
Time

0 200 400 600 800 1000
−3

−1
1

2
0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

AC
F

IACT = 53.78
n.eff = 18.59

Time

0 200 400 600 800 1000

−3
−1

1
3

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

AC
F

Series x[[k]]

IACT = 4.36
n.eff = 229.16

0 200 400 600 800 1000

−1
.5

0.
0

1.
0

0 10 20 30 40 50

0.
0

0.
4

0.
8

AC
F

Series x[[k]]

IACT = 46.22
n.eff = 21.64

Figure 18: Sample paths and correlations of MH in Example 6.27 with a = 0.5
(top), a = 5 (middle) and a = 50 (bottom); here f(x) := x.

where �̂2

n := (n � 1)�1
Pn

k=1

⇥
f(Xk) � Ip,q,MH(f)

⇤2 n!1���! Varp
�
f(X)

�
and

� is the desired Normal quantile; cf. Proposition 1.13.
Remember to discard the burn-in samples before proceeding to (iii) and (iv).
Remember also that both ACF and ne↵ depend on the function!

7.4 Optimising MCMC (*)

Usually asymptotic variance cannot be calculated in a closed form, but comparison
of asymptotic variances may be possible.

Theorem 7.11 (Peskun [21], Tierney [28]). Suppose that P and Q are transition

probabilities both reversible wrt. common distribution ⇡. Suppose that

X

x,y2X

⇡(x)P (x, y)[f(x)� f(y)]2 �
X

x,y2X

⇡(x)Q(x, y)[f(x)� f(y)]2, (19)

for all f : S ! R with E⇡[f 2(X)] < 1. Then, P is always better than Q in the

following sense: for any function f : S ! R with E⇡[f 2(X)] < 1,

lim
n!1

nVar

✓
1

n

nX

k=1

f(X(P)

k)

◆
 lim

n!1
nVar

✓
1

n

nX

k=1

f(X(Q)

k)

◆
,

where (X(P)

k)k�0 and (X(Q)

k)k�0 are stationary Markov chains with transition prob-

abilities P and Q, respectively.

57

Remark 7.12. It is easy to see that

P (x, y) � Q(x, y) for all x 6= y, (20)

implies (19). The condition (20) is referred to as the o↵-diagonal order or the
Peskun order and (19) is known as the covariance order.

Remark 7.13. In the continuous case, if P and Q are in the form (14) with kP (x, y)
and kQ(x, y), respectively, then the covariance order (19) corresponds to

ZZ
⇡(x)kP (x, y)[f(x)� f(y)]2dxdy �

ZZ
⇡(x)kQ(x, y)[f(x)� f(y)]2dxdy,

which holds if the analogous o↵-diagonal order holds:

kP (x, y) � kQ(x, y) for all x 6= y.

The covariance order is equivalent with order EP (f) � EQ(f) of Dirichet forms

EP (f) := hf, (I � P)fi⇡, hf, gi⇡ :=

Z
⇡(x)f(x)g(x)dx,

where I is identity operator so (If)(x) = f(x) and (Pf)(x) =
R
P (x, dy)f(y)dy.

Example 7.14. In the Ising model Example 6.39, we have a choice of the proposal
distribution qi(x, y | x(�i)). Note that here x, y 2 {0, 1}. The best choice in terms
of asymptotic variance is to take qi(x, y | x(�i)) = 1 (y = 1� x), because any other
choice would be worse in terms of the o↵-diagonal order (20).

Example 7.15 (Barker’s algorithm). In the Metropolis-Hastings algorithm, we
could use an alternative acceptance probability

↵B(x, y) :=
r(x, y)

r(x, y) + 1
, r(x, y) :=

p(y)q(y, x)

p(x)q(x, y)
.

Similarly as with Metropolis-Hastings, it is direct to check that

p(x)q(x, y)↵B(x, y) = p(y)q(y, x)↵B(y, x),

so the resulting algorithm is still reversible wrt. p.
Direct calculation shows that ↵B(x, y)  ↵(x, y) = min{1, r(x, y)}, which

implies an o↵-diagonal order, so the Barker’s algorithm using ↵B acceptance rate
is never better than Metropolis-Hastings. (There are certain situations where ↵B

is easier to calculate, though.)

8 Sequential Monte Carlo

We shall focus next on algorithms which operate on a sequence of distributions
⇡1, ⇡2, . . . , ⇡T , which gradually evolve towards the distribution of interest p = ⇡T .
The samples are often called particles in this context, and the key algorithm in
this context is known as the particle filter.

We will motivate the algorithms in a time-series context, which was their
original motivation, and where they have been applied extensively. We present the
methods with densities on an Euclidean space; discrete case follows similarly.

58

X1 X2 · · · XT

Y1 Y2 YT

m1(·) m2(X1, ·) m3(X2, ·) mT (XT−1, ·)

g1(X1, ·) g2(X2, ·) gT (XT , ·)

Figure 19: General state-space model.

In this section, we denote for a  b the vector xa:b = (xa, . . . , xb). We
also exceptionally denote ‘time’ indices in subscript (not Monte Carlo samples
as before), and superscript contain sample indices (not coordinates as before).

8.1 Motivation: General state-space models/hidden Markov models

Figure 19 illustrates a general state-space model. It consists of two parts:
• ‘Latent’ Markov chain (Xt)t�1 evolving in S = Rd with initial density X1 ⇠
m1, and with conditional densitiesmt(xt�1, xt) ofXt | (Xt = xt). (Note that
the transition densities may depend on time t.)

• Conditionally independent observed process (Yt)t�1 following the observa-
tion densities Yt | Xt ⇠ gt(Xt, ·).

More precisely, the model defines the joint density of the form p̂(x1:T , y1:T) :=
m1(x1)g1(x1, y1)

QT
t=2

mt(xt�1, xt)gt(xt, yt).
We are interested in Bayesian inference ofX1:T having observed Y1:T = y1:T ,

that is, we focus on the conditional density p of p̂:

p(x1:T) / pu(x1:T) := m1(x1)g1(x1, y1)
TY

t=2

mt(xt�1, xt)gt(xt, yt), (21)

where y1:T are the observed values, which are constant in our case, and omitted
from the notation.

Remark 8.1. What we call state-space models (SSM), some other authors call
hidden Markov models (HMM) [e.g. 4, 12]. Some authors reserve HMM to mean
the case where Xk are discrete, taking values on a finite set. Some others reserve
SSM to mean only linear(-Gaussian) models.

Example 8.2 (Noisy AR(1) process). Let �2

1
, �2

x, �
2

y 2 (0,1) and ⇢ 2 R be known

parameters. Then, let m1 = N(0, �2

1
) and for k � 2, assume (Zk)k�1, (Wk)k�1

i.i.d.⇠
N(0, 1), and define

Xk := ⇢Xk�1 + �xZk

Yk := Xk + �yWk.

This corresponds to setting

mk(xk�1, xk) := N(xk; ⇢xk�1, �
2

x)

gk(xk, yk) := N(yk; xk, �
2

y).

59

0 5 10 15

−5

−4

−3

−2

−1

0

1

2

3

4

n

Figure 20: Sample path of the noisy AR(1) process in Example 8.2 with ⇢ = 1
and �2

1
= �2

x = 1 = �2

y : The Markov chain X1:15 in blue and the noisy observations
Y1:15 in red.

In other words, (Xk)k�1 is an AR(1) process.15 Given a realisation of the process
(X1, . . . , XT), the observations are conditionally independent and perturbed by
Gaussian increments with variance �2

y . Figure 20 shows an example realisation of
the process.

Remark 8.3. The generic methods such as importance sampling and MCMC
(Random-walk Metropolis, Metrpolis-within-Gibbs, Hamiltonian Monte Carlo. . .)
are, in theory, directly applicable in the SSM context. However, when T is large,
the space ST is high-dimensional, and there are substantial correlations in the
model, which often lead to poor performance. . .

Remark 8.4 (*). Exact SSM inference (i.e. when the conditional distribution is
available in a closed form) is possible only in some specific cases, most notably
[e.g. 4]:

• When S is finite, exeact inference is possible through the forward-backward
algorithm.

• If S = Rd and and the conditional distributions mt and gt are linear Gaus-
sian, that is, gt(xt, ·) is a Gaussian density with mean Ltxt and some co-
variance matrix Rt, and similarly for mt, then, the smoothing density (and
consequently all the marginals) are Gaussian. Then, the mean & covariance
parameters can be computed by simple matrix formulae (the Kalman filter
and smoother).

In most other cases, inference need to be based on an approximation, such as
SMC.

15. Stationary i↵ |⇢| < 1 and �
2
1 = �2

x
1�⇢2 .

60

−2

0

2

4

1 2 3 4 5 6
log

10
(n)

X
1
5
 |
 Y

1
:1

5

−2

0

2

4

6

1 2 3 4 5 6
log

10
(n)

X
3
0
 |
 Y

1
:3

0

(a) (b)

Figure 21: Box plot of estimates from Example 8.6 with up to one million samples,
and 100 repetitions. (a) T = 15 (true value: 1.685) (b) T = 30 (true value: 2.508).

8.2 First attempt: Sequential importance sampling

Let us see what happens if we apply self-normalised importance sampling in the
context of SSMs.

Generic self-normalised importance sampling is straightforward to apply
here, because assuming q(x1:T) is a proposal density on ST , with support covering

that of p(x1:T), we could just draw X(k)
1:T

i.i.d.⇠ q and approximate

Ep[f(X1:T)] ⇡
Pn

k=1
wu(X

(k)
1:T)f(X

(k)
1:T)Pn

j=1
wu(X

(j)
1:T)

, where wu(x1:T) :=
pu(x1:T)

q(x1:T)
.

Remark 8.5. Note that also the proposal q may depend on the observations y1:T ,
in an arbitrary manner. Recall also that the notation di↵ers here from the notation
in Section 4.3: we write the sample index in superscript.

Example 8.6 (Noisy AR(1) with prior as q). Consider Example 8.2 and let q be
the prior of X1:T , that is,

q(x1:T) = m1(x1)
TY

t=2

mt(xt�1, xt).

This means that we simulate X1:T to be the trajectories of T steps of a random
walk with independent Gaussian N(0, 1) increments.

Figures 21 and 22 show simulation results of Example 8.6.
The problem with Example 8.6 is that, even if the weights are bounded,

the discrepancy of p and q increases very rapidly as T increases. In intuitive terms,
most samples from q fall into low density area of p, and consequently the variance
of the weights is large.

Let us have another attempt with more carefully chosen q:

61

0 5 10 15

−5

−4

−3

−2

−1

0

1

2

3

4

n

Figure 22: Some samples corresponding Example 8.6. Note that the weight distri-
bution is very unequal. The true posterior density is shown on the right.

0.5

1

1.5

2

2.5

1 2 3 4 5 6
log

10
(n)

X
1
5
 |
 Y

1
:1

5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6
log

10
(n)

X
3
0
 |
 Y

1
:3

0

(a) (b)

Figure 23: Box plot of estimates from Example 8.7; compare with 21.

Example 8.7 (Noisy AR(1) with a ‘one-step optimal’ q). Consider Example 8.6,
but choose now

q(x1:T) = q1(x1)
TY

t=2

qt(xt | xt�1), qt(xt | xt�1) = N

✓
xt;

xt�1 + yt
2

,
1

2

◆
(with x0 ⌘ 0).

In fact, this choice of qt corresponds to the conditional distribution of Xt given
Xt�1 = xt�1 and Yt = yt. The conditional distribution is, in a certain sense, the
best choice we can have (if we restrict on qt that can only depend on y1:t. . .). It is
direct to check that the unnormalised weights wu(z1:T) resulting from this choice
are also bounded (exercise).

Figures 23 and 24 show simulation results corresponding Example 8.7.
Using a better proposal distribution in Example 8.7 improved significantly.

It made reliable inference possible for up to T = 30 with around one million
samples. This is achieved by better approximation of p by q, which shows in

62

0 5 10 15

−5

−4

−3

−2

−1

0

1

2

3

4

n

Figure 24: Some samples corresponding Example 8.7; compare with Figure 22.

1

2

3

1 2 3 4 5 6
log

10
(n)

X
5
0
 |
 Y

1
:5

0

3

4

5

6

1 2 3 4 5 6
log

10
(n)

X
7
0
 |
 Y

1
:7

0

(a) (b)

Figure 25: Box plot of estimates from Example 8.7 with T = 50 (true: 2.058) and
T = 70 (true: 4.606).

Figure 24 by concentration of the samples around the measured values.
However, if we increase T a bit more, we see that even the very good

proposal distribution in 8.7 is insu�cient for e�cient inference; see Figure 25. In
fact, the variance typically increases exponentially in T (cf. [4, Example 7.3.1]).

The particle filter algorithm, which we discuss next, is a simple algorithmic
modification of the SIS, which resolves the ‘mismatch’ by further randomisation. . .

8.3 Generic form of sequential importance sampling

Suppose now that Mt(xt | x1:t�1) for t = 2, . . . , T determines a distribution on S
for xt for any x1:t�1 2 St�1, and that Gt(x1:t) � 0 are some ‘potential’ functions,
for which:

M1(x1)G1(x1)
TY

t=2

Mt(xt | x1:t�1)Gt(x1:t) ⌘ pu(x1:T). (22)

63

Remark 8.8. Note that in the SSM context, (22) is equivalent with q(x1:T) =
M1(x1)

QT
t=2

Mt(xt | x1:t�1) satisfying the SNIS support condition (10) and Gt

forming a factorisation of the unnormalised importance weight:

TY

t=1

Gt(x1:t) = wu(x1:T) =
m1(x1)g1(x1, y1)

QT
t=2

mt(xt�1, xt)gt(xt, yt)

M1(x1)
QT

t=2
Mt(xt | x1:t�1)

, when q(x1:T) > 0.

We may choose Gt(x1:t) =
mt(xt�1,xt)gt(xt,yt)

Mt(xt|x1:t�1)
, which satisfies (22), but other choices

are possible.

Remark 8.9 (*). The model with ingredients of the form M1:T and G1:T is known
as the Feynman-Kac model [7].

Algorithm 8.10 (Sequential importance sampling). In each line of the algorithm,
i = 1, . . . , n:

(i) Sample X(i)
1

⇠ M1(·) and set X(i)
1

= X(i)
1
.

(ii) Calculate !(i)
1

:= G1(X
(i)
1
).

For t = 2, . . . , T , do:
(iii) Sample X(i)

t ⇠ Mt(· | X(i)
t�1

) and set X(i)
t = (X(i)

t�1
, X(i)

t).

(iv) Calculate !(i)
t := Gt(X

(i)
t).

Report unnormalised sample (V (1:n),X(1:n)) where V (j) :=
QT

t=1
!(j)
t and X(j) :=

X(j)
T .

Proposition 8.11. Let t 2 {1:T} such that
R
M1(x1)G1(x1)

Qt
k=2

Mk(xk |
x1:k�1)Gk(x1:k)dx1:t < 1. Consider Algorithm 8.10, and and let ⇡t(x1:t) /
M1(x1)G1(x1)

Qt
k=2

Mk(xk | x1:k�1)Gk(x0
1:k) be a probability density. Then, de-

noting V (i)
t :=

Qt
k=1

!(i)
k ,

Pn
i=1

V (i)
t f(X(i)

t)
Pn

j=1
V (j)
t

n!1���! E⇡t [f(X1:t)] (in distribution),

whenever the expectation is well-defined and finite.

Proof. This is self-normalised IS, because Xt ⇠ qt(x1:t) = M1(x1)
Qt

k=2
Mk(xk |

x1:k�1) and V (i)
t / ⇡t(Xt)/qt(Xt). The result follows from Theorem 4.19.

Corollary 8.12. If assumption (22) holds, then the output of Algorithm 8.10

satisfies:

SIS(n)
M1:T ,G1:T

(f) :=

Pn
k=1

V (k)f(X(k))Pn
j=1

V (j)

n!1���! Ep[f(X1:T)] (in distribution)

Proof. Direct application of Proposition 8.11, because p = ⇡T and V (i) = V (i)
T .

Remark 8.13. When ⇡1, . . . , ⇡T = p are all well-defined, Proposition 8.11 indicates
that Algorithm 8.10 may be regarded as approximating these distributions sequen-
tially, by re-using the approximation for ⇡t�1 when building the approximation for
⇡t.

64

