 8.19 (*). The step (iii) in Algorithm 8.15 is called resampling or selec-
tion. Algorithm 8.15 was introduced for SSMs in [10], using the specific choice
M, = my; this algorithm is known as the bootstrap filter. The rationale of resam-
pling is, in intuitive terms, to discard ‘unlikely paths’, and concentrate on ‘good
candidates.” Similar procedure is used also in genetic algorithms, which aim for
(global) optimisation.

Remark 8.20 (*). In fact, the multinomial resampling (iii) may be replaced with

another procedure drawing non-independent set of indices AEE?)

unbiasedness, in the following sense:

, which still satisfy

1 = i . 1: 1: 1:n 1n —(7
E[EZ]-(ASL)I:) ‘Xf n)vXt(fin)aAg)7'~‘7A1572) :W,Si)l-

For instance, stratified sampling is commonly used, and other choices are pos-
sible [cf. 4]. (NB: Even though stratification makes one-step conditional vari-
ance smaller, this does not necessarily mean more efficient overall estimator
PFS\Z%GLT(f), even though this is commonly observed empirically. . .)

66

Figure 26: Some samples corresponding to the PF in Example 8.21. The grey
paths show the ‘dead branches’: the ones that were not selected in resampling.

2517 +
| 3.5
2 + T
> 1810 1 -
0 | o N
<1 sz.saé%-r-——
0.5 1 1
. [
t 2] 1
1 2 3 4 5 6 1 2 3 4 5 6
log,,(n) log,4(n)

(a) (b)

Figure 27: Box plot of the PF estimates with M, corresponding to the prior, Ex-
ample 8.6. Compare with 21. The estimates outperform also SIS with the ‘optimal’
proposal density in Example 8.7; see Figure 23.

FExample 8.21. Let us revisit Example 8.6 with the particle filter; Figure 26 shows
the samples produced. It is clear that the resampling helps to concentrate paths
(compare with Figure 22). Figure 27 shows a summary of estimates, analogous to
Figure 21, and Figure 28 demonstrates that the PF is reliable even for long series
of observations, even with this simple proposal distribution.

(Choosing M; to be ¢; as in Example 8.7 would make the results even
better, but it is noteworthy that even with M, = m,, the PF appears to perform
reasonably well for bigger T'...)

8.5 Unbiasedness of the particle filter

We shall not pursue a detailed proof of (23), but instead focus on the following
non-asymptotic unbiasedness property of the PF [cf. 7, Theorem 7.4.2], which
turns out to be key property for particle MCMC, which we discuss later.

67

55{ + +
| 61+
501 o 551
g 2 !
SRR EF
& ot 8 4.5 %l F = — +
41 = T
1 a1
35{ + 35{ 1
1

2 3 4 5 6 2 3 4 5 6
log,,(n) log, ,(n)

(a) (b)

Figure 28: Box plot of the particle filter estimates with M, corresponding to the
prior, Compare with Figure 25. True value for 7" = 100 is approximately 4.514.

—_

Theorem 8.22. Under assumption (22), for any f : ST — R with E,[f(X)] < oo,
and any n € N, the following holds for the output of Algorithm 8.15:

E{Zi: V(k)f(X(k))] = /pu(wl:T)f(wlzT)d%:T-

Proof. (*) Define the functions fr(x1.r) = f(x1.7), and for t =T, ... 2
f)%l(xl:tfl) = /ft(l'l:t)Mt(SE't ’ xl:tfl)Gt(xlzt)dxt-

Assumption (22) implies that fo := [M;(21)Gi(21) fi(@1)dz; coincides with the
desired integral, and all f; are necessarily (almost everywhere) well-defined if the
latter integral is well- deﬁned

Let us denote Xlt = {X1 1,1 € {1:n}} and similarly A1 1, and observe first
that for t =2,...,T and i € {1:n},

[th)f ‘Xlt 17145*2 2}
[[ft(7X15(Z)) | Xffkt)—lﬂ lt 1 ‘Xlt 1>Ag*t) 2:|
A(Z At *
—E|:/Mt Ty | X 1))Gt(XE 1 g » T)ft< , 1) dy Xlt 17A§t 2]

= ZIP(AY_)I =7 | Xl(;kt)—h Agft)—2)ft—1(Xz(€]—)1)’

i=1

so we may conclude that
{ Zwtz X ‘ Xl(*t) A 1*2 2] Zwt])lft— -) (24)

68

We may apply (24) recursively with t =T, ..., 2, yielding

s[Sove o] [(11 %wZ‘)E[(%w}) anw?fT(Xéf)) | X A8
k=1 t=1 '
:E{(ﬁlwf) w le)}:
n
=%nE@w9MX%}
i=1
which equals to fy by a similar calculation as above. O]

One immediate consequence of the unbiasedness is that we may combine
easily the output of independent particle filters, and deduce a consistent estimator
as in self-normalised IS:

Corollary 8.23 (*). Fizn € N and suppose (V™ X)) s the output of Al-
gorithm 8.15. Let ((f) == S_p_, VW F(X®) and ¢(1) == >_, V¥, Suppose
(Gi(f),Gi(1))i>1 are independent realisations of (C(f),((1)), then

i Ej(\jan = Zivzl Gf) v E,[f(X)] a.s.
9 Bl () = B 25 B 00
(i) IFE[C(f) = COE,[fF(X)]IP + [¢(D[?] < o0, then for any o € (0,00),

IED(Ep[f(X)] S [EJ(\ZZZ),GLT (f) £av @(N’”)D Mooy 20(—a), where

g — i (G =GB, (1)
(Zj:l Ck())
Proof. (i) follows from Theorem 8.22, because E[((f)]/E[((1)] = E,[f(X)], and
(ii) follows similarly as Theorem 4.23, once we observe that as N — oo,
vav _ ¥ i (G =GB 6, (D) E[C() — SB[(X))
(% 255 G(1)” E,[C(1)]?

]

Remark 8.24 (*). Suppose PFS\ZITGlT(f) are independent realisations of
PFngTclT(f) in (23), then, unlike E](\ZZ)GlT(f), the naive combination
¥ Ly, PF]\Zl,L;;7Gl;T(f) is not consistent, because E[PFE\Z) ()] # E,lf(X)]

1.7,G1.T

in general (even though, under general conditions, E[PFE\ZT,GLT(] = Eplf(X)]

as n — 00). On the contrary, the estimator E%:Z)GI:T(f) is consistent with any n,
and only requires an asymptotic in V.

9 Particle MCMC

As a final topic of the course, we discuss a particle MCMC algorithm introduced
in the seminal paper [3]. It is based on a combination of MCMC and particle filter,
in a way that allows for Bayesian inference in a parameterised SSM.

69

