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Preface

This is a summary of the lectures of the Spring 2020 course “MATS442 Stochastic
simulation”at Department of Mathematics and Statistics, University of Jyväskylä.
These notes are inspired by the lecture notes of Antti Penttinen [22], Geoff Nicholls
[19] Adam Johansen, Ludger Evers and Nick Whiteley [12], and by the textbooks
[25, 4, 21].

The purpose of these notes is to support the lectures, so they may not be
well suited for self study. Some important methods (and examples) are covered
also in the problems classes. The “Monte Carlo Statistical Methods” book by
Christian P. Robert and George Casella [24, 25] is a recommended supporting
material. Other references to the literature are given during the course regarding
more specific topics.

1 Introduction

Simulation of stochastic systems provides powerful tools to inspect complex mod-
els. Monte Carlo methods use simulations in order to approximate expectations
and probabilities related to (nearly) arbitrary models. The methods have been
used (in the modern sense) already from the 1950s, and by the increase of compu-
tational power and the methodological advances over the years, they have become
central tools in many applications. The analysis, efficient implementation and
development of simulation methods are all active research areas. The simulation
methods tend to rely on a handful of elegant key ideas, many of which are touched
within this course.

Prerequisities

The course requires background in

• basic (vector) calculus (differentiation, integration),

• basic probability (probabilities, expectation, conditioning, joint distribu-
tions. . . ), and

• knowledge of standard limit theorems in probability (law of large numbers,
central limit theorem).

Basic programming skills are also useful.

Learning outcomes

After taking this course, you will be able to:

• apply simulation methods in practice,

• understand why the methods work, (and why they sometimes work poorly),

• modify the methods and combine them for your needs (for some specific
application).

Theory of stochastic simulation may be categorised as applied probability, and
the application of the methods in practice as computational statistics.
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The programming environment

In the lectures, we focus on methods (algorithms) and theory behind them, and in
the exercises we also implement the algorithms and experiment them in practice.

We are using primarily the Julia programming language in the course. If
you are not familiar with Julia, that is not a problem, as basic use is simple
and similar to R/Matlab/Python, and no advanced programming skills will be
needed. There is also plenty of online introductory material available for self-
study. Solutions to implementation problems may be returned also using another
programming language, such as R or Python.

Why Julia? Because it is fast, which is essential because many simulation-
based methods are computationally intensive. . .

1.1 Conventions

We will generally use the symbols P and E for probability and expectation, de-
note random variables1 with capital letters, and 1 ( · ) stands for the characteristic
function (e.g. 1 (X ∈ A) = 1 if X ∈ A and 1 (X ∈ A) = 0 otherwise).

In this course, we focus on the two common types of distributions p:
continuous distribution defined by a probability density function (p.d.f.) p on a

space X = Rd.
discrete distribution defined by a probability mass function (p.m.f.) p on a finite

space X = {x1, . . . , xm} or a countably infinite space X = {x1, x2, . . . , }.
The notation X ∼ p means that X is a random variable has distribution p and

X1, . . . , Xn
i.i.d.∼ p or (Xk)k≥1

i.i.d.∼ p means (Xk)k≥1 are independent and each
Xk ∼ p.

Remark 1.1. The X = Rd then X ∼ p is a random vector with distribution p,
that is, the coordinates X(1), . . . , X(d) are random numbers with joint density
p(x(1), . . . , x(d)).

For f : X→ R, we write Ep[f(X)] meaning the expectation of f(X) when
X ∼ p. That is,

Ep[f(X)] =

{∫
X f(x)p(x)dx, if X is continuous (and p is a p.d.f.)∑
x∈X f(x)p(x), if X is discrete (and p is a p.m.f.)

We also write similarly Varp
(
f(X)

)
= Ep

[
(f(X) − Ep[f(X)])2

]
= Ep

[
f 2(X)

]
−

(Ep[f(X)])2.

Remark 1.2. If X = Rd, we mean that∫
X
f(x)p(x)dx =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x(1), . . . , x(d))p(x(1), . . . , x(d))dx(1) · · · dx(d).

We shall omit the domain of integration in most cases if we integrate over the
whole space X. For instance, if X = R, we may write∫

f(x)p(x)dx =

∫
X
f(x)p(x)dx =

∫ ∞
−∞

f(x)p(x)dx.

1. We use the term ‘random variable’ regardless of dimension and nature (vector, numbers,
integers etc.).
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(NB: Not to be confused with the indefinite integral!)

Remark 1.3 (*, starred sections, remarks etc. such as this are non-examinable
extra material, which may be safely skipped). For those who are familiar with
general probability theory, the integral above can also be taken with respect to an
arbitrary (sigma-finite) measure “dx” on a general measurable space X (instead
of the Lebesgue measure on Rd equipped with the Borel sets, or the counting
measure on countable X equipped with the power set). Then, p is the density
(Radon-Nikodym derivative) of the distribution of interest with respect to dx.
Note also that if µ is a probability measure of interest on X, we may also take
itself as the dominating measure dx = µ(dx), in which case p ≡ 1. Most of the
techniques presented in the course generalise into such a setting directly.

The functions f : X → R for which expectations are defined must, of
course, be measurable. We shall implicitly assume the required measurability of
any such test function (or set), without explicit notification.

We do not explicitly state the probaiblity space where the random variables
etc. are defined. Instead, we either work with countable sequences of independent
and identically distributed random variables, or more generally, dependent se-
quences defined by conditional probabilities, such as discrete-time Markov chains.
For such countable ‘algorithmic’ definitions, the existence of the underlying prob-
ability space is standard (using the Ionescu-Tulcea extension theorem).

1.2 The Monte Carlo method

Let us start by a very simple but illustrative example.

Example 1.4 (Finding approximation of π by simulation). Suppose ‘rain drops’
fall uniformly in a 2 × 2 metre square. Let us check how they could be used to
determine an approximation of π.

Probability of one drop hitting a unit radius disc inside the square

β =
area of disc

area of square
=
π

4

If Hk = 1 if the drop hit the unit disc and Hk = 0 otherwise2, then

4
( 1

n

n∑
k=1

Hk

)
n→∞−−−→ π, (almost surely)

by the (strong) law of large numbers.

Definition 1.5 (Monte Carlo). Assume X1, . . . , Xn
i.i.d.∼ p. Then, for f : X→ R,

I(n)
p (f) :=

1

n

n∑
k=1

f(Xk) (1)

is the Monte Carlo approximation of Ep[f(X)].

2. Hk ∼ Bernoulli(β): P(Hk = 1) = β, P(Hk = 0) = 1− β.
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Figure 1: The rain drops example: (a) ‘rain drops’ falling inside the unit disc
highlighted (b) five realisations of the experiment: estimates of π converge as
n→∞ (note the log scale on n).

Example 1.6. Example 1.4 corresponds to

• X = R2

• (Xk)k≥1
i.i.d.∼ U([−1, 1]2),

• f(x) = 4 · 1 (‖x‖ ≤ 1) or f
(
x(1), x(2)

)
= 4 · 1

(
(x(1))2 + (x(2))2 ≤ 1

)
,

or, equivalently, to simulated Bernoulli random variables,

• X = {0, 1}
• (Hk)k≥1

i.i.d.∼ Bernoulli(π/4) (NB: We simulate Hk above as Hk = f(Xk),
which does not require us to evaluate π/4!)

• f(h) = 4h.

In both cases, Ep[f(X)] = π.

Remark 1.7. If X is finite, then Ep[f(X)] is a finite sum and can, in principle, be
computed exactly. However, we might not be able to calculate p(x) exactly (cf.
Example 1.6), or the space X may have a huge number of elements, for example
if X is the set of all 100× 100 binary images X = {0, 1}100×100, in which case the
Monte Carlo method may still be relevant. . .

Example 1.8. Definition 1.5 allows for calculating:

• Probabilities: P(X ∈ A) for X ∼ p, by choosing f(x) = 1 (x ∈ A) (cf. Ex-
ample 1.4).

• Multiple expectations (or probabilities) simultanously: Ep[fk(X)] for a
number of test functions f1, . . . , fm. For example, the mean of random
vector X =

(
X(1), . . . , X(d)

)
∼ p is a vector of means of individual coordi-

nates,

Ep[X] =
(
Ep[f1(X)], . . . ,Ep[fd(X)]

)
,

where fk
(
x(1), . . . , x(d)

)
= x(k).

Note that we may simulate X1, . . . , Xn
i.i.d.∼ p and construct all

I
(n)
p (f1), . . . , I

(n)
p (fd) using the same samples X1, . . . , Xn.
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1.3 Properties of Monte Carlo estimators

We need the strong law of large numbers and the central limit theorem frequently,
so we shall restate them here without proof.

Theorem 1.9 (Strong law of large numbers). Assume Y1, Y2, . . . are i.i.d. random
numbers such that µ = E[Y1] is finite. Then,

1

n

n∑
k=1

Yk
n→∞−−−→ µ a.s. (almost surely). (2)

Remark 1.10. Recall that Zn → Z a.s. =⇒ Zn → Z in probability =⇒ Zn → Z
in distribution;

Zn → Z a.s. ⇐⇒ P(Zn
n→∞−−−→ Z) = 1

Zn → Z in probability ⇐⇒ For all ε > 0, P(|Zn − Z| ≤ ε)
n→∞−−−→ 1

Zn → Z in distribution ⇐⇒ For all continuity points t of the mapping t 7→ P(Z ≤ t),

P(Zn ≤ t)
n→∞−−−→ P(Z ≤ t),

In particular, you may always replace “almost surely” in (2) by “in probability,”
but not vice versa. (Theorem 1.9 with “in probability” instead of “a.s.” is known
as the weak law of large numbers.)

Theorem 1.11 (Central limit theorem). Assume Y1, Y2, . . . are i.i.d. random
numbers with σ2 := Var

(
Y1

)
∈ (0,∞), then with µ = E[Yk],

1

σ
√
n

n∑
k=1

(Yk − µ)
n→∞−−−→ N(0, 1) in distribution,

in other words,

P
(

1

σ
√
n

n∑
k=1

(Yk − µ) ≤ t

)
n→∞−−−→ Φ(t) for all t ∈ R,

where Φ is the standard normal c.d.f., that is, Φ(t) := P(Z ≤ t) with Z ∼ N(0, 1).

Proposition 1.12. The Monte Carlo estimators satisfy the following properties:
Unbiasedness If Ep[f(X)] is finite, then E[I

(n)
p (f)] = Ep[f(X)] for all n ≥ 1.

Strong consistency If Ep[f(X)] is finite, then I
(n)
p (f)

n→∞−−−→ Ep[f(X)] almost
surely.

Variance If Varp[f(X)] <∞, then Var[I
(n)
p (f)] = 1

n
Varp[f(X)].

Proof. Let Yk = f(Xk), then E[Yk] = Ep[f(X)]. Now,

E[I(n)
p (f)] =

1

n

n∑
k=1

E[Yk] = Ep[f(X)].

Strong consistency follows from application of the strong law of large numbers,
because Yk := f(Xk) are i.i.d. random variables with expectation Ep[f(X)]. Fi-
nally,

Var[I(n)
p (f)] =

1

n2
Var
( n∑
k=1

Yk

)
=

1

n
Var(Y1).
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Proposition 1.13 (Asymptotic Monte Carlo error). Assume (Xk)k≥1
i.i.d.∼ p and

f : X→ R is such that with σ2 := Varp
(
f(X1)

)
∈ (0,∞),

(i)
√
n
[
I

(n)
p (f)− Ep[f(X)]

] n→∞−−−→ N(0, σ2) in distribution.
Furthermore, letting σ̂2

n stand for the sample variance:

σ̂2
n :=

1

n− 1

n∑
k=1

(
f(Xk)− I(n)

p (f)
)2

;

(ii) for any β ∈ R,

P
(√

n
[
I(n)
p (f)− Ep[f(X)]

]
≤ βσ̂n

) n→∞−−−→ Φ(β), and

(iii) for any α ∈ (0,∞), the following confidence interval is consistent:

P
(
Ep[f(X)] ∈

[
I(n)
p (f)± α σ̂n√

n

])
n→∞−−−→ 1− 2Φ(−α).

Recall the following lemma for the proof:

Lemma 1.14 (Slutsky). Suppose the random numbers Xn → X in distribution
and Yn → y in probability, where y ∈ R is a constant, then:

(i) XnYn → Xy in distribution.
(ii) If y 6= 0, then Xn/Yn → X/y in distribution.

Proof of Proposition 1.13. (i) is an application of the CLT with Yk := f(Xk), and
because σ̂2 → σ2 almost surely (and in probability), (ii) follows by Lemma 1.14.

Consider then (iii), and observe that

P
(
Ep[f(X)] ∈

[
I(n)
p (f)± α σ̂n√

n

])
= P

(
I(n)
p (f)− Ep[f(X)] ≤ α

σ̂n√
n

)
− P

(
I(n)
p (f)− Ep[f(X)] < −α σ̂n√

n

)
.

The first term converges to Φ(α) = 1 − Φ(−α) by (ii). The second can be sand-
wiched between Φ(−α− ε) and Φ(−α) for arbitrary ε > 0.

Remark 1.15. Proposition 1.13 is an asymptotic result, so it does not give any
guarantees for a finite n. In practice, the approximation is often informative for
moderate α and large n.

Remark 1.16. The variance expression of Proposition 1.12 can be used directly to
build non-asymptotic upper bounds by Chebychev’s inequality,

P(|I(n)
p (f)− Ep[f(X)]| ≥ ε) ≤ Var[I

(n)
p (f)]

ε2
=

Varp[f(X)]

nε2
for all ε > 0.

Note that we need to know Varp[f(X)], or we need to be able to upper bound
Varp[f(X)], in order to use this bound.
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Remark 1.17 (*). The Chebychev bound is rather pessimistic for the tails: if we
set ε = t/

√
n, then the bound is O(t−2) for large t. If more is known about

f(X), tighter tail bounds are possible. For instance, in the bounded case |f(X)−
Ep[f(X)]| ≤ c, a Hoeffding inequality implies

P(|I(n)
p (f)− Ep[f(X)]| ≥ ε) ≤ 2 exp

(
− 2ε2n/c2

)
,

and therefore for ε = t/
√
n, we get O(e−2t2/c2) bound.

1.4 About uniformly distributed pseudo-random numbers

During this course, we shall assume that we can access (Uk)k≥1
i.i.d.∼ U(0, 1), a

sequence of independent random variables uniformly distributed on the interval
(0, 1). All algorithms are based on these random variables, and all theoretical
results given below rely on this (rather strong) assumption.

In practice, when the algorithms are implemented on a computer, the se-
quence (Uk)k≥1 are not going to be random, but pseudo-random. That is, (Uk)k≥1

are in fact produced by a deterministic recursive algorithm with a finite state, a
pseudo-random number generator (PRNG). Setting a seed of the algorithm means
that we set the state variables of the algorithm to given initial values. The sequence
(Uk)k≥1 is entirely determined by the seed. However, a good PRNG approximates
‘true randomness’ rather well (is indistinguishable by a wide range of statistical
tests).

It is essential to use a good PRNG for stochastic simulation, such as the
Mersenne twister [16], which is the default PRNG for many environments, includ-
ing Julia, Matlab, R and Python, and there are free implementations for most
other environments. Remember also to seed your algorithm, if your implementa-
tion does not do that automatically.

1.5 Monte Carlo vs. other numerical integration methods

There are several other numerical integration methods, which may be used to
calculate expectations instead of the Monte Carlo method. It is not straightforward
to say which method works the best for a given problem, but here are some
thoughts about the strengths and weaknesses of the Monte Carlo method:

+ Monte Carlo methods are generally applicable. For instance, the functions
f and p need not be continuous, differentiable etc.

+ Monte Carlo is often easy to implement.
+ Monte Carlo can work well in multiple dimensions, where grid-based meth-

ods can be inefficient/inapplicable. This is supported by the “O(n−1/2) rate
of convergence” which is independent of the dimension.

− Even though the MC rate is usually O(n−1/2, the constants involved may
grow exponentially in dimension. (That is, MC does not generally ‘beat the
curse of dimensionality’)

− Deterministic methods may have better rate of convergence than the Monte
Carlo rate n−1/2 (but may also deteriorate faster when dimension increases).

− Monte Carlo estimate is always random, so we never have guaranteed toler-
ance, but only statistical evidence (consistent confidence intervals at best).
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Figure 2: 500 points on [0, 1]2 which are (a) i.i.d. pseudo-random (b) from a low-
discrepancy sequence (Halton).

Remark 1.18 (*). It may be good to know that there are also so-called quasi
Monte Carlo methods, which may behave better in some applications (they often
have a better rate of convergence). They are similar to Monte Carlo (based on
averages), but instead of using i.i.d. (pseudo-)random variables (Uk)k≥1, they use
specifically designed ‘low-discrepancy sequences’ which ‘fill’ up the unit interval
(or unit hypercube) in a deterministic way so that the points are scattered in a
‘uniform’ manner; see Figure 2.

We do not consider QMC methods further in the course, but note that
QMC is also active in research, and succesful combinations of (randomised) QMC
and MC have been suggested recently. . .

2 Variable transformation methods

Obviously, many interesting Monte Carlo problems assume that (Xk)k≥1
i.i.d.∼ p,

where p is not U(0, 1). We need methods to transform (Uk)k≥1 ∼ U(0, 1) into
(Xk)k≥1. In this section, we consider methods that

• Transform single U ∼ U(0, 1) into a single X ∼ p.

• Transform multiple U1, . . . , Un
i.i.d.∼ U(0, 1) into single or multiple

X1, . . . , Xm
i.i.d.∼ p, where 1 ≤ m ≤ n.

2.1 Inverse distribution function method

Recall that the (cumulative) distribution function (c.d.f.) F of a random variable
X is defined as F (x) := P(X ≤ x) for all x ∈ R. Recall also that if X has density
p, then

F (x) =

∫ x

−∞
p(t)dt.

Theorem 2.1. Assume U ∼ U(0, 1) and let F : A → (0, 1) be a c.d.f. on an
open interval3 A ⊂ R, which is continuous and strictly increasing, with inverse
F−1 : (0, 1)→ A. Then, X := F−1(U) ∼ F , that is, X has the c.d.f. F .

3. May be infinite: (a, b), (a,∞), (−∞, b) or R.
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Proof. A direct calculation shows that P(X ≤ x) = F (x) for all x ∈ A:

P(X ≤ x) = P(F−1(U) ≤ x)

=

∫ 1

0

1
(
F−1(u) ≤ x

)
du

=

∫ 1

0

1 (u ≤ F (x)) du = F (x).

Example 2.2. If we want X ∼ Exp(r), that is, X ∼ p(x) with

p(x) = r exp(−rx)1 (x ≥ 0) ,

then the c.d.f. is for x > 0

F (x) =

∫ x

0

r exp(−rt)dt = 1− exp(−rx),

with inverse F−1(u) = − log(1− u)/r. The algorithm is
(i) U ∼ U(0, 1)
(ii) X := − log(U)/r,

because if U ∼ U(0, 1), then also 1− U ∼ U(0, 1).

n = 1000 # Number of samples to simulate

u = rand(n) # Vector of n independent U(0,1)

x = -log.(u)/2 # Vector of n indepedent Exp(2)

Theorem 2.3. Assume p is a p.m.f. on X = {x1, x2, . . .}. Suppose U ∼ U(0, 1)
and define the random variable

K := min

{
k ≥ 1 :

k∑
j=1

p(xj) ≥ U

}
.

Then, X := xK has distribution p.

Proof. Define F (k) :=
∑k

j=1 p(xj) with F (0) := 0, and note that

P(K = k) = P
(
F (k − 1) < U ≤ F (k)

)
= F (k)− F (k − 1) = p(xk),

and therefore P(X = xk) = P(K = k) = p(xk).

Example 2.4. If 0 < p̃ < 1 and q̃ = 1 − p̃, and we want to simulate X ∼
Geometric(p̃) then

p(k) = p̃q̃k−1, k ∈ N = {1, 2, . . .}

with

F (k) =
k∑
i=1

p(i) = 1− q̃k.

Smallest k giving 1− q̃k ≥ u is

k =

⌈
log(1− u)

log(q̃)

⌉
where dxe rounds up (smallest integer not less than x).
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n = 1000; q = 3/4

u = rand(n)

x = ceil.(log.(u)/log(q))

In fact, both the continuous and the discrete case follow as special cases
from the following general inverse c.d.f. result.

Theorem 2.5 (*). Assume U ∼ U(0, 1) and let F : R→ [0, 1] be a c.d.f.4. Define

X := F−1(U) where

F−1(u) := min{x ∈ R : F (x) ≥ u} for 0 < u < 1.6

Then, X ∼ F , that is, X has c.d.f. F .

Proof. Recall that a c.d.f. F is increasing and right-continuous (which implies that
the the min above is well-defined). The proof follows as in the proof of Theorem
2.1, by noticing that

F−1(u) ≤ x ⇐⇒ u ≤ F (x) for all x ∈ R and u ∈ (0, 1).

Namely, suppose F−1(u) ≤ x and denote xu := F−1(u) ≤ x, then F (x) ≥ F (xu) ≥
u. Conversely, if u ≤ F (x), then F−1(u) = min{y ∈ R : F (y) ≥ u} ≤ x, because
x is included in the set which is minimised.

Example 2.6 (*). Consider the following c.d.f.:

F (x) :=

(
1

2
+

1

2

(
1− exp(−x)

))
1 (x ≥ 0) .

Its generalised inverse is

F−1(u) = − log
(
2(1− u)

)
1 (u > 1/2) .

We may replace U with 1− U again, resulting in the following:

u = rand(1000)

x = -log.(2u) .* (u .<= 1/2)

2.2 Distribution of transformed random variables

The inverse c.d.f. method provides a general result to transform U(0, 1) random
variables into scalar random variables, provided that the (inverse) c.d.f. is accessi-
ble. In a multivariate setting, or when c.d.f. is inaccessible, other transformations
can be useful.

4. Recall that F is a c.d.f. if it is increasing5, right-continuous, limx→−∞ F (x) = 0 and
limx→∞ F (x) = 1.
6. The function F−1 is called the generalised inverse c.d.f..
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Suppose that X ∼ pX , the function g : R → R is strictly increasing and
continuously differentiable. Let Y = g(X), then

FY (y) := P(Y ≤ y) = P
(
g(X) ≤ y

)
= FX

(
g−1(y)

)
,

where FX(x) := P (X ≤ x) is the c.d.f. of X. Now, the p.d.f. of Y is

pY (y) = F ′Y (y) = F ′X
(
g−1(y)

)
(g−1)′(y) =

pX
(
g−1(y)

)
g′(g−1(y))

,

because (g−1)′(y) = 1/g′
(
g−1(y)

)
.

Recall the following multivariate generalisation of the above, which we use
without proof.

Theorem 2.7. Suppose X ∼ pX and S := supp(p) := {x ∈ Rd : pX(x) > 0} is
an open set. If g : S → Rd is one-to-one and continuously differentiable such that
its Jacobian Dg is invertible, det(Dg(x)) 6= 0 for all x ∈ S, then Y = g(X) has
density pY given as follows,

pY (y) =

{
pX(g−1(y))| det(Dg−1)(y)|, y ∈ g(S)

0, y /∈ g(S),

where Dg−1 stands for the Jacobian of g−1.

Remark 2.8. By the inverse function theorem, for all y ∈ g(S),

(Dg−1)(y) = [(Dg)(x)]−1,

where y = g(x) (or x = g−1(y)). Also, det(A−1) = 1/ det(A), so we have

| det(Dg−1)(y)| = 1

| det(Dg)(x)|
.

Remark 2.9 (*). If supp(p) can be partitioned (up to set of volume (measure)
zero) into disjoint open sets S1, S2, . . . such that g satisfies the conditions required
in Theorem 2.7, then Theorem 2.7 can be applied piecewise, leading into

pY (y) =
∑
i

pX(g−1(y))| det(Dg−1(y)|1 (y ∈ g(Si)) .

2.3 (Multivariate) normal random variables

Normal distribution is, of course, particularly important in applications. The in-
verse c.d.f. method is not (directly) applicable because the c.d.f. is not available
in a closed form. However, it is possible to generate normal random variables by
a simple bivariate transformation.

Recall that the standard normal N(0, 1) p.d.f. is

p(x) =
1√
2π

exp
(
− x2

2

)
,
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and the general multivariate normal N(µ,Σ) p.d.f. is

p(x) =
1

(2π)d/2
√

det(Σ)
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
.

The random vector X := (X1, . . . , Xd)
T , where (Xk)

i.i.d.∼ N (0, 1) is distributed by
N (0, Id), that is, the standard multivariate Gaussian distribution with zero mean
vector and identity covariance matrix.

Theorem 2.10 (Box-Muller transform). Let U1, U2
i.i.d.∼ U(0, 1) and define

X1 := R cos(T )
X2 := R sin(T ),

where
R :=

√
−2 lnU1

T := 2πU2.

Then, X1, X2
i.i.d.∼ N (0, 1).

Proof. The density of (R, T ) is (exercise)

pR,T (r, t) =

{
1

2π
re−r

2/2, 0 < t < 2π, 0 < r <∞,
0, otherwise.

Now, (X, Y ) = h(R, T ) with h(r, t) := (r cos t, r sin t) (polar-to-Cartesian trans-
form), with

| det(Dh)(r, t)| =
∣∣∣∣ det

(
cos t, −r sin t
sin t, r cos t

) ∣∣∣∣ = r.

Now we may apply Theorem 2.7 and Remark 2.8 to deduce that

pX,Y (x, y) = pR,T (r(x, y), t(x, y))
1

r(x, y)
=

1

2π
e−

1
2

(x2+y2), (x, y) 6= 0,

where r(x, y) :=
√
x2 + y2 and t(x, y) := atan2(y, x).

Proposition 2.11 (Generic multivariate Gaussian distribution). Let µ ∈ Rd and
Σ ∈ Rd×d be a positive definite matrix, and let L ∈ Rd×d be the Cholesky factor of
Σ (lower-triangular matrix satisfying LLT = Σ). Then, if Z ∼ N(0, Id),

X := µ+ LZ satisfies X ∼ N (µ,Σ). (3)

Proof. The Jacobian of g(z) = µ+Lz is | det(L)| =
√

det(Σ) > 0 and the inverse
g−1(x) = L−1(x− µ).

pX(x) = pZ(L−1(x− µ))/
√

det(Σ)

=
1

(2π)d/2
√

det(Σ)
exp

(
− 1

2
(x− µ)T (L−1)TL−1(x− µ)

)
,

and (L−1)TL−1 = (LT )−1L−1 = (LLT )−1 = Σ−1.

Remark 2.12. We could use, of course, any matrix L ∈ Rd×d satisfying LLT = Σ,
but the Cholesky factor is both easy to compute and the lower-triagular structure
allows for some savings when computing the transform (3).

Example 2.13. Generating bivariate Gaussians.
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Figure 3: Standard bivariate samples (Zk)k≥1 (left) and N(m,S) samples (Xk)
generated in Example 2.13.

using LinearAlgebra

n = 1000; d = 2 # Number of samples & dimension

m = [-1,1] # Mean vector

S = [5 -3; -3 4] # Covariance matrix

L = cholesky(S).L # (Lower-triangular) Cholesky factor

X = zeros(d, n) # Initialise output space

for k = 1:n

X[:,k] = m + L*randn(d)

end

2.4 Relations of probability distributions (*)

Known relationships between probability distributions may yield useful transfor-
mations.

Example 2.14. [Gamma distribution with integer shape] Consider Γ(α, β) distri-
bution with α ∈ N and β > 0 with p.d.f.

p(x) =
βα

Γ(α)
xα−1e−βx1 (x ≥ 0) .

Inverse c.d.f. method is not easily applicable. Instead,

(a) Simulate Y1, . . . , Yα
i.i.d.∼ Exp(1).

(b) Set X := 1
β

∑α
i=1 Yi.

Then X ∼ p.

Proof. We can check that X ∼ p by inspecting moment generating functions. The
m.g.f. of Y ∼ Exp(1) is

MY (t) = E
(
etY
)

=
1

1− t
, t ∈ [0, 1),

so the m.g.f. of X is

MX(t) = E
(
etX
)

=
α∏
i=1

E
(
etYi/β

)
=

α∏
i=1

MYi(t/β) =
1

(1− t/β)α
,

14
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for t ∈ [0, β), which is the m.g.f. of Γ(α, β).

2.5 Spherically/elliptically symmetric distributions (*)

Example 2.15 (Uniform distribution on a (d− 1)-sphere). Suppose X ∼ N(0, I),
a standard Gaussian distribution in Rd. Then, V = X/‖X‖ ∼ U(Sd−1), that is, V
is uniformly distributed on the unit sphere Sd−1 := {x ∈ Rd : ‖x‖ = 1}, because
the Gaussian distribution is spherically symmetric.

If p is a spherically symmetric distribution, then it is possible to draw
independent ‘direction vector’ V ∼ U(Sd−1) and a ‘radius’ R ≥ 0 so that RV ∼ p.
The density of the radius q can be found by polar integration.

Proposition 2.16. Assume that p is a spherically symmetric probability density
on Rd, that is,

p(x) = cp̂(‖x‖) for all x ∈ Rd,

where c > 0 is a constant. Suppose q is a probability density on [0,∞) satisfying

q(r) = c′rd−1p̂(r) for all r ∈ [0,∞),

for some constant c′ > 0. Then, if V ∼ U(Sd−1) and R ∼ q, the random variable
X := RV ∼ p.

Proof. Let A ⊂ [0,∞), then by polar integration∫
‖x‖∈A

p(x)dx = cCd

∫
r∈A

rd−1p̂(r)dr,

where Cd is the surface area of the (d− 1)-sphere. That is, we know that the right
density q of R should satisfy

q(r) = c′rd−1p̂(r),

where c′ = cCd. The constant is unique, because q is a probability density. In fact,

c′ =

(∫ ∞
0

rd−1p̂(r)dr

)−1

.

Example 2.17 (Uniform distribution on a d-ball). If V ∼ U(Sd−1) and U ∼ U(0, 1),
then Z = U1/dV ∼ U(Bd), where Bd := {x ∈ Rd : ‖x‖ ≤ 1}.

n = 1000; d = 2

X = zeros(d, n)

for k = 1:n

u = rand(); z = randn(d); v = z/sqrt(sum(z.^2))

X[:,k] = u^(1/d) * v

end

Remark 2.18. Elliptically symmetric densities of the form p(x) = cp̂(‖L−1(x −
m)‖) with location m ∈ Rd and non-singular shape LLT ∈ Rd×d can be simulated
by drawing X from the corresponding spherically symmetric distribution with
radial decay p̂ as in Proposition 2.16 and then transforming Y = m + LX; the
argument is identical with Proposition 2.11.
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3 Rejection sampling

When it is not possible (or efficient) to do transformations of variables to produce
variables that are distributed according to a given distribution, rejection sampling
(or the ‘accept-reject’ method) can make sampling possible (or more efficient).

Example 3.1 (Uniform distribution on a disc). Consider the raindrops in Example

1.4, and assume (Vk)k≥1
i.i.d.∼ U([0, 1]2). Let (V̂k)k≥1 consist of those Vk that fall

within the unit disc D := {(w1, w2) ∈ R2 : w2
1 + w2

2 < 1}. Then, (V̂k)
i.i.d.∼ U(D),

a uniform distribution on the unit disc D.

3.1 Rejection sampling algorithm

To give the general form of rejection sampling, assume that both p and q are p.d.f.s
or p.m.f.s on a common space X, and suppose that M ∈ [1,∞) is a constant such
that

Assumption:
p(x)

q(x)
≤M for all x ∈ X, (4)

where by convention 0/0 = 0 and a/0 =∞ for a > 0.

Algorithm 3.2 (Rejection sampling). Let (Yk)k≥1
i.i.d.∼ q which are independent

of (Uk)k≥1
i.i.d.∼ U(0, 1). Set T = 1 and

(A) If UT ≤
p(YT )

Mq(YT )
, then output X = YT .

(R) Otherwise, increment T = T + 1 and retry (A).

Remark 3.3. The distribution q in rejection sampling is often called the proposal
distribution (or the instrumental distribution).

Theorem 3.4. Suppose (4) holds and consider X = YT of Algorithm 3.2.

(i) The running time T ∼ Geometric(1/M).

(ii) The simulated sample X ∼ p.

Proof (discrete case). Define

h(x) :=

{
p(x)
Mq(x)

, whenever q(x) > 0,

1, otherwise.

Denote the ‘acceptance indicators’ Bk := 1 (Uk ≤ h(Yk)), then Bk are independent
Bernoulli random variables, with

P(Bk = 1) =
∑
y∈X

P(Bk = 1, Yk = y) =
∑
y∈X

P(Bk = 1 | Yk = y)P(Yk = y)

=
∑
y∈X

P(Uk ≤ h(y))q(y) =
1

M

∑
y∈X

p(y) =
1

M
.

That is, P(T = t) = P(Bt = 1)P(B1 = 0) · · ·P(Bt−1 = 0) which proves (i).
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Let then x ∈ X, and calculate for any t ∈ N,

P(X = x | T = t) = P(Yt = x | B1 = 0, . . . , Bt−1 = 0, Bt = 1)

= P(Yt = x | Bt = 1)

=
P(Yt = x,Bt = 1)

P(Bt = 1)
.

Similarly as above, for any x ∈ X, we get

P(Yt = x,Bt = 1) = q(x)h(x) = p(x)/M.

We conclude that P(X = x | T = t) = p(x).

Remark 3.5. Note that because P(X = x | T = t) = P(X = x), the running time
T and the sample X produced by Algorithm 3.2 are independent.

Because T ∼ Geometric(1/M), the expected running time (expected num-
ber of iterations before stopping) is E[T ] = M . Therefore, smaller M leads to a
more efficient algorithm.

Remark 3.6. The proof in the continuous case is essentially identical, by consid-
ering A ⊂ X (or cylindrical sets) and calculating P(X ∈ A | T = t). In particular,
notice that

P(Yt ∈ A,Bt = 1) =

∫
A

q(y)h(y)dy =
1

M

∫
A

p(y)dy,

from which with A = X we also deduce that P(Bt = 1) = 1/M .

Remark 3.7 (*). It is not difficult to see that the proof of rejection sampling
generalises directly into general state spaces. A similar idea, called thinning is
used in a point process context, in order to simulate a non-homogeneous Poisson
process by discarding some points of a homogeneous Poisson process.

Example 3.8. Suppose we want to use rejection sampling to simulate from N(0, 1)
using standard Cauchy proposals. We have

p(x)

q(x)
=

√
π

2
(1 + x2) exp

(
− x2

2

)
≤
√

2π

e
=: M,

because the ratio is maximised with x = ±1 (derivative zero also at x = 0).

using Distributions # Package w/ all 'standard' distributions; install by:

# using Pkg; Pkg.add("Distributions")

function cauchy_normal(n)

M = sqrt(2pi)*exp(-.5)

x = zeros(n)

while n>0

y = rand(Cauchy()); u = rand()

if M*u < exp(logpdf(Normal(),y) - logpdf(Cauchy(), y))

x[n] = y; n = n-1

end

end

x

end

x = cauchy_normal(10_000)

17
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ample 3.8 are distributed uniformly in beteeen the x-axis and the function Mq(x)
(the upper curve). The points that fall below the curve p(x) are accepted (green),
others are rejected (red).

3.2 Unnormalised distributions and rejection sampling

A p.d.f. p(x) on X (resp. p.m.f. p(x) on X) must satisfy∫
X
p(x)dx = 1

(
resp.

∑
x∈X

p(x) = 1

)
.

We can specify a p.d.f (resp. p.m.f.) by just giving a non-negative function pu(x),
which is propotional to p(x). More specifically, if

p(x) ∝ pu(x) then p(x) =
pu(x)

Zp
,

with the normalising constant

Zp :=

∫
X
pu(x)dx.

(
resp. Zp =

∑
x∈X

pu(x)

)
.

The distribution p(x) is fully determined by pu(x), even though we could not
calculate values of p(x). (Of course, we must have Zp ∈ (0,∞).)

Example 3.9. Suppose we know p(x), the density of random variable X, and we
are interested in the conditional density of X given X ≥ t, of the following form:

pt(x) =
p(x)1 (x ≥ t)∫∞

t
p(t)dt

∝ p(x)1 (x ≥ t) .

It is clear that we could sample from (Xk)k≥1
i.i.d.∼ p, and accept only those for

which Xk ≥ t, which would be samples from pt.
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Example 3.10. In Bayesian inference, we are interested in a conditional distribu-
tion (the posterior)

p(x) = fX|Y (x | y∗) =
fY |X(y∗ | x)fX(x)∫

X fY |X(y∗ | x̂)fX(x̂)dx̂
∝ fY |X(y∗ | x)fX(x),

where y∗ stands for the observed value of random variable Y and random variable
X is the unknown. (Above, p(x) is the conditional density of X | (Y = y∗) and
fX|Y stands for the conditional density of X given Y .) We can only calculate
pu(x) = fY |X(y∗ | x)fX(x).

We would like an algorithm to simulate X ∼ p and use only the unnor-
malised density pu(x), without need to calculate p(x). The rejection algorithm can
be used in such a case.

Algorithm 3.11 (Rejection sampling with unnormalised distributions). Suppose
q and p are p.d.f.s (or p.m.f.s) such that q ∝ qu and p ∝ pu, with

Assumption:
pu(x)

qu(x)
≤M for all x ∈ X, (5)

and that (Yk)k≥1
i.i.d.∼ q independent of (Uk)k≥1

i.i.d.∼ U(0, 1). Set T = 1 and

(A) If UT ≤
pu(YT )

Mqu(YT )
, then output X = YT .

(B) Otherwise, increment T = T + 1 and retry (A).

Algorithm 3.11 is valid by the proof of Theorem 3.4, with minor adjust-
ments. Namely,

P(Yt = x,Bt = 1) =
1

M
q(x)

pu(x)

qu(x)
=

(
1

M
· Zp
Zq

)
p(x),

from which we notice also that T ∼ Geometric(1/M̂) where M̂ = MZq/Zp.

(In fact, pu(y)
Mqu(y)

= p(y)

M̂q(y)
, so Algorithm 3.11 coincides with Algorithm 3.2

with M̂ = M .)

Example 3.12. Consider the probability density

p(x) ∝ pu(x) :=
sin2(x)

x2
1 (x 6= 0) , −∞ < x <∞, (x 6= 0)

and the standard Cauchy distribution q(x) ∝ qu(x) = (1 + x2)−1, which can be
simulated with the inverse c.d.f. method (exercise). We have

pu(x)

qu(x)
=

sin2 x(1 + x2)

x2
≤ min

{
1 + x2

x2
, 1 + x2

}
≤ 2,

because | sinx| ≤ min{1, x}. (Optimal bound is slightly less than 1.5.)
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Figure 5: Simulated samples from the standard Cauchy distribution (left) and
samples from p(x) ∝ sin2(x)/x2 (right) with corresponding densities.

using Distributions

max_n = 100_000; x = zeros(0) # Empty (zero-length) vector

for k = 1:max_n

y = rand(Cauchy())

ratio_pu_qu_M = sin(y)^2*(1+y^2) / (2y^2)

if rand() <= ratio_pu_qu_M

push!(x, y) # Append y to the end of vector x

end

end

4 Importance sampling

All methods up to this point have aimed at simulating i.i.d. random variables

(Xk)k≥1
i.i.d.∼ p. It is possible to use an auxiliary distribution q for Monte Carlo

integration similar to rejection sampling, but without an explicit accept-reject
mechanism.

This can be of interest from different reasons, for instance:
• Being less wasteful by ‘recycling’ samples that would be rejected in rejection

sampling.
• Reducing Monte Carlo variance.
• Use when M in (4) or (5) is unknown, or even when no such finite M exists.

4.1 Unbiased importance sampling

Definition 4.1 (Importance sampling). Suppose p and q are two p.d.f.s or p.m.f.s
on X and f : X→ R.

Assumption: q(x) = 0 =⇒ p(x)f(x) = 0. (6)

Define

w(x) :=

{
p(x)
q(x)

, if q(x) > 0,

0, otherwise.
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Figure 6: Importance sampling with p standard Normal (blue) and q Cauchy (red),
as in Example 3.8). The importance weights w(Yk) are shown on the right.

Then, if Y1, Y2, . . . , Yn
i.i.d.∼ q, the estimator

I(n)
p,q (f) :=

1

n

n∑
k=1

f(Yk)w(Yk) (7)

is the (unbiased) importance sampling (IS) approximation of Ep[f(X)].

Remark 4.2. The distribution q is called the proposal distribution (sometimes also
importance or instrumental). The term w(Yk) is called the (importance) weight
related to the sample Yk.

Theorem 4.3. Assuming (6) holds, then the IS estimator is

(a) Unbiased: E[I
(n)
p,q (f)] = Ep[f(X)], for all n ∈ N

(b) Consistent: I
(n)
p,q (f)

n→∞−−−→ Ep[f(X)] (almost surely).

Proof. Because the random variables Zk := f(Yk)w(Yk) are i.i.d., it is sufficient
for (a) to check that E[Z1] = Ep[f(X)]. In the discrete case,

E[Z1] =
∑

y∈X : q(y)>0

f(y)
p(y)

q(y)
q(y) =

∑
y∈X

f(y)p(y)dy = Ep[f(X)],

and similarly in the continuous case, changing the sum to an integral. The almost
sure convergence (b) follows from the strong law of large numbers.

Remark 4.4 (*). In terms of general probability, importance sampling is a change
of measure, and the function w is the related Radon-Nikodym derivative.

Example 4.5 (Gamma distribution). Example 2.14 showed how to simulate Y ∼
Γ(a, b) for a ∈ N+ and b > 0 by summing exponentials.

Suppose we have simulated Y1, . . . , Yn
i.i.d.∼ Γ(a, b), but want to estimate the

expectation of f(X) where X ∼ Γ(α, β), with some other parameters α, β > 0.
Recall that the density of Γ(α, β) is

p(x) =
βα

Γ(α)
xα−1 exp(−βx)1 (x > 0)
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so the importance weights are given as

w(y) =
p(y)

q(y)
=

Γ(a)βα

Γ(α)ba
yα−a exp

(
− (β − b)y

)
, for y > 0.

The importance sampling estimator is (NB: P(q(Yi) = 0) = 0!)

I(n)
p,q (f) =

1

n

n∑
i=1

f(Yi)w(Yi)

=
Γ(a)βα

Γ(α)ba
· 1

n

n∑
i=1

f(Yi)Yi
α−a exp

(
− (β − b)Yi

)
.

We know that this is unbiased and (strongly) consistent estimator of Ep[f(X)].

Remark 4.6. In fact, we can ‘recycle’ the samples the Y1, . . . , Yn
i.i.d.∼ q in Example

4.5 to obtain estimates of Epα,β [f(X)] with pα,β corresponding to Γ(α, β), for a
range of values α and β. . .

Theorem 4.3 showed that IS is consistent with minimal conditions. How
about the variance of IS?

Proposition 4.7. Suppose that (6) holds. Then, the variance of the IS estimator
can be given as

Var
(
I(n)
p,q (f)

)
=
σ2
p,q

n
where σ2

p,q := Ep[f 2(X)w(X)]− Ep[f(X)]2.

Note that this permits the case σ2
p,q =∞ =⇒ Var

(
I

(n)
p,q (f)

)
=∞ ∀n ∈ N.

Proof. Denote Zk := f(Yk)w(Yk), then in the discrete case

E[Z2
1 ] =

∑
y∈X : q(y)>0

f 2(y)
p2(y)

q2(y)
q(y) =

∑
y∈X

f 2(y)w(y)p(y)dy = Ep[f 2(X)w(X)].

Now, σ2
p,q = Var(Z1) = EZ2

1 − (EZ1)2 and EZ1 = Ep[f(X)], and as (Zk) are i.i.d.,

Var(I
(n)(f)
p,q ) = σ2

p,q/n. The continuous case follows similarly.

Because I
(n)
p,q (f) is a sum of i.i.d. random variables, the proof of Proposition

4.7 implies the following:

Corollary 4.8. Suppose (6) holds and

Ep[f 2(X)w(X)] <∞. (8)

Then,
√
n[I

(n)
p,q (f)− Ep[f(X)]]

n→∞−−−→ N(0, σ2
p,q) in distribution.

Remark 4.9. Because IS is just usual Monte Carlo approximating Eq[g(X)] with
g(x) = f(x)w(x), Proposition 1.13 holds, and gives confidence intervals also for
the IS estimator.
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Figure 7: Example 4.10 with a = 2, b = 2 and β = 2.5, α = 0.5 (NB α < a) and

f(x) ≡ 1. Values of the weights w(Yn) (left) and the sequence of estimates I
(n)
p,q (f)

(right) for n = 1, 2, . . ., 1000.

Example 4.10 (Gamma distribution (cont.)). Let us consider the variance of the
IS estimator for the Gamma distributions in Example 4.5. We may write

w(x)f 2(x) =
Γ(a)βα

Γ(α)ba
xα−a exp(−(β − b)x)f 2(x),

so

Ep[w(X)f 2(X)] = ca,b,α,βEp
[
Xα−a exp(−(β − b)X)f 2(X)

]
.

If α ≥ a and β > b, then

sup
x>0

[
xα−a exp(−(β − b)x)

]
<∞.

In this case Ep[w(X)f 2(X)] ≤ cEp[f 2(X)], so if also Varp(f(X)) < ∞ ⇐⇒
Ep[f 2(X)] <∞, then we have Ep[w(X)f 2(X)] <∞ and the importance sampling
estimator is guaranteed to have finite variance.

Figure 7 shows an example simulation where Var(I
(n)
p,q (f)) = ∞. Exercise:

What would happen if we used f(x) = x instead?
We formalise the sufficient condition found in the Gamma example above.

Proposition 4.11. Suppose (6) holds and

M := sup
x
w(x) = sup

x

p(x)

q(x)
<∞, (9)

where the supremum is taken over all x ∈ X such that p(x)f(x) > 0. Then, if
Varp(f(X)) < ∞, the variance of the IS estimator is finite, and can be upper
bounded by

σ2
p,q ≤MEp[f 2(X)]− Ep[f(X)]2

= MVarp(f(X)) + (M − 1)Ep[f(X)]2.
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Remark 4.12. If Ep[f(X)]2 � Ep[f 2(X)], Proposition 4.11 indicates that the IS
estimator is (roughly) at most M times worse than the classical Monte Carlo
estimate. How does this result relate with using rejection sampling instead of IS?

Rule of thumb: Try to make sure that (9) holds (unless you have a specific f
in mind).

What is the best possible proposal density q for a specific f?

Proposition 4.13. Suppose that f : X → R satisfies Ep[|f(X)|] > 0. Then, the
proposal distribution

q∗(x) :=
p(x)|f(x)|
Ep[|f(X)|]

∝ p(x)|f(x)|

admits the minimum variance among all distributions q satisfying (6).

Proof. In the discrete case, we have with w∗(x) = p(x)/q∗(x),

Ep[f 2(X)w∗(X)] =
∑

x∈X : q∗(x)>0

f 2(x)
p2(x)

q∗(x)
=
(
Ep[|f(X)|]

)2

On the other hand, for any q satisfying (6),

(
Ep[|f(X)|]

)2
=

(
Eq[|f(X)|w(X)]

)2

≤ Eq[f 2(X)w2(X)] = Ep[f 2(X)w(X)],

by Jensen’s inequality. This implies σ2
p,q∗ ≤ σ2

p,q by Proposition 4.7.

Remark 4.14. The result of Proposition 4.13 is, of course, mostly theoretical, but
leads to:

Rule of thumb: Try to find q that is approximately proportional to p(x)|f(x)|.

In particular, if f is zero (or has very small absolute values) in some regions
of the space, we avoid putting any (or put less) mass of q to such regions.

Remark 4.15. Note in particular that IS can have, in fact, a (significantly) smaller
variance than the classical Monte Carlo estimate. We restate the main reasons to
use IS rather than classical Monte Carlo:

• Use IS when we cannot sample (efficiently) from p.
• Use IS to reduce variance over the classical Monte Carlo estimator.
• Rejection sampling is not applicable (because we do not know M <∞, or
M =∞)

4.2 Application: Rare event estimation

One important class of applications of IS as variance reduction is problems in
which we estimate the probability of a rare event. In such scenarios, we may be
able to sample from p directly but this leads to high variance.
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For example, suppose X ∼ p and we want to estimate

P(X ≥ x0) = Ep[1 (X ≥ x0)]

with x0 in the extreme upper tail of p(x). If X1, . . . , Xn
i.i.d.∼ p, we may not get any

samples Xi ≥ x0 and the usual Monte Carlo estimate

I(n)
p (f) =

1

n

n∑
i=1

1 (Xi ≥ x0)

is zero with high probability. We can take an proposal density q that puts more
probability at large Y , and then reweight to get expectations in X. By using IS,
we can reduce the variance significantly.

Example 4.16. Say p(x) is the standard normal density and we want to estimate
θ = P(X ≥ x0) for some x0 ≥ 3.

Take q as the shifted exponential,

q(y) := r exp
(
− r(y − x0)

)
1 (y ≥ x0) .

Let us determine r so that q approximates the optimal distribution (the conditional
tail of p) locally: (log p)′ = (log q)′ at x0, that is,

r = g′(x0), g(x) = − log p(x) =
x2

2
=⇒ r = x0.

The weights are, for y ≥ x0,

w(y) =
p(y)

q(y)

=
1

r
√

2π
exp

(
− y2

2
+ r(y − x0)

)
and the IS estimator of θ is 1

n

∑n
i=1w(Yi)1 (Yi ≥ x0); See Figure 8.

4.3 Self-normalised importance sampling

The rejection sampling algorithm is straightforward to apply in case of unknown
normalising constants, that is, when only the unnormalised densities pu(x) ∝ p(x)
and qu(x) ∝ q(x) are available.

In importance sampling, this means that we can access the unnormalised
importance weights

wu(x) :=
pu(x)

qu(x)
=
Zp
Zq
w(x), q(x) > 0,

and wu(x) := 0 when q(x) = 0. In order to apply (unbiased) importance sampling,
we would need w. We can get around by simultaneously estimating the ratio
Zp/Zq, with a cost of introducing a bias (which is asymptotically vanishing).
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Figure 8: Five trajectories of classical Monte Carlo (left) and IS of Example 4.16
(right) with x0 = 3. Number of samples in x-axis and value of estimate in y-axis.

Definition 4.17 (Self-normalised importance sampling). Suppose p and q are
p.d.f.s or p.m.f.s, such that

Assumption: q(x) = 0 =⇒ p(x) = 0. (10)

Then, if Y1, Y2, . . .
i.i.d.∼ q,

Î(n)
p,q (f) :=

n∑
k=1

f(Yk)W
(n)
k , (11)

where W
(n)
k :=

{
wu(Yk)∑n
j=1 wu(Yj)

, if wu(Yj) > 0 for some 1 ≤ j ≤ n

1 (k = 1) , otherwise

is the self-normalised (or rescaled) IS approximation of Ep[f(X)].

Remark 4.18. Note that
(a) β = Pq(wu(Yj) > 0) = Pq(p(Yj) > 0) > 0, and therefore

Pq
(
wu(Yj) > 0 for some 1 ≤ j ≤ n

)
= 1− (1− β)n

n→∞−−−→ 1.

(b) We always have
∑n

k=1W
(n)
k = 1.

The drawback of the self-normalised IS is that the estimator Î
(n)
p,q (f) is

generally biased for finite n. However, the estimator is (strongly) consistent.

Theorem 4.19. Suppose (10) holds. Then, Î
(n)
p,q (f)

n→∞−−−→ Ep[f(X)] (almost
surely).

Proof. Because wu(Yj) > 0 for some 1 ≤ j ≤ n eventually (almost surely; cf. Re-
mark 4.18), we may consider only such n.

Î(n)
p,q (f) =

∑n
k=1 f(Yk)wu(Yk)∑n

k=1wu(Yk)
=

1
n

∑n
k=1 f(Yk)w(Yk)

1
n

∑n
k=1w(Yk)

=
I

(n)
p,q (f)

I
(n)
p,q (1)

.

Theorem 4.3 (b) implies that I
(n)
p,q (f)

n→∞−−−→ Ep[f(X)] almost surely and

I
(n)
p,q (1)

n→∞−−−→ Ep[1] = 1 almost surely.
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Remark 4.20. In the proof of Theorem 4.19, we need the condition q(x) = 0 =⇒
p(x) = 0 in order to ensure I

(n)
p,q (1)→ 1. This is more stringent than with unbiased

IS, where we only need q(x) = 0 =⇒ p(x)f(x) = 0 which ensures I
(n)
p,q (f) →

Ep[f(X)].

Remark 4.21. Note that

Eq[wu(Y )] =
Zp
Zq

Eq[w(Y )] =
Zp
Zq
,

so the mean of unnormalised SNIS weights is unbiased and (strongly) consistent
estimator of the ratio of normalising constants,

1

n

n∑
k=1

wu(Yk)
n→∞−−−→ Zp

Zq
(almost surely).

This is important in certain applications.

Example 4.22. We saw in Example 4.5 that if Yi ∼ Γ(a, b) and

w(y) =
Γ(a)βα

Γ(α)ba
yα−a exp(−(β − b)y)

then

I(n)
p,q (f) =

1

n

n∑
i=1

f(Yi)w(Yi)

is unbiased and consistent estimator of Ep[f(X)] with p = Γ(α, β).
To avoid calculating Γ(a)/Γ(α), we can use

wu(y) = yα−a exp(−(β − b)y)

and then the self-normalised IS estimator

Î(n)
p,q (f) :=

∑n
i=1 f(Yi)wu(Yi)∑n

i=1wu(Yi)

is a consistent estimator of Ep[f(X)].

function snis_gamma(n, alpha, beta, f)

y = -log.(rand(n)) # y ~ Exp(1) = Gamma(1,1)

w_u = y.^(alpha-1) .* exp.(-(beta-1)*y) # Unnormalised w

w = w_u/sum(w_u) # Normalised w

sum(f.(y) .* w) # SNIS estimate

end

# Use the function f(x)=x to estimate mean:

snis_gamma(1000, 2, 4, x -> x)

The self-normalised IS satisfies a CLT with same variance as the unbiased
IS for zero mean functions, in which case they are asymptotically equally efficient.
A consistent confidence interval can also be easily constructed.
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Theorem 4.23. Suppose (10) holds and σ̄2
p,q := Ep[w(X)f̄ 2(X)] < ∞, where

f̄(x) = f(x)− Ep[f(X)].

(i)
√
n
(
Î

(n)
p,q (f)− Ep[f(X)]

) n→∞−−−→ N(0, σ̄2
p,q) in distribution.

(ii) If also Ep[w(X)] <∞, then the following hold:

• nv
(n)
p,q

n→∞−−−→ σ̄2
p,q (a.s.), where v

(n)
p,q :=

∑n
k=1(W

(n)
k )2

[
f(Yk)− Î(n)

p,q (f)
]2
,

and

• P
(
Ep[f(X)] ∈

[
Î

(n)
p,q (f)±α

√
v

(n)
p,q

])
→ 1−2Φ(−α) for any α ∈ (0,∞).

Proof. (i) Because
∑n

k=1 W
(n)
k = 1, Î

(n)
p,q (f) − Ep[f(X)] = Î

(n)
p,q (f̄). Now, as in

the proof of Theorem 4.19,
√
nÎ

(n)
p,q (f̄) =

√
nI

(n)
p,q (f̄)/I

(n)
p,q (1). Corollary 4.8 implies

that the numerator converges in distribution to N(0, σ̄2
p,q) and the denominator

converges to 1 almost surely. Slutsky’s theorem (Lemma 1.14) concludes the proof.

The first part of (ii), that is, nv
(n)
p,q → σ̄2

p,q is an exercise, and the second claim
follows from (i), as in the proof of Proposition 1.13 (iii).

Remark 4.24 (*). The quantity neff =
(∑n

k=1(W
(n)
k )2

)−1 ∈ [1, n] is widely known
as the effective sample size of (self-normalised) IS.

This may be (loosely) justified when the function is of the form f(x) :=
c1 (x ∈ A) with c > 0 and A such that Ep[1 (X ∈ A)] = 1/2. In this case, f̄(x) ≡ c

2
,

and standard Monte Carlo estimator I
(n)
p (f) would have variance Varp(f(X))/n =

(c/2)2/n, but the corresponding limiting CLT variance of the SNIS estimator is
Ep[w(X)f̄ 2(X)]/n. It is not hard to see (cf. the proof of Theorem 4.23 (ii)) that
then

n

neff

n→∞−−−→ Ep[w(X)],

so Ep[w(X)]/n ≈ Varp(f(X))/neff for large n. Therefore, the self-normalised IS
with n samples may be (loosely) thought of as having neff ‘effective independent
samples’.

Remark 4.25 (*). It is sometimes useful to consider the SNIS as an empirical
approximation of the distribution p. That is,

µ̂(n)
p,q (A) :=

n∑
k=1

W
(n)
k 1 (Yk ∈ A) ≈ P(X ∈ A), A ⊂ X,

where X ∼ p. The approximation is consistent assuming (10), in the following
sense:

µ̂(n)
p,q (A)

n→∞−−−→ P(X ∈ A) almost surely,

for any (measurable) A ⊂ X.
With unbiased IS, we have

µ(n)
p,q (A) :=

1

n

n∑
k=1

w(Yk)1 (Yk ∈ A) .

Given (10) this is consistent and also unbiased E[µ
(n)
p,q (A)] = P(X ∈ A), but unlike

self-normalised IS and plain MC, µ
(n)
p,q is not a probability distribution, because

µ
(n)
p,q (X) 6= 1 in general.
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5 Variance reduction techniques

Small variance is vital with Monte Carlo methods, because m-fold reduction of
variance means that we may use m-fold less samples to get an estimator with same
variance. We saw above that importance sampling can be used to reduce variance
of the Monte Carlo estimate. There are other useful techniques which we consider
next.

5.1 Rao-Blackwellisation

Recall the law of total variance.

Proposition 5.1. If Var(Z) <∞, then

Var(Z) = E[Var(Z | Y )] + Var(E[Z | Y ]),

where Var(Z | Y ) = E[Z2 | Y ]− (E[Z | Y ])2 ≥ 0.

Corollary 5.2. If Var(Z) <∞, then

Var(E[Z | Y ]) = Var(Z)− E[Var(Z | Y )] ≤ Var(Z).

That is, conditioning can only decrease variance.

Example 5.3 (Rao-Blackwellisation in R2). Suppose that p is a p.d.f. in R2, and
we would like to compute

Ep[f(X, Y )] =

∫∫
f(x, y)p(x, y)dxdy.

Simple Monte Carlo would be to simulate (Xk, Yk)
i.i.d.∼ p and then compute the

average I
(n)
p (f) = n−1

∑n
k=1 f(Xk, Yk).

However, if the conditional law pX|Y (x | y) is available, and we can calculate
the conditional expectation

h(y) := Ep[f(X, y) | Y = y],

(that is, with Z = f(X, Y ), we have E[Z | Y ] = h(Y )), we may use instead

I
(n)
p,RB(f) :=

1

n

n∑
k=1

h(Yk), (12)

which approximates the desired quantity Ep[f(X, Y )] and has smaller variance

than I
(n)
p (f) (and the improvement can be significant).

Remark 5.4. In Example 5.3, we need only the samples (Yk)k≥1 which are dis-
tributed according to the marginal disrtribution pY (y) :=

∫
p(x, y)dx. We have a

choice to simulate either (Xk, Yk)k≥1
i.i.d.∼ p and throwing away Xk, or simulating

directly from the marginal distribution (Yk)
i.i.d.∼ pY , whichever is easier.

Remark 5.5. Rao-Blackwellisation applies similarly also with importance sam-
pling, and with other Monte Carlo methods, such as Markov chain Monte Carlo
introduced later.
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Remark 5.6 (*). The term Rao-Blackwellisation is used, because the method is of-
ten associated with sufficient statistics and the Rao-Blackwell theorem. Marginal-
isation or conditioning might be more appropriate, but Rao-Blackwellisation is
widely used for historical reasons.

Remark 5.7 (*). Sometimes, it may be useful to employ some (biased) approx-
imations ĥ(y) ≈ E[f(X) | Y = y] in place of the true conditional expectation.
Theoretical guarantees for such ‘approximate Rao-Blackwellisation’ are usually
not available, but empirically this type of schemes may be useful.

5.2 Stratification

Example 5.8. Suppose we are interested to estimate Ep[f(X)] with

p(x) =
1

2
p1(x) +

1

2
p2(x),

where p1 and p2 are distributions on X.

(a) We know how to sample X1, . . . , Xn ∼ p using Z
(i)
k

i.i.d.∼ pi and Uk
i.i.d.∼

U(0, 1):

I(n)
p (f) =

1

n

[ n∑
k=1

1

(
Uk ≤

1

2

)
f(Z

(1)
k ) + 1

(
Uk >

1

2

)
f(Z

(2)
k )

]
d
=

1

n

N1∑
k=1

f(Z̃
(1)
k ) +

1

n

N2∑
k=1

f(Z̃
(2)
k ),

where (Z̃
(i)
k )

i.i.d.∼ pi, N1 =
∑n

k=1 1
(
Uk ≤ 1

2

)
∼ Binom(n, 1/2) and N2 = n−

N1 ∼ Binom(n, 1/2) (note that N1 and N2 are not independent though!).
(b) Notice that Ep[f(X)] = (1/2)Ep1 [f(X)] + (1/2)Ep2 [f(X)], so we may use

I(n/2,n/2)
p (f) =

1

2
I(n/2)
p1

(f) +
1

2
I(n/2)
p2

(f)

=
1

n

n/2∑
k=1

f(Z
(1)
k ) +

1

n

n/2∑
k=1

f(Z
(2)
k ).

Which estimator should we use? The estimator I
(n/2,n/2)
p (f), because it turns out

that Var
(
I

(n/2,n/2)
p (f)

)
≤ Var(I

(n)
p (f)). This is an example of stratification (with

proportional allocation).

Theorem 5.9. Suppose the distribution p is of the following mixture form:

p(x) =
m∑
i=1

wipi(x),

where wi > 0 and
∑

iwi = 1 and p1, . . . , pm are distributions.
Let `1, . . . , `m ∈ N with

∑
i `i = n, and define the stratified estimator

I(`1,...,`m)
p (f) :=

m∑
i=1

wi

(
1

`i

`i∑
j=1

f(X
(i)
j )

)
,
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where (X
(i)
j )i,j are all independent and (X

(i)
j )

i.i.d.∼ pi. The estimator satisfies

(i) Unbiasedness: E[I
(`1,...,`m)
p (f)] = Ep[f(X)].

(ii) If `i = win (proportional allocation), then

Var
(
I(`1,...,`m)

p (f)
)
≤ Var

(
I(n)
p (f)

)
.

Proof. Unbiasedness (i) is direct, and

Var
(
I(`1,...,`m)

p (f)
)

=
m∑
i=1

w2
iVar

(
1

`i

`i∑
j=1

f(X
(i)
j )

)

=
m∑
i=1

w2
i

`i
Varpi

(
f(X)

)
=

1

n

m∑
i=1

wiVarpi
(
f(X)

)
,

because `i = win. Consider then X =
∑m

i=1 1 (si−1 ≤ U < si)X
(i), where U ∼

U(0, 1), s0 = 0, si =
∑i

k=1wi and X(i) ∼ pi, then X ∼ p (exercise!) and we notice
that

m∑
i=1

wiVarpi
(
f(X)

)
= E[Var(f(X) | U)] ≤ Varp

(
f(X)

)
.

Example 5.10 (Stratification with inverse c.d.f.). Suppose F−1 is the (gener-
alised) inverse c.d.f. corresponding to a distribution p, and we try to approximate
Ep[f(X)]. We may use the following stratified estimator

I
(n)
p,strat(f) :=

1

n

n∑
k=1

f(Xk), Xk := F−1(Ũk), Ũk :=
k − 1 + Uk

n
,

where (Uk)
i.i.d.∼ U(0, 1).

This is, in fact, proportionally allocated stratification, which follows by
writing Ep[f(X)] = Eu[f(F−1(U)], where the uniform density can be written as

u(t) := 1 (0 < t ≤ 1) =
n∑
k=1

wkũk(t),

where wk = 1/n and ũk(t) = n1
(
k−1
n
< t ≤ k

n

)
are the densities of Ũk.

Remark 5.11 (*). Stratification with proportional allocation is guaranteed to pro-
vide at least as good estimates as without stratification, but optimal allocation
strategy would be `i ∝ wi

√
Varpi(f(X)). Because this depends on f and we may

be interested in several f , and because Varpi(f(X)) is usually not known, propor-
tional allocation is often a safe choice.
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5.3 Introducing dependence: antithetic variables

In some cases, it is possible to use the dependence of random variables to help
decrease the variance. First such technique is so-called ‘antithetic’ variables.

Definition 5.12 (Antithetic variables). Suppose p̂(x, y) is a joint distribution
with p as its marginals7. In the discrete case, this means that for all x, y ∈ X,

p(x) =
∑
z∈X

p̂(x, z) and p(y) =
∑
z∈X

p̂(z, y).

Suppose that (Xn, Yn)n≥1
i.i.d.∼ p̂, then clearly (Xn)n≥1

i.i.d.∼ p and (Yn)n≥1
i.i.d.∼ p, but

each Xk typically depends on the corresponding ‘pair’ Yk. The antithetic variable
estimator

I
(n)
p̂,anti(f) :=

1

2n

n∑
k=1

[f(Xk) + f(Yk)]

is clearly unbiased and strongly consistent estimator of Ep[f(X)].

Proposition 5.13. The variance of the antithetic variable estimator is

Var
(
I

(n)
p̂,anti(f)

)
=

1

2n

[
Varpf(X) + Covp̂

(
f(X), f(Y )

)]
.

Therefore, if Covp̂
(
f(X), f(Y )

)
= Cov

(
f(X1), f(Y1)

)
≤ 0 then Var

(
I

(n)
p̂,anti(f)

)
≤

Var
(
I

(2n)
p (f)

)
.

Note that I
(2n)
p (f) has the same total number of samples as I

(n)
p̂,anti(f), so

they have roughly equal computational complexity.
Useful antithetic variables can be found with the inverse c.d.f. method.

Proposition 5.14. Suppose F−1 is a generalised inverse c.d.f. of p, and f : R→
R is monotonic. Define Xk = F−1(Uk) and Yk = F−1(1− Uk) where (Uk)k≥0

i.i.d.∼
U(0, 1). Then, Cov(f(X1), f(Y1)) ≤ 0.

Proof. (*) Without loss of generality, we may assume f increasing. Then also
f̄(x) = f(x) − Ep[f(X)] and g := f̄ ◦ F−1 are increasing. If Var(g(U)) = 0, the
claim is trivial, so assume Var(g(U)) > 0.

Because of symmetry

Cov(f(X1), f(Y1)) =

∫ 1

0

g(u)g(1− u)du = 2

∫ 1/2

0

g(u)g(1− u)du.

Recall E[g(U)] = 0, so there exists u0 ∈ (0, 1) such that g(u) ≤ 0 for u < u0 and

7. Such p̂ is also known as a coupling of p with itself.
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g(u) ≥ 0 for u > u0. Assume u0 < 1/2 and notice that then∫ 1/2

0

g(u)g(1− u)du =

∫ u0

0

g(u)g(1− u)du+

∫ 1/2

u0

g(u)g(1− u)du

≤
∫ u0

0

g(u)g(1− u0)du+

∫ 1/2

u0

g(u)g(1− u0)du

≤ g(1− u0)

∫ 1

0

g(u)du = 0.

The case u0 = 1/2 is easy, and if u0 > 1/2, then we may use the proof above with
g̃(u) := −g(1− u).

5.4 Control variates (*)

Definition 5.15 (Control variates). Suppose (Xk,Wk)k≥1
i.i.d.∼ p̂ with Xk ∼ p

(X-valued) and Wk is a zero-mean random number. Let β ∈ R, then

I
(n)
p,ctrl(f) :=

1

n

n∑
k=1

[
f(Xk) + βWk

]
.

is an unbiased and strongly constent estimator of Ep[f(X)].

Example 5.16. Suppose that we are interested in estimation of Ep[f(X)], where
p is N(µ, σ2), but f is a complicated function. Then Xk ∼ N(µ, σ2) and we may
use Wk = Xk − µ as a control variate.

Example 5.17. Suppose that Xk = F−1(Uk), where Uk ∼ U(0, 1). We can always
use Wk = Uk − 0.5 as control variates.

Proposition 5.18. We have the expression of the variance

Var
(
I

(n)
p,ctrl(f)

)
=

1

n

[
Varp(f(X)) + β2Var(W1) + 2βCov(f(X1),W1)

]
.

If Cov(f(X1),W1) 6= 0, it is possible (in principle) to choose β such that
the variance is reduced.

Remark 5.19. Theoretically, the best value is

β∗ = −Cov(f(X1),W1)/Var(W1),

which leads into

Var
(
I

(n)
p,ctrl(f)

)
=

1

n

[
(1− Corr(f(X1),W1)2)Varp(f(X))

]
.

Remark 5.20. The value β∗ is often unknown, but β may be chosen as an empirical
approximation of β∗ based on preliminary simulation of (Xk,Wk). Finding suitable
control variates is problem-specific.
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6 Markov chain Monte Carlo

Up to this point, we have considered only methods based on i.i.d. random se-
quences. Sometimes it is useful to construct non-i.i.d. sequence X1, X2, . . . such
that we can approximate as before

1

n

n∑
k=1

f(Xk) ≈ Ep[f(X)].

In this section, we will focus on Markov chains like this.
Intuitively, Xk are going to be ‘approximately from p’ for large k and Xk

will be ‘approximately independent’ of Xj if |k − j| is large.

6.1 Recap of some Markov chain theory

We will restate some concepts and key results related to (time-homogeneous)
Markov chains, which you may have seen in earlier courses8. We focus here on
countable or finite S.

Definition 6.1 (Markov chain). The random variables (Xk)k≥0 form a Markov
chain, if for all k ∈ N and x0, . . . , xk ∈ S,

P(Xk = xk | X0 = x0, . . . , Xk−1 = xk−1) = P(Xk = xk | Xk−1 = xk−1).

Definition 6.2 (Transition probability, initial distribution). The transition prob-
ability or transition matrix P of a (time-homogeneous) Markov chain (Xk)k≥0 on
S consists of

P (x, y) = P(Xk+1 = y | Xk = x) for all k ∈ N and x, y ∈ S.

The distribution of (Xk)k≥0 is called initial distribution λ(x) = P(X0 = x) for all
x ∈ S.

Recall that λ and P characterise the distribution of (Xk)k≥0.
Taking λ as a row vector and P as a matrix (you can think of finite, but

the same ideas work with countable case), then

(λP )(x) =
∑
y∈S

λ(y)P (y, x) =
∑
y∈S

P(X1 = x,X0 = y) = P(X1 = x).

This argument can be iterated to find out that (λ

k times︷ ︸︸ ︷
P · · ·P )(x) = (λP k)(x) =

P(Xk = x).

Definition 6.3 (Invariant distribution). If π =
(
π(x)

)
x∈S is a p.m.f. on S taken

as a row vector, and if

πP = π, (that is, (πP )(x) = π(x) for all x ∈ S),

then π is the invariant or stationary distribution of P .

8. MATA271 Stochastic Models.
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Definition 6.4 (Irreducibility). Markov chain, or equivalently its transition prob-
ability, is irreducible if for any x, y ∈ S there exists n = n(x, y) ∈ N such that

P(Xn = y | X0 = x) > 0.

We state the following well-known theorem without proof:

Theorem 6.5 (Markov chain strong law of large numbers). Suppose π is a p.m.f.
on S and that P is an irreducible transition probability on S with invariant distri-
bution π.

Let (Xk)k≥0 be a Markov chain with transition probability P and with any
initial distribution, then for any f : S→ R such that Eπ[f(X)] is finite,

1

n

n∑
k=1

f(Xk)
n→∞−−−→ Eπ[f(X)] almost surely.

For completeness, let us restate also convergence in distribution, which is
often of considered instead of Theorem 6.5 in Markov chain theory.

Definition 6.6 (Periodicity, aperiodicity). A Markov chain (Xk)k≥0 is periodic
with period m ∈ N if there exists a partition S0, . . . , Sm−1 of S, where Sk are
non-empty, such that

P(Xn ∈ S(nmodm) | X0 ∈ S0) = 1 for all n ∈ N.

The chain is aperiodic if it is not periodic with any period m ≥ 2.

Theorem 6.7. Suppose P is irreducible and aperiodic, with invariant distribu-
tion π. If Xn is a Markov chain with transition probability P with any initial
distribution,

P(Xn = x)
n→∞−−−→ π(x) for any x ∈ S.

Remark 6.8. Usually in sampling, we are rather more interested in SLLN in Theo-
rem 6.5, but in some cases Theorem 6.7 may be of interest as well. MCMC chains
are rarely periodic, so we usually get Theorem 6.7 automatically. We shall not
consider aperiodicity in detail further.

6.2 Reversibility

We shall consider next a Markov chain concept, which may not appear in a general
course on Markov chain theory, but proves very useful in checking invariance in
the MCMC context.

Definition 6.9 (Reversibility). Suppose P is a transition probability and π is a
p.m.f. on S. If

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ S, (13)

then P is reversible with respect to π, or π-reversible. (Condition (15) is also
known as the detailed balance.)

Proposition 6.10. If P is π-reversible, then π is invariant for P .
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Proof. (πP )(x) =
∑

y π(y)P (y, x) = π(x)
∑

y P (x, y) = π(x).

Remark 6.11. The contrary does not hold true. That is, if π is invariant for P , it
does not imply π-reversibility.

Remark 6.12. Suppose P is reversible with respect to π and X0 ∼ π. Then the
joint distribution of (X0, X1) is symmetric,

P(X0 = x, X1 = y) = π(x)P (x, y) = π(y)P (y, x) = P(X0 = y, X1 = x).

In other words, (X0, X1)
d
= (X1, X0). This generalises to

(X0, X1, . . . , Xn)
d
= (Xn, Xn−1, . . . , X0),

which can be understood so that the Markov chain initialised from the stationarity
distribution can be ‘time-reversed’ without affecting its distribution.

The reversibility can also be understood in terms of the ‘backwards’ tran-
sition probability being equal to the ‘forward’ transition probability (assuming
again X0 ∼ π),

P(X0 = i | X1 = j) =
P(X0 = i,X1 = j)

P(X1 = j)
=
π(j)P (j, i)

π(j)

= P(X1 = i | X0 = j).

6.3 The Metropolis-Hastings algorithm on discrete X
Assume X is discrete and p is a p.m.f. on X, and for each x ∈ X we have a proposal
p.m.f. q(x, · ) on X which we can draw samples from.

Algorithm 6.13 (Metropolis-Hastings). Choose some initial value X0 ≡ x0 with
p(x0) > 0 and iterate for k = 1, 2, . . .

(a) Generate Yk ∼ q(Xk−1, · ).
(b) Generate Uk ∼ U(0, 1), and if Uk ≤ α(Xk−1, Yk) accept and set Xk = Yk,

otherwise reject and set Xk = Xk−1, where the acceptance probability α is
defined as follows:

α(x, y) :=

min

{
1,
p(y)

p(x)

q(y, x)

q(x, y)

}
, p(x)q(x, y) > 0,

0, otherwise.

Finally, for some function f : X→ R, report

I
(n)
p,q,MH(f) :=

1

n

n∑
k=1

f(Xk)

as the Metropolis-Hastings approximation of Ep[f(X)].

Remark 6.14. In Algorithm 6.13,
(i) The distribution p is called the target distribution.
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(ii) Unnormalised distributions pu(x) = Zpp(x) and qu(x, y) = Zqq(x, y) can
be used, because

pu(y)

pu(x)

qu(y, x)

qu(x, y)
=
Zpp(y)

Zpp(x)

Zqq(y, x)

Zqq(x, y)
=
p(y)

p(x)

q(y, x)

q(x, y)
.

(iii) The accept-reject step (b) is implemented in practice by drawing Uk ∼
U(0, 1) and setting

Xk :=

Yk, if Uk <
pu(Yk)

pu(Xk−1)

qu(Yk, Xk−1)

qu(Xk−1, Yk)

Xk−1, otherwise.

In many cases, it is easier (and numerically more stable) to compute

ru(x, y) := log pu(y) + log qu(y, x)− log pu(x)− log qu(x, y),

and then accept if Uk < exp
(
ru(Xk−1, Yk)

)
and reject otherwise.

(iv) There is no need to define α(x, y) for p(x)q(x, y) = 0 in practice, because
p(Xk−1)q(Xk−1, Yk) = 0 never occurs (almost surely).

Proposition 6.15. The Metropolis-Hastings algorithm:
(i) Defines a Markov chain on the support of p,

S := {x ∈ X : p(x) > 0}.

(ii) Has transition probability K given as

K(x, y) = q(x, y)α(x, y) + ρ(x)1 (y = x) , x, y ∈ S,

where the probability of rejection ρ(x) can be given as

ρ(x) = 1−
∑
y∈X

q(x, y)α(x, y).

Proof. The transition probability is straightforward to write. Let us then check
that Xn ∈ S. For any x ∈ S and y ∈ X \ S

P(Xn+1 = y | Xn = x) = q(x, y)α(x, y) = 0,

because α(x, y) = 0. This means P(Xn+1 ∈ S) = 1 if Xn ∈ S, and by definition,
X0 = x0 ∈ S.

Proposition 6.16. The Metropolis-Hastings transition probability K is reversible
with respect to the target distribution p.

Proof. Exercise.

Now, Propositions 6.15 and 6.10 applied with Theorem 6.5 imply the strong
consistency.
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Corollary 6.17. If the Metropolis-Hastings transition probability K targetting p
is irreducible on S = supp(p), then for any function f : X → R with Ep[f(X)]
finite

I
(n)
p,q,MH(f) =

1

n

n∑
k=1

f(Xk)
n→∞−−−→ Ep[f(X)] (almost surely).

Remark 6.18. Irreducibility is ensured by proper choice of proposal distributions
q(x, y). The proposal distributions need to be defined so that every point y ∈ S is
reachable from any x ∈ S in n = n(x, y) steps.

Example 6.19. Let p(x) = x/Zp for x ∈ X := {1, . . . ,m} with Zp =
∑m

x=1 x. Let
us design a Metropolis-Hastings algorithm targetting p.

Step 1: Choose a proposal distribution q(x, y). It needs to be easy to simu-
late and to determine an irreducible chain. A simple distribution that ’will do’ is
drawing Yk ∼ U(X) independent of Xk−1, so

q(x, y) = q(y) = 1/m, y ∈ X

This proposal scheme is irreducible, because for all x, y ∈ X,

P(X1 = y | X0 = x) ≥ q(x, y) min

{
1,
p(y)

p(x)

q(y, x)

q(x, y)

}
=

1

m
min

{
1,
y

x

}
> 0.

That is, we can get from any x ∈ S to any y ∈ S in one step (we can take
n(x, y) ≡ 1 in Definition 6.4).

Step 2: write down the algorithm. Start from X0 = 1 (say), and for k =
1, . . . , n do

(a) Simulate Yk ∼ U{1, 2, ...,m}.
(b) Simulate Uk ∼ U(0, 1) and if

Uk ≤
Yk
Xk−1

set Xk = Yk, otherwise set Xk = Xk−1.

function imh_example(m=30, n=10_000)

X = zeros(n); X[1] = 1

for k = 2:n

x = X[k-1]

y = ceil(m*rand()) # y ~ U{1,2,...,m}

if (rand() < y/x)

X[k] = y

else

X[k] = x

end

end

X

end
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Figure 9: Left: x-axis is Markov chain step counter k = 1, 2, . . ., 300 and y-axis is
Markov chain state Xk. Right: histogram of X1, X2, . . ., Xn for n = 10, 000 along
with p.

Example 6.19 is an instance of the following class of Metropolis-Hastings
algorithms.

Definition 6.20. Metropolis-Hastings algorithm with q(x, y) = q(y), that is,
proposal is independent of current state, is referred to as independence sampler
or independent Metropolis-Hastings (IMH).

The IMH acceptance probability takes the form

α(x, y) = min

{
1,
p(y)q(x)

p(x)q(y)

}
= min

{
1,
w(y)

w(x)

}
,

where w(x) = p(x)/q(x) for q(x) > 0. In order the IMH to be irreducible, we need
q(x) = 0 implies p(x) = 0.

Remark 6.21. (Self-normalised) importance sampling can always be used instead
of the IMH.

6.4 The Metropolis-Hastings algorithm on X = Rd

The Metropolis-Hastings (Algorithm 6.13) generalises directly to continuous set-
ting, that is, X = Rd:

(i) p is a probability density on Rd.
(ii) q(x, · ) is a probability density on Rd for each x ∈ Rd.

Everything else in Algorithm 6.13 remains unchanged.

Fact 6.22. The MH algorithm defines a Markov chain on S := {x ∈ Rd : p(x) >
0}. The transition probability K can be written as

P(Xn ∈ A | Xn−1 = x) =: K(x,A) =

∫
A

k(x, y)dy + ρ(x)1 (x ∈ A) , (14)

where k(x, y) := q(x, y)α(x, y) is a sub-probability density for each x ∈ X and
ρ(x) = 1−

∫
k(x, y)dy is the probability of rejection.
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Precise definition of Markov chains on S ⊂ Rd will be out of the scope of
the course, but we shall see how the necessary ingredients are defined in this case.
The article [20] by Nummelin contains a minimal self-contained proofs about the
strong law of large numbers and more.

Definition 6.23. The Rd-valued Markov chain is (Xk)k≥1 is p-reversible, if X0 ∼
p then (X0, X1)

d
= (X1, X0). That is, P(X0 ∈ A,X1 ∈ B) = P(X0 ∈ B,X1 ∈ A).

Proposition 6.24. Markov transition probability defined as in (14) is reversible
with respect to a p.d.f. p on X if

p(x)k(x, y) = p(y)k(y, x) for all x, y ∈ X. (15)

The condition (15), sometimes also called as detailed balance, is essentially
equivalent9 with reversibility with transition probabilities of the form (14). This is
identical to the definition of reversibility in the discrete case for x 6= y, which turns
out to be sufficient. The proof of reversibility of Metropolis-Hastings is identical
to the discrete case.

The irreducibility condition in the continuous case is likewise slightly dif-
ferent, as there is zero probability of reaching any single state from other states.
Rather, any set of positive p-probability have to be reachable from everywhere.

Definition 6.25 (p-irreducibility). Suppose that p is a p.d.f. on S. The Markov
chain X0, X1, . . . if p-irreducible if for any x ∈ S and any set A ⊂ S such that∫
A
p(y)dy > 0, there exists n = n(x,A) <∞ such that

P(Xn ∈ A | X0 = x) > 0.

The proposal densities q(x, y) are chosen to satisfy this condition.
We state the following general consistency theorem without proof10

Theorem 6.26. If the Metropolis-Hastings algorithm is p-irreducible, then for
any function f with Ep|f(X)| <∞, the MH-estimate is (strongly) consistent

I
(n)
p,q,MH(f) =

1

n

n∑
k=1

f(Xk)
n→∞−−−→ Ep[f(X)] (almost surely).

Note that Theorem 6.26 holds both when X is discrete or when X = Rd.

Example 6.27. Suppose want to simulate the standard normal distribution X ∼
N(0, 1). The target density is

p(x) ∝ pu(x) = exp(−x2/2).

Step 1: Choose the proposal distribution. We need something simple that
can ‘take us everywhere’ (for irreducibility). Fix a constant a > 0 and choose

9. To be precise, the continuous part k(x, y) in the representation of (14) is unique only up to
a set of measure zero. So the statement would be ‘there exists a k such that. . . ’.
10. The proof follows, for example, from Corollary 2 of Tierney [29] along with Theorem 17.0.1
of Meyn and Tweedie [17]
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Figure 10: Simulation of Example 6.27: MCMC samples (left) and histogram ap-
proximation of the theoretical density (right).

a new point uniformly at random in a window of length 2a centred at x. The
proposal density is

q(x, y) =
1

2a
1 (x− a < y < x+ a) .

Notice that q(x, y) = q(y, x); this simplifies the acceptance probability

α(x, y) = min

{
1,
p(y)

p(x)

}
.

Step 2: Write the MCMC algorithm. Start from X0 = 0 (say), and iterate for
k = 1, . . . , n:

(a) Simulate Zk ∼ U(−a, a) and set Yk = Xk−1 + Zk.
(b) Simulate Uk ∼ U(0, 1) and set

Xk =

{
Yk, if Uk ≤ exp

(
r(Xk−1, Yk)

)
,

Xk−1, otherwise.

where r(x, y) = log pu(y)− log pu(x) = −y2/2 + x2/2.

function rwm_example(a=3, n=10_000)

X = zeros(n); x = 0; L_px = -.5*x^2

for k = 1:n

y = x + (2rand()-1)*a

L_py = -.5*y^2 # NB L_px calculated only once!

if (rand() < exp(L_py-L_px))

x = y; L_px = L_py

end

X[k] = x

end

X

end

Example 6.27 belongs to the following class of Metropolis-Hastings algo-
rithms.
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Definition 6.28. If q(x, y) = q(y, x) for all x, y ∈ X, then α(x, y) =
min{1, p(y)/p(x)}. Such an algorithm is often called a Metropolis algorithm. More
specifically, in a symmetric random walk Metropolis algorithm

Yn = Xn−1 + Zn, Zn ∼ q̃,

where the increment density q̃ is symmetric: q̃(z) = q̃(−z) for all z ∈ Rd.

The symmetricity of q̃ implies q(x, y) = q̃(y− x) = q̃(x− y) = q(y, x). It is
common to take q̃ to be density of N(0,Σ), which implies that Yn | (Xn−1 = x) ∼
N(x,Σ).

Example 6.29 (Bivariate distribution with Gaussian random walk Metropolis).

log pu(x) = −1

2
y(x)T

(
1 0.9

0.9 1

)−1

y(x), where y(x) =

(
a−1x1

ax2 + ab(x2
1 + a2)

)
,

and with a = b = 1.
For a proposal distribution q we want something simple to sample. Let’s

try bivariate standard normal, that is,

Yk = Xk−1 + Zk, Zk ∼ N(0, I2).

Note that this is symmetric random walk Metropolis algorithm. We choose to
start from x0 = (0, 0)T .

using Distributions

function log_p(x; a=1, b=1) # Log-pdf of a 'banana-shaped' distribution

y = [x[1]/a, x[2]*a + a*b*(x[1]^2 + a^2)]

logpdf(MvNormal([1 0.9; 0.9 1]), y)

end

function metropolis(n=10_000, d=2, log_p=log_p)

X = zeros(d,n); x = zeros(d); px = log_p(x)

for k = 1:n

y = x + randn(2); py = log_p(y) # Proposal & its density value

if rand() < exp(py-px)

x = y; px = py # Accept

end

X[:,k] = x # Save output

end

X

end

6.5 On tuning of random-walk Metropolis (*)

Suppose that q̂ is some symmetric distribution, that is, q̂(z) = q̂(−z), and let
L ∈ Rd×d be an invertible matrix. If the proposals Yk are formed as follows

Yk = Xk−1 + LẐk, Ẑk ∼ q̂.

The question is how the proposal ‘shape/size’ L should be chosen so that the
algorithm would be ‘efficient’.
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Remark 6.30. There are some theoretical optimality results determining which L
is ‘the best’ when q̂ is standard normal [e.g. 27].

(a) First rule of thumb: Set LLT ≈ θCov(p) where θ ∈ (0,∞) is a scaling
parameter.

(b) Second rule of thumb: Set θ such that around 25% of the samples should
be accepted on average.11

These heuristics are often useful when p is (close to) unimodal.
Because Cov(p) is usually not available, Cov(p) is often estimated by a

‘trial’ MCMC targetting p, and θ is found also by trial and error.

Remark 6.31. There are various adaptive MCMC algorithms which can be used
to automatise this process, and learn L ‘progressively’ [e.g. 11, 2]. Such methods
have been observed to work well in practice, but the theoretical results ensuring
the validity of the methods require subtle technical conditions.

Example 6.32. Implementation of an adaptive MCMC which finds ‘good’ L auto-
matically [31].

using LinearAlgebra

function ram_adapt!(C, z, k, acc; gam=0.66, acc_opt=0.234)

nz = norm(z); u = nz>0 ? z/nz : 0*z; step = (k+1)^(-gam); fact = acc-acc_opt

dx = sqrt(step*abs(fact))*(C.L * (z/nz))

if fact >= 0 lowrankupdate!(C, dx) else lowrankdowndate!(C, dx) end

end

function adapt_mcmc(log_p, x0, n)

d = length(x0); x = x0; p_x = log_p(x); C = cholesky(diagm(ones(d)))

X = zeros(d, n); acc = 0; z = zeros(d)

for k = 1:n

z = randn(d); y = x + C.L * z # Proposal

p_y = log_p(y); alpha = min(1, exp(p_y-p_x)) # Acc.prob.

if (rand() <= alpha)

x = y; p_x = p_y; acc += 1

end

X[:,k] = x

ram_adapt!(C, z, k, alpha) # Adapt the proposal covariance

end

(X=X, L=C.L, acc_rate=acc/n)

end

6.6 Componentwise updates

In higher dimensions, it is often difficult to design efficient proposal distributions
q(x, y). Instead, it is easier to design rules to update a single coordinate or a block
of coordinates in each iteration.

In order to consider such updates, consider X to be d-dimensional, X = Xd
1;

for instance, X = Zd or X = Rd. Let us introduce the following shorthand notation

x(−i) := (x(1), . . . , x(i−1), x(i+1), . . . , x(d))

for the vector x ∈ X with i:th coordinate omitted.

11. The theoretical value, 0.234, is optimal in high dimensions under very strong assumptions.
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Suppose p is a p.m.f. (p.d.f.) on X, and denote its i:th conditional with
respect to other variables as

pi|−i(x
(i) | x(−i)) =

p(x)

p−i(x(−i))
,

whenever the marginal p−i(x
(−i)) > 0, where

p−i(x
(−i)) :=

∑
z∈Z

p(x(1), . . . , x(i−1), z, x(i+1), . . . , x(d))(
p−i(x

(−i)) :=

∫
p(x(1), . . . , x(i−1), z, x(i+1), . . . , x(d))dz

)
.

Algorithm 6.33 ((Random scan) Metropolis-within-Gibbs). Suppose that
qi(x

(i), · | x(−i)) determines a p.m.f. (p.d.f.) on X1 for each x ∈ X and for all
i = 1, . . . , d. Choose some X0 ≡ x0 with p(x0) > 0 and iterate for k = 1, . . . , n

(a) Draw random coordinate index Ik ∼ U{1, . . . , d}.
(b) Set X

(−Ik)
k = X

(−Ik)
k−1 .

(c) Simulate Y
(Ik)
k ∼ qIk(X

(Ik)
k−1, · | X

(−Ik)
k−1 )

(d) With probability αIk(X
(Ik)
k−1, Y

(Ik)
k | X(−Ik)

k−1 ) accept and set X
(Ik)
k = Y

(Ik)
k ,

otherwise set X
(Ik)
k = X

(Ik)
k−1, where

αi(x, y | z(−i)) := min

{
1,
pi|−i(y | z(−i))

pi|−i(x | z(−i))

qi(y, x | z(−i))

qi(x, y | z(−i))

}
.

NB: In practice, we calculate the ratio of conditionals as

pi|i−1(y | z(−i))

pi|i−1(x | z(−i))
=
pu(z

(1), . . . , z(i−1), y, z(i+1), . . . , z(d))

pu(z(1), . . . , z(i−1), x, z(i+1), . . . , z(d))
,

and in case p(x) is defined as a product of terms, of which only few depend on
the i:th coordinate, the ratio simplifies. . .

Proposition 6.34. Algorithm 6.33 is reversible with respect to p.

Proof. (Discrete case) We may write the Markov transition in Algorithm 6.33 as
follows

K(x, y) =
d∑
i=1

P(Xk = y | Xk−1 = x, Ik = i)P(Ik = i | Xk−1 = x)

=
1

d

d∑
i=1

Ki(x, y),

where Ki(x, y) = P(Xk = y | Xk−1 = x, Ik = i) are Markov transition probabili-
ties, which correspond to the steps (b), (c) and (d) of Algorithm 6.33.
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In fact, given Ik = i and X
(−i)
k−1 = z(−i), (c) and (d) correspond a Metropolis-

Hastings algorithm targetting pi|−i( · | z(−i)) with proposals qi(x, y | z(−i)). If we

denote its transition probability K̂i(x, y | z(−i)), we have

Ki(x, y) = K̂i(x
(i), y(i) | x(−i))1

(
y(−i) = x(−i))

and then

p(x)Ki(x, y) = p−i(x
(−i))pi|−i(x

(i) | x(−i))K̂i(x
(i), y(i) | x(−i))1

(
y(−i) = x(−i))

= p−i(x
(−i))pi|−i(y

(i) | x(−i))K̂i(y
(i), x(i) | x(−i))1

(
y(−i) = x(−i))

= p−i(y
(−i))pi|−i(y

(i) | y(−i))K̂i(y
(i), x(i) | y(−i))1

(
x(−i) = y(−i))

= p(y)Ki(y, x),

where we first use reversibility of K̂i( · , · | x(−i)) with respect to pi|−i( · | x(−i))
and then the fact that the expression is non-zero with x(−i) = y(−i).

The p-reversibility of K follows now easily:

p(x)K(x, y) =
1

d

d∑
i=1

p(x)Ki(x, y) =
1

d

d∑
i=1

p(y)Ki(y, x) = p(y)K(y, x).

Remark 6.35. In fact, the proof of Proposition 6.34 suggests that we may use
multiple possible MCMC transitions, which we use at random. The mixture tran-
sition probability is reversible as long as the component transition probabilities
are. And the mixing weights need not be uniform.

For instance, we could have K1 being an independence sampler transition
and K2 a random-walk Metropolis transition, and choose randomly which update
we follow.

Definition 6.36. Gibbs sampling is a specific instance of Metropolis-within-
Gibbs, where the proposal distributions are the conditional distributions,

qi(x, y | z(−i)) = pi|−i(y | z(−i)).

Note that in Gibbs sampling, the acceptance probability αi(x, y | z(−i)) ≡ 1.

Remark 6.37 (*). Algorithm 6.33 is valid also in the continuous case X = Rd. We
cannot use Proposition 6.24 directly to verify reversibiity, but we need to check

that if X0 ∼ p, then (X0, X1)
d
= (X1, X0). The proof follows similarly as in the

discrete case

P(X0 ∈ A,X1 ∈ B)

=

∫
A

[ ∫
B

p−i(x
(−i))pi|−i(x

(i) | x(−i))K̂i(x
(i), y(i) | x(−i))1

(
y(−i) = x(−i)) dx

]
dy

= P(X0 ∈ B,X1 ∈ A).

Example 6.38 (Ising model). Let X = {0, 1}`×m the set of all `×m binary matrices.
We can think them as ‘images’ x ∈ X where x(i,j) = 0 or 1 corresponds to (i, j):th
pixel being black or white, respectively.
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Figure 13: Left: Example 4-by-4 configuration with #x = 12; right: realisation of
the Ising model in m = 32, θ = 0.8.

For x ∈ X, denote #x for the number of disagreeing neighbours in x, which
we may calculate by

#x =
∑̀
i=1

m−1∑
j=1

1
(
x(i,j) 6= x(i,j+1)

)
+

m∑
j=1

`−1∑
i=1

1
(
x(i,j) 6= x(i+1,j)

)
.

The Ising model is defined as the following distribution on X:

p(x) ∝ exp(−θ#x),

where θ > 0 is a ‘smoothing’ parameter.

Example 6.39 (MCMC for the Ising model). Let X
(i,j)
0

i.i.d.∼ U{0, 1}, and do
(a) Draw random indices Ik ∼ U{1, . . . , `}, Jk ∼ U{1, . . . ,m}.
(b) Set Y

(Ik,Jk)
k = 1−X(Ik,Jk)

k−1 .

(c) Set X
(i,j)
k = X

(i,j)
k−1 for all (i, j) 6= (Ik, Jk).

(d) With probability αIk,Jk(X
(Ik,Jk)
k−1 , Y

(Ik,Jk)
k | X(−(Ik,Jk))

k−1 ) set X
(Ik,Jk)
k = Y

(Ik,Jk)
k ;

otherwise set X
(Ik,Jk)
k = X

(Ik,Jk)
k−1 , where

αi,j(x, y | z(−(i,j))) = min
{

1, exp
[
− θ
(
#(y, z(−(i,j)))−#(x, z(−(i,j)))

)]}
,

where (x, z(−(i,j))) stands for the image where the (i, j):th pixel equals x
and the rest are defined by z(−(i,j)).

Remark 6.40. Note that qi,j here corresponds to a deterministic ‘flip’ of the (i, j):th
pixel value. In fact, we shall see later that this choice of qi,j is the most efficient
in terms of the asymptotic variance.

Remark 6.41. Note that in practice one should not re-calculate #(y, z(−(i,j))) and
#(x, z(−(i,j))), but only their difference.
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Figure 14: Trajectories of f(Xk) = #Xk (top) and w(Xk) (bottom).

m = 32; n = 32; theta = 0.8; n = 100_000

function hashdiff(y, X, i, j, m, n)

hash_y = 0; hash_x = 0; x = X[i,j]

function check_ind!(i_, j_)

hash_y += (y != X[i_,j_]); hash_x += (x != X[i_,j_])

end

if i>1 check_ind!(i-1,j) end

if i<m check_ind!(i+1,j) end

if j>1 check_ind!(i,j-1) end

if j<n check_ind!(i,j+1) end

hash_y - hash_x

end

X = [rand(0:1) for i=1:m, j=1:m] # Independent random initialisation

for k = 1:n

i = rand(1:m); j = rand(1:m) # Pick random index

y = 1-X[i,j] # Propose swap 0<->1

if rand() < exp(-theta*hashdiff(y, X, i, j, m, m))

X[i,j] = y

end

end

What would be good indicators to monitor the convergence of the Ising
model simulation? We could look at:

• the function f(x) = #x,

• the function w(x) =
∑

i,j 1
(
x(i,j) = 1

)
, that is, the total number of white

pixels.

Example 6.42 (Bayesian image recovery). Let X be an unknown true image,

X ∼ Ising(θ),

with θ known. Denote p0(x) = P(X = x).
Suppose we do not observe X directly, but through a ’noisy channel’. At

pixel i, j = 1, 2, . . .,m we observe

O(i,j) = X(i,j) + ε(i,j), with ε(i,j)
i.i.d.∼ N(0, σ2)
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Figure 15: From the left: Simulation of the Ising model X with θ = 0.8; the noisy
observations O of X with σ2 = 1; the posterior mean approximation by MCMC;
the MAP approximation by MCMC (estiamtes with ten million samples).

and with σ known. The likelihood for x(i,j) is L(x(i,j); o(i,j)) = N(o(i,j);x(i,j), σ2) so

L(x; o) ∝
m∏

i,j=1

exp

(
− (x(i,j) − o(i,j))2

2σ2

)
.

If we observe O = o we are interested in the posterior distribution of X
given O = o,

p(x) = P(X = x | O = o) ∝ L(x; o)p0(x),

so we have

log pu(x) = −|x− o|
2

2σ2
− θ#x where |x− o|2 =

m∑
i,j=1

(x(i,j) − o(i,j))2.

We will simulate X1, . . . , Xn ∼ p with MCMC and use the samples to approximate
the posterior mean and pixel-wise maximum a Posteriori (MAP) estimates i =
1, . . . ,m2

X̄(i) :=
1

n

n∑
k=1

X
(i)
k ≈ E[X(i) | O = o]

1
(
X̄(i) > 1/2

)
≈ arg max

x∈{0,1}
P(X(i) = x | O = o].

In order to implement the MCMC, we can recycle the implementation in Example
6.39 only modifying the acceptance probability α(y | x) to incorporate −|x −
o|2/(2σ2) factor.

Variants of Metropolis-within-Gibbs

Algorithm 6.33 introduced earlier is only variant of (Metropolis-within-)Gibbs
sampling, in terms how (Ik)k≥1 are chosen.
Random scan means we choose Ik at random, as in Algorithm 6.33. It is custom-

ary to take Ik ∼ U{1, . . . , d}, but Ik can be chosen also from a non-uniform
distribution over {1, . . . , d}.
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Deterministic scan version of the algorithm means Ik are not random, but de-
terministic. The common choice is to sweep Ik = (k − 1 mod d) + 1.
Unlike the random scan version, the deterministic scan algorithm is time-
inhomogeneous, but the ‘skeleton’ chain (Xdk)k≥0, is homogeneous, with
composition of transition probabilities

P(Xdk = y | Xd(k−1) = x) = (K1K2 · · ·Kd)(x, y)

This transition probability is not reversible wrt. p in general, but is still
p-invariant.

Random sweep is a hybrid of the two above: Simulate a random permutation
of {1, . . . , d}, and sweep through once in the corresponding order; simulate
a new random permutation etc.

Remark 6.43. Metropolis-within-Gibbs moves can update a ‘block’ of coordinates
instead of a single coordinate. The blocks need not be fixed size, and there can be
moves with overlapping blocks (sharing same variables).

Convergence of Metropolis-within-Gibbs

Theorem 6.44. Suppose that the Metropolis-within-Gibbs chain is p-irreducible
and that starting from any x ∈ supp(p), there is a positive probability of accept-
ing at least one move in each coordinate direction. Then, the strong law of large
numbers holds (see Theorem 6.26).

Proof. (*) Theorem 12 of [26] shows that the chain is Harris recurrent12, and the
SLLN is implied by [17, Theorem 17.0.1 (i)].

Remark 6.45 (*). Theorem 6.44 adds one natural (and practically non-restrictive)
condition over the irreducibility condition of Theorem 6.26, which only avoids some
pathological scenarios (like if x ∈ supp(p) but the conditionals are well-defined. . . ).

Because all moves in the Gibbs sampler are accepted, we have:

Corollary 6.46. Any p-irreducible Gibbs sampler satisfies the SLLN.

We conclude with a simple sufficient condition which ensures p-
irreducibility of Gibbs sampling.

Definition 6.47 (Positivity of p). The distribution p satisfies the positivity con-
dition if the marginal distributions pi(x) satisfy for all x ∈ R

supp(p) = supp(p1)× · · · × supp(pd).

In other words, pi(x
(i)) > 0 for all i = 1, . . . , d if and only if p(x(1), . . . , x(d)) > 0.

Proposition 6.48. If p satisfies the positivity condition, then the conditional den-
sities pi|−i are well-defined everywhere on the support of p and the Gibbs sampling
Markov chain is p-irreducible.

12. *From any initial point x ∈ supp(p), the chain will visit each set A ⊂ X such that∫
A
p(x)dx > 0 with probability one.
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About BUGS (*)

The BUGS (Bayesian inference Using Gibbs Sampling) software [28] is an imple-
mentation of Gibbs sampling (and sometimes also other Metropolis-within-Gibbs
updates). The user supplies only the model (using a specialised ‘programming
language’) and the data, and the BUGS software outputs MCMC simulation of a
given length.

The model is given in BUGS by specifying the joint distribution p̂

p̂(x(1:d)) = p1(x(1))
d∏
i=2

pi(x
(i) | x(1:i−1)),

where ‘x(1:i)’ is a shorthand for ‘x(1), . . . , x(i). This specifies p̂ fully, and on the
other hand, any d-dimensional distribution p̂ can be factored like this.

Usually, the model is sparse, that is, pi(x
(i) | x(1:i−1)) do not depend on all

x(1:i−1), but on a subset of ‘parent’ variables. This reflects conditional indepen-
dencies, which define a directed acyclic graph. For instance, a Markov chain with
initial distribution λ and transition probability P could be given as above, where
p1 = λ and pi(x

(i) | x(1:i−1)) = P (x(i−1), x(i)) for i ≥ 2.
The distribution of interest p is a conditional distribution of p̂, given some

‘data’. For instance, if the first two variables X(1) = x
(1)
∗ and X(2) = x

(2)
∗ were

observed, and the others not, then the MCMC targets the posterior distribution
of X(3:d) | X(1:2) = x

(1:2)
∗ which satisfies

p(x(3:d)) ∝ pu(x
(3:d)) = p̂(x(1)

∗ , x
(2)
∗ , x

(3:d)).

This can be simulated with (Metropolis-within-)Gibbs that updates only the un-
observed x(3:d), one at a time.

6.7 Langevin-type proposals (*)

One way to construct proposal distributions q(x, y) in the Metropolis-Hastings
algorithm is to use random-walk like proposals, but also use ∇ log p(x) to ‘inform’
the direction of proposals, based on the shape of p around x. The simplest such
proposal is of the ‘Langevin’ type, where

Yk = Xk−1 +
τ

2
∇ log p(Xk−1) +

√
τZ, Z ∼ N(0,Σ), (16)

for some parameters τ ∈ (0,∞) and covariance Σ ∈ Rd×d.13 This algorithm is
known as the Metropolis adjusted Langevin algorithm (MALA).

MALA is just Metropolis-Hastings algorithm with proposal q(x, y) =
N(y;x+ τ

2
∇ log p(x), τΣ) corresponding to (16). Note that in this case, q(x, y) 6=

q(y, x) and so the ratio q(y, x)/q(x, y) does not vanish from the acceptance prob-
ability!

13. The proposal (16) stems from an Euler discretisation of the (overdamped) Langevin diffusion
of the form dXt = 1

2∇ log p(Xt)dt+dBt, which is a continuous-time Markov process that admits
p as its stationary distribution. . .
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6.8 Hamiltonian Monte Carlo (*)

In recent years, a so-called Hamiltonian Monte Carlo (HMC) MCMC algo-
rithm has gained attention [cf. 18]. Its proposal is based on a physics-motivated
continuous-time process (Hamiltonian dynamics) involving an auxlliary momen-
tum random vector.

The HMC is based on the target distribution p̃(x,m) = p(x)q(m), where
the auxiliary ‘momentum’ variable m has distribution q, a density of N(0,Σ). The
related ‘Hamiltonian’ can be written as

H(x,m) := − log p̃(x,m) = U(x) +K(m),

where U(x) := − log p(x) and K(m) := − log q(m) = 1
2
mTΣ−1m (up to a con-

stant). The proposal is inspired by the following system of differential equations:

dmt/dt = −∇U(xt) dxt/dt = Σ−1mt. (17)

These differential equations leave p̃ invariant (that is, if (m0, x0) ∼ p̃, then also
(mt, xt) ∼ p̃ for any t > 0!), but of course we cannot solve them exactly. HMC
uses a specific kind of numerical approximation of (17), (with L ≥ 1 steps and
with step size τ > 0) in order to construct the proposals, and an acceptance ratio
which ensures reversibility.

Algorithm 6.49 (Hamiltonian Monte Carlo). Let X0 ≡ x0 s.t.p(x0) > 0. For
k = 1, . . . , n:

(i) Draw Mk−1 ∼ q.

(ii) Calculate (X̂k, M̂k)← LF(Xk−1,Mk−1)

(iii) Generate Uk ∼ U(0, 1), and if Uk ≤ α(Xk−1,Mk−1; X̂k, M̂k) accept and
set Xk = X̂k, otherwise reject and set Xk = Xk−1, where the acceptance
probability α is defined as follows:

α(x,m; x̂, m̂) := min

{
1,
p̃(x̂, m̂)

p̃(x,m)

}
= min

{
1, exp

(
H(x,m)−H(x̂, m̂)

)}
.

where
LF(x0, m0):

For t = 1, . . . , L:

(i) m̂t ← mt−1 + τ
2
∇ log p(xt−1)

(ii) xt ← xt−1 + τΣ−1m̂t

(iii) mt ← m̂t + τ
2
∇ log p(xt)

Return (xL,−mL)

(NB: The momentum flip in the end of LF( · ) is unnecessary in practice,
but included here for mathematical convenience. . . )

The HMC algorithm looks similar to Metropolis-Hastings (and indeed may
be seen as an instance of a generalisation of Metropolis-Hastings).

The key observations required to check p-reversibility of the HMC are:

1. If Xk−1 ∼ p, then (Xk−1,Mk−1) ∼ p̃.
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Figure 16: Three trajectories (x0, . . . , xL) of the leapfrog integrator starting from
x0 = [1, 1]T with three independent realisations of m0 from N(0, I2). Here, p =
N(0, I2) with density values shown as background color, L = 100 and τ = 0.05.

2. The leapfrog integrator LF( · ) is reversible, in the sense that if (x̂, m̂) =
LF(x,m), then (x,m) = LF(x̃, m̃). (Or, equivalently, it is an involution:
LF(LF(x,m)) = (x,m).)

3. The leapfrog integrator LF ( · ) is isometric, or volume-preserving.

See [8] for details, as well as result showing the p-irreducibility of the HMC (which
turns out to be a non-trivial exercise!).

There are a number of user-friendly implementations of (variants of) HMC.
Stan [5] is the most popular, and has an interface similar to BUGS, allowing to
build model from blocks. Stan can provide good performance in some scenarios
where BUGS struggles, but it does not always outperform BUGS. If you intend
to use Stan, there are certain inherent restrictions that come with it, which are
good to know:

• Discrete variables cannot be unknowns.

• Unknowns need to be (easily transformable) to R (or Rd).14

• Tail behaviour and geometry of p may have a dramatic influence in perfor-
mance.

• The variables need to be (roughly) unit-scaled.

Even though the HMC (and its implementation in Stan) have showed great
promise in many practical situations, they may not always provide a reliable out-
come, and this may not be easy to predict.

This is in contrast with Gibbs sampling and random-walk proposals, which
are rather well understood by now (including their weaknesses!).

14. Stan transforms x > 0 and x ∈ (a, b) automatically with exponential and logistic transfor-
mations.
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Figure 17: The first 1000 samples simulated from Example 6.27 with a = 1 and
with with x0 = 30 (left) and x0 = −5 (right). The red vertical line indicates the
‘burn-in time’.

7 MCMC convergence and mixing

With MCMC, there are two issues considering the reliability of the calculated
averages: I

(n)
p,q,MH(f) = n−1

∑n
k=1 f(Xk):

• The MCMC chain does not start from the invariant/stationary distribution,
so E[f(Xk)] 6= Ep[f(X)], and the difference may well be substantial for
small k. This can induce significant bias to the estimator.

• It is not direct to assess the reliability of MCMC averages, because of the
dependence of the random variables (Xk). The dependence usually adds
variance to the estimator, when compared against simple Monte Carlo
averages.

7.1 Burn-in bias

MCMC Markov chain Xn converges in distribution to p as n → ∞ (under an
aperiodicity condition, cf. Theorem 6.7). The common practice with MCMC is
to discard b first values of the Markov chain X0, . . . , Xb, to minimise bias. It is
assumed that Xb+1 will have approximately the distribution p, and then use the
estimator

1

n− b

n∑
k=b+1

f(Xk).

The initial period X0, . . . , Xb is called burn-in of the MCMC.

Remark 7.1. Several statistics may be calculated in order to ‘detect’ a bias in
MCMC. However, they usually rely on certain rather strong assumptions, such as
the asymptotic normality, or at least unimodality of the target.

7.2 Asymptotic variance of MCMC

With classical Monte Carlo and importance sampling, the confidence intervals
can be constructed with help of the CLT, and the associated variance is relatively
straightforward to calculate.

54



Also Markov chains satisfy CLT in many cases. For example, we may record
the following statement without proof.

Theorem 7.2. If the Metropolis-Hastings Markov chain (Xk) on finite X is irre-
ducible and aperiodic, then

√
n
[
I

(n)
p,q,MH(f)− Ep[f(X)]

] n→∞−−−→ N(0, σ2
MH), (18)

with σ2
MH = limn→∞ nVar

(
I

(n)
p,MH(f)

)
<∞.

Remark 7.3. The CLT (18) holds quite generally, under certain technical regu-
larity conditions. Because there are no general and easily verifiable conditions
available, we shall not detail a more general form of the CLT, but assume it to
hold.

We shall look next at an expression of the CLT variance (when finite),
which gives a method to estimate the CLT variance.

Theorem 7.4. Let X0, X1, . . . be a stationary Markov chain, that is, X0 ∼ p,
where p is the invariant distribution. Suppose f : S→ R such that Ep[f 2(X)] <∞
and denote Yk = f(Xk).

Assuming
∑∞

k=1 ρk <∞ where ρk := Corr
(
Y0, Yk

)
, we have

lim
n→∞

nVar

(
1

n

n∑
k=1

f(Xk)

)
= Varp(f(X))

(
1 + 2

∞∑
k=1

ρk

)
.

Remark 7.5. With MCMC, X0 is of course never exactly a sample of p, but as
discussed earlier, Xb can be regarded to have approximately the distribution p
whenever b is large. Therefore, if we apply Theorem 7.4 to X̃n := Xb+n for n ≥
0, the result is still relevant. (Rigorous extension to arbitrary initial measure is
possible, but we shall not consider it here.)

Remark 7.6. Theorem 7.4 holds more generally, for any (weak-sense) stationary
process (Yk)k≥1.

Proof of Theorem 7.4. Let us define Yk = f(Xk), and Ȳk = Yk − E[Yk], then

Var

(
1

n

n∑
k=1

f(Xk)

)
=

1

n2
E
[( n∑

k=1

Ȳk

)2]
=

1

n2

n∑
i=1

n∑
j=1

E[ȲiȲj]

=
Varp

(
f(X)

)
n

+
2

n2

n∑
i=1

n∑
j=i+1

Cov(Yi, Yj)

=
Varp

(
f(X)

)
n

(
1 +

2

n

n−1∑
h=1

(n− h)ρh

)
.

Multiply with n and take limits, and apply Lemma 7.7 to show that
n−1

∑n−1
h=1 hρh

n→∞−−−→ 0.

55



Lemma 7.7 (Kronecker). Suppose (xk)k≥1 is a sequence of real numbers with∑∞
k=1 xk = s ∈ R. Then, n−1

∑n
k=1 kxk

n→∞−−−→ 0.

Definition 7.8. The integrated autocorrelation time of (Yi) and the effective
sample size of (Y1, . . . , Yn) are defined, respectively, as

IACT := 1 + 2
∞∑
i=1

ρi and neff :=
n

IACT
.

The definitions of ‘effective sample size’ makes sense when we use Theorem
7.4 to deduce that for n large enough

Var(I
(n)
p,q,MH) ≈ IACT

n
Varp

(
f(X)

)
=

1

neff

Varp
(
f(X)

)
.

Suppose then (Z1, . . . , Zbneffc) are independent from p, the classical Monte Carlo
satisfies

Var
( 1

bneffc

bneffc∑
k=1

f(Zk)
)

=
1

bneffc
Varp

(
f(X)

)
.

So, the mean estimator based on the sample X1, . . . , Xn from MCMC is (asymp-

totically) as efficient as the one based on Z1, . . . , Zbneffc
i.i.d.∼ p.

Remark 7.9 (*). Simple (and traditional) way to estimate IACT (and equivalently
the asymptotic variance or neff) is to sum sample autocorrelations up to a trunca-
tion point, which is chosen based on an inspection of the sample autocorrelations.
However, there are also reasonably straightforward and provably consistent esti-
mators of the asymptotic variance [9].

Remark 7.10. Note that a MCMC sample (Xk)k=1,...,n does not have a single
effective sample size neff, but neff depends on the function. So if you are interested
in different functions f1, . . . , fm : X→ R, you need to calculate n

(1)
eff , . . . , n

(m)
eff ! This

is particularly important if X = Rd, and fi(x) = xi, in which case the effective
sample size of different coordinates may differ significantly.

7.3 Practical summary

When using MCMC, always do the following checks:
(i) Plot MCMC traces of the variables and key functions of the variables. They

should look stationary after burn-in.
(ii) Make multiple MCMC runs from different initial state x0 and check that

the marginal distributions (or the estimators) look similar.
This test reveals if your chain is ‘almost reducible’.

(iii) Plot sample autocorrelations of the variables and functions (e.g. autocor
of StatsBase).

(iv) Calculate neff and check that it is reasonably large. Use it to construct a
CI: [

Ip,q,MH(f)± β σ̂n√
neff

]
,
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Figure 18: Sample paths and correlations of MH in Example 6.27 with a = 0.5
(top), a = 5 (middle) and a = 50 (bottom); here f(x) := x.

where σ̂2
n := (n − 1)−1

∑n
k=1

[
f(Xk) − Ip,q,MH(f)

]2 n→∞−−−→ Varp
(
f(X)

)
and

β is the desired Normal quantile; cf. Proposition 1.13.

Remember to discard the burn-in samples before proceeding to (iii) and (iv).
Remember also that both ACF and neff depend on the function!

7.4 Optimising MCMC (*)

Usually asymptotic variance cannot be calculated in a closed form, but comparison
of asymptotic variances may be possible.

Theorem 7.11 (Peskun [23], Tierney [30]). Suppose that P and Q are transition
probabilities both reversible wrt. common distribution π. Suppose that∑

x,y∈X

π(x)P (x, y)[f(x)− f(y)]2 ≥
∑
x,y∈X

π(x)Q(x, y)[f(x)− f(y)]2, (19)

for all f : S → R with Eπ[f 2(X)] < ∞. Then, P is always better than Q in the
following sense: for any function f : S→ R with Eπ[f 2(X)] <∞,

lim
n→∞

nVar

(
1

n

n∑
k=1

f(X
(P )
k )

)
≤ lim

n→∞
nVar

(
1

n

n∑
k=1

f(X
(Q)
k )

)
,

where (X
(P )
k )k≥0 and (X

(Q)
k )k≥0 are stationary Markov chains with transition prob-

abilities P and Q, respectively.
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Remark 7.12. It is easy to see that

P (x, y) ≥ Q(x, y) for all x 6= y, (20)

implies (19). The condition (20) is referred to as the off-diagonal order or the
Peskun order and (19) is known as the covariance order.

Remark 7.13. In the continuous case, if P and Q are in the form (14) with kP (x, y)
and kQ(x, y), respectively, then the covariance order (19) corresponds to∫∫

π(x)kP (x, y)[f(x)− f(y)]2dxdy ≥
∫∫

π(x)kQ(x, y)[f(x)− f(y)]2dxdy,

which holds if the analogous off-diagonal order holds:

kP (x, y) ≥ kQ(x, y) for all x 6= y.

The covariance order is equivalent with order EP (f) ≥ EQ(f) of Dirichet forms

EP (f) := 〈f, (I − P )f〉π, 〈f, g〉π :=

∫
π(x)f(x)g(x)dx,

where I is identity operator so (If)(x) = f(x) and (Pf)(x) =
∫
P (x, dy)f(y)dy.

Example 7.14. In the Ising model Example 6.39, we have a choice of the proposal
distribution qi(x, y | x(−i)). Note that here x, y ∈ {0, 1}. The best choice in terms
of asymptotic variance is to take qi(x, y | x(−i)) = 1 (y = 1− x), because any other
choice would be worse in terms of the off-diagonal order (20).

Example 7.15 (Barker’s algorithm). In the Metropolis-Hastings algorithm, we
could use an alternative acceptance probability

αB(x, y) :=
r(x, y)

r(x, y) + 1
, r(x, y) :=

p(y)q(y, x)

p(x)q(x, y)
.

Similarly as with Metropolis-Hastings, it is direct to check that

p(x)q(x, y)αB(x, y) = p(y)q(y, x)αB(y, x),

so the resulting algorithm is still reversible wrt. p.
Direct calculation shows that αB(x, y) ≤ α(x, y) = min{1, r(x, y)}, which

implies an off-diagonal order, so the Barker’s algorithm using αB acceptance rate
is never better than Metropolis-Hastings. (There are certain situations where αB
is easier to calculate, though.)

8 Sequential Monte Carlo

We shall focus next on algorithms which operate on a sequence of distributions
π1, π2, . . . , πT , which gradually evolve towards the distribution of interest p = πT .
The samples are often called particles in this context, and the key algorithm in
this context is known as the particle filter.

We will motivate the algorithms in a time-series context, which was their
original motivation, and where they have been applied extensively. We present the
methods with densities on an Euclidean space; discrete case follows similarly.
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X1 X2 · · · XT

Y1 Y2 YT

m1(·) m2(X1, · ) m3(X2, · ) mT (XT−1, · )

g1(X1, · ) g2(X2, · ) gT (XT , · )

Figure 19: General state-space model.

In this section, we denote for a ≤ b the vector xa:b = (xa, . . . , xb). We
also exceptionally denote ‘time’ indices in subscript (not Monte Carlo samples
as before), and superscript contain sample indices (not coordinates as before).

8.1 Motivation: General state-space models/hidden Markov models

Figure 19 illustrates a general state-space model. It consists of two parts:
• ‘Latent’ Markov chain (Xt)t≥1 evolving in S = Rd with initial density X1 ∼
m1, and with conditional densities mt(xt−1, xt) of Xt | (Xt = xt). (Note that
the transition densities may depend on time t.)

• Conditionally independent observed process (Yt)t≥1 following the observa-
tion densities Yt | Xt ∼ gt(Xt, · ).

More precisely, the model defines the joint density of the form p̂(x1:T , y1:T ) :=
m1(x1)g1(x1, y1)

∏T
t=2mt(xt−1, xt)gt(xt, yt).

We are interested in Bayesian inference of X1:T having observed Y1:T = y1:T ,
that is, we focus on the conditional density p of p̂:

p(x1:T ) ∝ pu(x1:T ) := m1(x1)g1(x1, y1)
T∏
t=2

mt(xt−1, xt)gt(xt, yt), (21)

where y1:T are the observed values, which are constant in our case, and omitted
from the notation.

Remark 8.1. What we call state-space models (SSM), some other authors call
hidden Markov models (HMM) [e.g. 4, 12]. Some authors reserve HMM to mean
the case where Xk are discrete, taking values on a finite set. Some others reserve
SSM to mean only linear(-Gaussian) models.

Example 8.2 (Noisy AR(1) process). Let σ2
1, σ

2
x, σ

2
y ∈ (0,∞) and ρ ∈ R be known

parameters. Then, let m1 = N(0, σ2
1) and for k ≥ 2, assume (Zk)k≥1, (Wk)k≥1

i.i.d.∼
N(0, 1), and define

Xk := ρXk−1 + σxZk

Yk := Xk + σyWk.

This corresponds to setting

mk(xk−1, xk) := N(xk; ρxk−1, σ
2
x)

gk(xk, yk) := N(yk;xk, σ
2
y).
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Figure 20: Sample path of the noisy AR(1) process in Example 8.2 with ρ = 1
and σ2

1 = σ2
x = 1 = σ2

y: The Markov chain X1:15 in blue and the noisy observations
Y1:15 in red.

In other words, (Xk)k≥1 is an AR(1) process.15 Given a realisation of the process
(X1, . . . , XT ), the observations are conditionally independent and perturbed by
Gaussian increments with variance σ2

y. Figure 20 shows an example realisation of
the process.

Remark 8.3. The generic methods such as importance sampling and MCMC
(Random-walk Metropolis, Metrpolis-within-Gibbs, Hamiltonian Monte Carlo. . . )
are, in theory, directly applicable in the SSM context. However, when T is large,
the space ST is high-dimensional, and there are substantial correlations in the
model, which often lead to poor performance. . .

Remark 8.4 (*). Exact SSM inference (i.e. when the conditional distribution is
available in a closed form) is possible only in some specific cases, most notably
[e.g. 4]:

• When S is finite, exeact inference is possible through the forward-backward
algorithm.

• If S = Rd and and the conditional distributions mt and gt are linear Gaus-
sian, that is, gt(xt, · ) is a Gaussian density with mean Ltxt and some co-
variance matrix Rt, and similarly for mt, then, the smoothing density (and
consequently all the marginals) are Gaussian. Then, the mean & covariance
parameters can be computed by simple matrix formulae (the Kalman filter
and smoother).

In most other cases, inference need to be based on an approximation, such as
SMC.

15. Stationary iff |ρ| < 1 and σ2
1 =

σ2
x

1−ρ2 .
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Figure 21: Box plot of estimates from Example 8.6 with up to one million samples,
and 100 repetitions. (a) T = 15 (true value: 1.685) (b) T = 30 (true value: 2.508).

8.2 First attempt: Sequential importance sampling

Let us see what happens if we apply self-normalised importance sampling in the
context of SSMs.

Generic self-normalised importance sampling is straightforward to apply
here, because assuming q(x1:T ) is a proposal density on ST , with support covering

that of p(x1:T ), we could just draw X
(k)
1:T

i.i.d.∼ q and approximate

Ep[f(X1:T )] ≈
∑n

k=1wu(X
(k)
1:T )f(X

(k)
1:T )∑n

j=1 wu(X
(j)
1:T )

, where wu(x1:T ) :=
pu(x1:T )

q(x1:T )
.

Remark 8.5. Note that also the proposal q may depend on the observations y1:T ,
in an arbitrary manner. Recall also that the notation differs here from the notation
in Section 4.3: we write the sample index in superscript.

Example 8.6 (Noisy AR(1) with prior as q). Consider Example 8.2 and let q be
the prior of X1:T , that is,

q(x1:T ) = m1(x1)
T∏
t=2

mt(xt−1, xt).

This means that we simulate X1:T to be the trajectories of T steps of a random
walk with independent Gaussian N(0, 1) increments.

Figures 21 and 22 show simulation results of Example 8.6.
The problem with Example 8.6 is that, even if the weights are bounded,

the discrepancy of p and q increases very rapidly as T increases. In intuitive terms,
most samples from q fall into low density area of p, and consequently the variance
of the weights is large.

Let us have another attempt with more carefully chosen q:
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Figure 22: Some samples corresponding Example 8.6. Note that the weight distri-
bution is very unequal. The true posterior density is shown on the right.
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Figure 23: Box plot of estimates from Example 8.7; compare with 21.

Example 8.7 (Noisy AR(1) with a ‘one-step optimal’ q). Consider Example 8.6,
but choose now

q(x1:T ) = q1(x1)
T∏
t=2

qt(xt | xt−1), qt(xt | xt−1) = N

(
xt;

xt−1 + yt
2

,
1

2

)
(with x0 ≡ 0).

In fact, this choice of qt corresponds to the conditional distribution of Xt given
Xt−1 = xt−1 and Yt = yt. The conditional distribution is, in a certain sense, the
best choice we can have (if we restrict on qt that can only depend on y1:t. . . ). It is
direct to check that the unnormalised weights wu(z1:T ) resulting from this choice
are also bounded (exercise).

Figures 23 and 24 show simulation results corresponding Example 8.7.
Using a better proposal distribution in Example 8.7 improved significantly.

It made reliable inference possible for up to T = 30 with around one million
samples. This is achieved by better approximation of p by q, which shows in
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Figure 24: Some samples corresponding Example 8.7; compare with Figure 22.
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Figure 25: Box plot of estimates from Example 8.7 with T = 50 (true: 2.058) and
T = 70 (true: 4.606).

Figure 24 by concentration of the samples around the measured values.
However, if we increase T a bit more, we see that even the very good

proposal distribution in 8.7 is insufficient for efficient inference; see Figure 25. In
fact, the variance typically increases exponentially in T (cf. [4, Example 7.3.1]).

The particle filter algorithm, which we discuss next, is a simple algorithmic
modification of the SIS, which resolves the ‘mismatch’ by further randomisation. . .

8.3 Generic form of sequential importance sampling

Suppose now that Mt(xt | x1:t−1) for t = 2, . . . , T determines a distribution on S
for xt for any x1:t−1 ∈ St−1, and that Gt(x1:t) ≥ 0 are some ‘potential’ functions,
for which:

M1(x1)G1(x1)
T∏
t=2

Mt(xt | x1:t−1)Gt(x1:t) ≡ pu(x1:T ). (22)
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Remark 8.8. Note that in the SSM context, (22) is equivalent with q(x1:T ) =
M1(x1)

∏T
t=2Mt(xt | x1:t−1) satisfying the SNIS support condition (10) and Gt

forming a factorisation of the unnormalised importance weight:

T∏
t=1

Gt(x1:t) = wu(x1:T ) =
m1(x1)g1(x1, y1)

∏T
t=2mt(xt−1, xt)gt(xt, yt)

M1(x1)
∏T

t=2 Mt(xt | x1:t−1)
, when q(x1:T ) > 0.

We may choose Gt(x1:t) = mt(xt−1,xt)gt(xt,yt)
Mt(xt|x1:t−1)

, which satisfies (22), but other choices
are possible.

Remark 8.9 (*). The model with ingredients of the form M1:T and G1:T is known
as the Feynman-Kac model [7].

Algorithm 8.10 (Sequential importance sampling). In each line of the algorithm,
i = 1, . . . , n:

(i) Sample X
(i)
1 ∼M1( · ) and set X

(i)
1 = X

(i)
1 .

(ii) Calculate ω
(i)
1 := G1(X

(i)
1 ).

For t = 2, . . . , T , do:
(iii) Sample X

(i)
t ∼Mt( · | X(i)

t−1) and set X
(i)
t = (X

(i)
t−1, X

(i)
t ).

(iv) Calculate ω
(i)
t := Gt(X

(i)
t ).

Report unnormalised sample (V (1:n),X(1:n)) where V (j) :=
∏T

t=1 ω
(j)
t and X(j) :=

X
(j)
T .

Proposition 8.11. Let t ∈ {1:T} such that
∫
M1(x1)G1(x1)

∏t
k=2 Mk(xk |

x1:k−1)Gk(x1:k)dx1:t < ∞. Consider Algorithm 8.10, and and let πt(x1:t) ∝
M1(x1)G1(x1)

∏t
k=2Mk(xk | x1:k−1)Gk(x

′
1:k) be a probability density. Then, de-

noting V
(i)
t :=

∏t
k=1 ω

(i)
k ,∑n

i=1 V
(i)
t f(X

(i)
t )∑n

j=1 V
(j)
t

n→∞−−−→ Eπt [f(X1:t)] (in distribution),

whenever the expectation is well-defined and finite.

Proof. This is self-normalised IS, because Xt ∼ qt(x1:t) = M1(x1)
∏t

k=2Mk(xk |
x1:k−1) and V

(i)
t ∝ πt(Xt)/qt(Xt). The result follows from Theorem 4.19.

Corollary 8.12. If assumption (22) holds, then the output of Algorithm 8.10
satisfies:

SIS
(n)
M1:T ,G1:T

(f) :=

∑n
k=1 V

(k)f(X(k))∑n
j=1 V

(j)

n→∞−−−→ Ep[f(X1:T )] (in distribution)

Proof. Direct application of Proposition 8.11, because p = πT and V (i) = V
(i)
T .

Remark 8.13. When π1, . . . , πT = p are all well-defined, Proposition 8.11 indicates
that Algorithm 8.10 may be regarded as approximating these distributions sequen-
tially, by re-using the approximation for πt−1 when building the approximation for
πt.
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Remark 8.14 (*). In self-normalised IS, we have almost sure convergence instead
of in distribution. We state the results here using the latter, because we regard
now Algorithm 8.15 to be run with a fixed n — and therefore ‘adding samples’
does not make immediate sense, but the algorithm may just be repeated with a
higher n. . .

8.4 The particle filter

Algorithm 8.15 (Particle filter). In each line of the algorithm, i = 1, . . . , n:

(i) Sample X
(i)
1 ∼M1 and set X

(i)
1 = X

(i)
1 .

(ii) Calculate ω
(i)
1 := G1(X

(i)
1 ) and set ω̄

(i)
1 := ω

(i)
1 /ω∗1 where ω∗1 =

∑n
j=1 ω

(j)
1 .

For t = 2, . . . , T , do:
(iii) Sample A

(i)
t−1 ∼ Categorical(ω̄

(1:N)
t−1 ), that is, P(A

(i)
t−1 = j) = ω̄

(j)
t−1.

(iv) Sample X
(i)
t ∼Mt( · | X

(A
(i)
t−1)

t−1 ) and set X
(i)
t = (X

(A
(i)
t−1)

t−1 , X
(i)
t ).

(v) Calculate ω
(i)
t := Gt(X

(i)
t ) and set ω̄

(i)
t := ω

(i)
t /ω

∗
t where ω∗t =

∑n
j=1 ω

(j)
t .

Report (V (1:n),X(1:n)) where V (j) :=
(∏T

t=1
1
n
ω∗t
)
ω̄

(j)
T and X(j) := X

(j)
T .

(In case ω∗t = 0, the algorithm is terminated with V (i) = 0 and with arbitrary
X(i) ∈ ST .)

Remark 8.16. The proposal Mt(xt | x1:t−1) and the potential Gt(x1:t) typically
depend on xt and perhaps xt−1, but not x1:t−2. In such a case, it is not necessary

to explicitly store X
(i)
t , because ω

(i)
t = Gt(X

(A
(i)
t−1)

t−1 , Xt) and X(i) = X
(i)
T may be

recovered from X
(j)
1:T and A

(j)
1:T−1.

Example 8.17. Implementation withMt(xt | x1:t−1) = Mt(xt | xt−1) andGt(x1:t) =
Gt(xt):

function norm_logw(logw) # Normalised probabilities from log weights ('log-sum-trick')
m = maximum(logw); u = exp.(logw.-m); return m+log(mean(u)), u/sum(u)

end

function pf(M, logG, n, T) # Univariate particle filter

X = zeros(n, T); A = zeros(Int, n, T); wu = zeros(n)

for i = 1:n

X[i,1] = x = M(1); wu[i] = logG(1, x)

end

V, omega = norm_logw(wu);

for t = 2:T

a = rand(Categorical(omega), n); A[:,t-1] = a

for i = 1:n

X[i,t] = x = M(t, X[a[i],t-1]); wu[i] = logG(t, x)

end

V_, omega = norm_logw(wu); V += V_

end

XT = zeros(n,T); XT[:,T]=X[:,T]; a = collect(1:n) # Trace back X^{(i)}

for t = T-1:-1:1 a = A[a,t]; XT[:,t] = X[a,t] end

(logV=V.+log.(omega), XT=XT, X=X)

end

Application in Example 8.6, with an estimate for Ep[X]:
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using Distributions, Random, Plots

Random.seed!(42); T=50; x0=0; rho=sigma_x=sigma_y=1

function M(t, x=0.0) # Generate observations from M_t(.|x)

rand(Normal(x, sigma_x))

end

x_true = zeros(T); x_true[1] = M(1) # Generate synthetic data:

for t = 2:T x_true[t] = M(t, x_true[t-1]) end # trajectory of x_{1:T}

y = x_true + rand(Normal(0, sigma_y), T) # and corresponding observations

function logG(t, x) # Calculate log G_t(x)

logpdf(Normal(y[t], sigma_y), x)

end

o = pf(M, logG, 100, T)

scatter(o.X', color=:black); plot!(o.XT', width=2, legend=false)

sum(norm_logw(o.logV)[2] .* o.XT[:,T])

Under certain technical assumptions [cf. 7]:

PF
(n)
M1:T ,G1:T

(f) :=

∑n
k=1 V

(k)f(X(k))∑n
j=1 V

(j)
=

n∑
k=1

ω̄
(i)
T f(X

(k)
T )

n→∞−−−→ Ep[f(X1:T )], (23)

in distribution.

Remark 8.18. While (23) holds quite generally, the estimator PF
(n)
M1:T ,G1:T

(f) typ-
ically converges

• quickly for functions that depend only on the last variable (or few last
variables), that is, f(x1:T ) = f(xT ) (or f(x1:T ) = f(x(T−l):T ) for l� T ).
[In the PF, the ‘intermediate’ distributions πt are called the filtering dis-
tributions, from which the name particle filter arises.]

• much slower for f(x1:T ) = f(x1) when T is large.
In the latter case, instead of increasing n in a single run of PF, the algorithm may
be run several times with fixed n. . .

Remark 8.19 (*). The step (iii) in Algorithm 8.15 is called resampling or selec-
tion. Algorithm 8.15 was introduced for SSMs in [10], using the specific choice
Mt = mt; this algorithm is known as the bootstrap filter. The rationale of resam-
pling is, in intuitive terms, to discard ‘unlikely paths’, and concentrate on ‘good
candidates.’ Similar procedure is used also in genetic algorithms, which aim for
(global) optimisation.

Remark 8.20 (*). In fact, the multinomial resampling (iii) may be replaced with

another procedure drawing non-independent set of indices A
(1:n)
t−1 , which still satisfy

unbiasedness, in the following sense:

E
[

1

n

n∑
i=1

1
(
A

(i)
t−1 = j

) ∣∣∣∣X(1:n)
1 , X

(1:n)
t−1 , A

(1:n)
1 , . . . , A

(1:n)
t−2

]
= ω̄

(j)
t−1.

For instance, stratified sampling is commonly used, and other choices are pos-
sible [cf. 4]. (NB: Even though stratification makes one-step conditional vari-
ance smaller, this does not necessarily mean more efficient overall estimator
PF

(n)
M1:T ,G1:T

(f), even though this is commonly observed empirically. . . )
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Figure 26: Some samples corresponding to the PF in Example 8.21. The grey
paths show the ‘dead branches’: the ones that were not selected in resampling.

0.5

1

1.5

2

2.5

1 2 3 4 5 6
log

10
(n)

X
1
5
 |
 Y

1
:1

5

2

2.5

3

3.5

1 2 3 4 5 6
log

10
(n)

X
3
0
 |
 Y

1
:3

0

(a) (b)

Figure 27: Box plot of the PF estimates with Mt corresponding to the prior, Ex-
ample 8.6. Compare with 21. The estimates outperform also SIS with the ‘optimal’
proposal density in Example 8.7; see Figure 23.

Example 8.21. Let us revisit Example 8.6 with the particle filter; Figure 26 shows
the samples produced. It is clear that the resampling helps to concentrate paths
(compare with Figure 22). Figure 27 shows a summary of estimates, analogous to
Figure 21, and Figure 28 demonstrates that the PF is reliable even for long series
of observations, even with this simple proposal distribution.

(Choosing Mt to be qt as in Example 8.7 would make the results even
better, but it is noteworthy that even with Mt = mt, the PF appears to perform
reasonably well for bigger T . . . )

8.5 Unbiasedness of the particle filter

We shall not pursue a detailed proof of (23), but instead focus on the following
non-asymptotic unbiasedness property of the PF [cf. 7, Theorem 7.4.2], which
turns out to be key property for particle MCMC, which we discuss later.
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Figure 28: Box plot of the particle filter estimates with Mt corresponding to the
prior, Compare with Figure 25. True value for T = 100 is approximately 4.514.

Theorem 8.22. Under assumption (22), for any f : ST → R with Ep[f(X)] <∞,
and any n ∈ N, the following holds for the output of Algorithm 8.15:

E
[ n∑
k=1

V (k)f(X(k))

]
=

∫
pu(x1:T )f(x1:T )dx1:T .

Proof. (*) Define the functions fT (x1:T ) := f(x1:T ), and for t = T, . . . , 2

ft−1(x1:t−1) :=

∫
ft(x1:t)Mt(xt | x1:t−1)Gt(x1:t)dxt.

Assumption (22) implies that f0 :=
∫
M1(x1)G1(x1)f1(x1)dx1 coincides with the

desired integral, and all ft are necessarily (almost everywhere) well-defined if the
latter integral is well-defined.

Let us denote X
(∗)
1:t := {X(i)

1:t , i ∈ {1:n}} and similarly A
(∗)
1:t , and observe first

that for t = 2, . . . , T and i ∈ {1:n},

E
[
ω

(i)
t ft(X

(i)
t )
∣∣ X(∗)

1:t−1, A
(∗)
1:t−2

]
= E

[
E
[
ω

(i)
t ft(X

(A
(i)
t−1)

t−1 , X
(i)
t )
∣∣ X(∗)

1:t−1, A
(∗)
1:t−1

] ∣∣∣ X(∗)
1:t−1, A

(∗)
1:t−2

]
= E

[ ∫
Mt(xt | X

(A
(i)
t−1)

t−1 )Gt(X
(A

(i)
t−1)

t−1 , xt)ft(X
(A

(i)
t−1)

t−1 , xt)dxt

∣∣∣∣ X(∗)
1:t−1, A

(∗)
1:t−2

]
=

n∑
j=1

P
(
A

(i)
t−1 = j | X(∗)

1:t−1, A
(∗)
1:t−2

)
ft−1(X

(j)
t−1),

so we may conclude that

E
[

1

n

n∑
i=1

ω
(i)
t ft(X

(i)
t )

∣∣∣∣ X(∗)
1:t−1, A

(∗)
1:t−2

]
=

n∑
j=1

ω̄
(j)
t−1ft−1(X

(j)
t−1). (24)
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We may apply (24) recursively with t = T, . . . , 2, yielding

E
[ n∑
k=1

V (k)f(X
(k)
T )

]
= E

[( T−1∏
t=1

1

n
ω∗t

)
E
[( 1

n
ω∗T

) n∑
i=1

ω̄
(i)
T fT (X

(i)
T )
∣∣∣ X(∗)

1:T−1, A
(∗)
1:T−2

]]

= E
[( T−1∏

t=1

1

n
ω∗t

) n∑
i=1

ω̄
(i)
T−1fT−1(X

(i)
T−1)

]
= . . .

=
1

n

n∑
i=1

E
[
ω∗1ω̄

(i)
1 f1(X

(i)
1 )
]
,

which equals to f0 by a similar calculation as above.

One immediate consequence of the unbiasedness is that we may combine
easily the output of independent particle filters, and deduce a consistent estimator
as in self-normalised IS:

Corollary 8.23 (*). Fix n ∈ N and suppose (V (1:n),X(1:n)) is the output of Al-
gorithm 8.15. Let ζ(f) :=

∑n
k=1 V

(k)f(X(k)) and ζ(1) :=
∑n

k=1 V
(k). Suppose

(ζi(f), ζi(1))i≥1 are independent realisations of (ζ(f), ζ(1)), then

(i) E
(N,n)
M1:T ,G1:T

(f) :=

∑N
i=1 ζi(f)∑N
j=1 ζj(1)

N→∞−−−→ Ep[f(X)] a.s.

(ii) If E
[
|ζ(f)− ζ(1)Ep[f(X)]|2 + |ζ(1)|2

]
<∞, then for any α ∈ (0,∞),

P
(
Ep[f(X)] ∈

[
E

(N,n)
M1:T ,G1:T

(f)± α
√
v̂(N,n)

])
N→∞−−−→ 1− 2Φ(−α), where

v̂(N,n) :=

∑N
i=1

(
ζi(f)− ζi(1)E

(N,n)
M1:T ,G1:T

(f)
)2(∑N

j=1 ζk(1)
)2 .

Proof. (i) follows from Theorem 8.22, because E[ζ(f)]/E[ζ(1)] = Ep[f(X)], and
(ii) follows similarly as Theorem 4.23, once we observe that as N →∞,

Nv̂(N,n) =
1
N

∑N
i=1

(
ζi(f)− ζi(1)E

(N,n)
M1:T ,G1:T

(f)
)2(

1
N

∑N
j=1 ζk(1)

)2 →
E
[
(ζ(f)− ζ(1)Ep[f(X)])2

]
Ep[ζ(1)]2

.

Remark 8.24 (*). Suppose PF
(n,i)
M1:T ,G1:T

(f) are independent realisations of

PF
(n)
M1:T ,G1:T

(f) in (23), then, unlike E
(N,n)
M1:T ,G1:T

(f), the naive combination
1
N

∑N
i=1 PF

(n,i)
M1:T ,G1:T

(f) is not consistent, because E[PF
(n)
M1:T ,G1:T

(f)] 6= Ep[f(X)]

in general (even though, under general conditions, E[PF
(n)
M1:T ,G1:T

(f)]→ Ep[f(X)]

as n→∞). On the contrary, the estimator E
(N,n)
M1:T ,G1:T

(f) is consistent with any n,
and only requires an asymptotic in N .

9 Particle MCMC

As a final topic of the course, we discuss particle MCMC algorithms introduced in
the seminal paper [3]. They are relatively straightforward combinations of MCMC
and particle filter, in a way that allows for consistent estimation.
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9.1 Parameterised model

Consider now a family of models, determined by a parameter θ ∈ T = Rdθ :

p(θ)
u (x1:T ) = M

(θ)
1 (x1)G

(θ)
1 (x1)

T∏
t=2

M
(θ)
t (xt | x1:t−1)G

(θ)
t (x1:t).

and suppose that pr(θ) ≥ 0 is a function such that

pu(θ, x1:T ) = pr(θ)p(θ)
u (x1:T )

determines an unnormalised probability distribution p(θ, x1:T ) ∝ pu(θ, x1:T ) on
T× ST .

Remark 9.1. In particular, if p
(θ)
u (x1:T ) correspond to a parameterised SSM as in

(21), that is,

p(θ)
u (x1:T ) = m

(θ)
1 (x1)g

(θ)
1 (x1)

T∏
t=2

m
(θ)
t (xt−1, xt)g

(θ)
t (xt, yt),

(cf. Remark 8.8), and pr is the prior of the parameters θ, then pu(θ, x1:T ) corre-
sponds to the conditional distribution (θ,X1:T ) | Y1:T = y1:T . This is what we care
about if we are interested in (full) Bayesian time-series analysis using SSMs. . .

9.2 Particle marginal Metropolis-Hastings algorithm

Suppose that n ∈ N is fixed, and that q(θ, θ′) is a Metropolis-Hastings proposal
on T.

Algorithm 9.2 (Particle marginal Metropolis-Hastings). Let Θ0 ∈ T, and let

(V
(1:n)

0 ,X
(1:n)
0 ) be the output of PF Algorithm 8.15 with (n, M

(Θ0)
1:T , G

(Θ0)
1:T ). For

k = 1, 2, . . . , N , iterate:

(i) Sample Θ̂k ∼ q(Θk−1, · ).
(ii) Run PF Algorithm 8.15 with (n, M

(Θ̂k)
1:T , G

(Θ̂k)
1:T ), and call its output

(V̂
(1:n)
k , X̂

(1:n)
k ).

(iii) With probability

min

{
1,

pr(Θ̂k)q(Θ̂k,Θk−1)
∑n

i=1 V̂
(i)
k

pr(Θk−1)q(Θk−1, Θ̂k)
∑n

j=1 V
(j)
k−1

}
,

accept and set (Θk, V
(1:n)
k ,X

(1:n)
k ) ← (Θ̂k, V̂

(1:n)
k , X̂

(1:n)
k ); otherwise reject

and set (Θk, V
(1:n)
k ,X

(1:n)
k )← (Θk−1, V

(1:n)
k−1 ,X

(1:n)
k−1 ).

Report the following approximation of Ep[f(Θ, X1:T )]:

I
(N,n)
PMMH(f) :=

1

N

N∑
k=1

∑n
i=1 V

(i)
k f(Θk,X

(i)
k )∑n

j=1 V
(j)
k

.
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Theorem 9.3. Suppose that q(θ, θ′) > 0 for all θ, θ ∈ T. Then, for any fixed
n ∈ N,

I
(N,n)
PMMH(f)

N→∞−−−→ Ep[f(Θ, X1:T )] a.s.,

whenever the expectation is finite.

Proof. (**) Let Qθ(x
(1:n)
1:T , a

(1:n)
1:T−1) stand for the distribution of all random vari-

ables X
(i)
t and A

(i)
t generated in Algorithm 8.15 with (n,M

(θ)
1:T , G

(θ)
1:T ), and let

v(k)(x
(1:n)
1:T , a

(1:n)
1:T−1) and x(k)(x

(1:n)
1:T , a

(1:n)
1:T−1) stand for how the outputs V (k) and X(k)

are determined from X
(1:n)
1:T and A

(1:n)
1:T−1. Define the following unnormalised distri-

bution (sic!)

πu(θ, x
(1:n)
1:T , a

(1:n)
1:T−1) = pr(θ)Qθ(x

(1:n)
1:T , a

(1:n)
1:T−1)

n∑
k=1

v(k)(x
(1:n)
1:T , a

(1:n)
1:T−1),

then Algorithm 9.9 may be seen as a Metropolis-Hastings with target π ∝ πu and
proposal q̃(θ, x

(1:n)
1:T , a

(1:n)
1:T−1; θ̂, x̂

(1:n)
1:T , â

(1:n)
1:T−1) = q(θ, θ̂)Qθ̂(x̂

(1:n)
1:T , â

(1:n)
1:T−1).

Theorem 8.22 implies that for any ϕ : ST → R such that the integral below
is finite,

∑
a

(1:n)
1:T−1

∫
Qθ(x

(1:n)
1:T , a

(1:n)
1:T−1)

( n∑
i=1

v(i)(x
(1:n)
1:T , a

(1:n)
1:T−1)ϕ

(
x(i)(x

(1:n)
1:T , a

(1:n)
1:T−1)

))
dx

(1:n)
1:T

=

∫
p(θ)
u (x1:T )ϕ(x1:T )dx1:T .

This implies that for any function f : T× ST → R,

Eπ
[∑n

i=1 v
(i)(X

(1:n)
1:T , A

(1:n)
1:T−1)f(Θ,x(i)(X

(1:n)
1:T , A

(1:n)
1:T−1))∑n

j=1 v
(j)(X

(1:n)
1:T , A

(1:n)
1:T−1)

]
= Ep[f(Θ, X1:T )].

The proof is complete once we are convinced that the Markov chain
(Θi, X

(1:n)
1:T , A

(1:n)
1:T−1), and consequently V

(1:n)
i ,X

(1:n)
i )i≥1, is Harris, which follows be-

cause it is π-irreducible Metropolis-Hastings.

Remark 9.4 (*). If we are only interested in the variable Θ in p, the PMMH Algo-
rithm 8.15 may be seen as an instance of a so-called pseudo-marginal Metropolis-
Hastings algorithm [1, 14].

9.3 Conditional particle filter (*)

The PMMH is a relatively simple combination of the PF and Metropolis-Hastings.
It can, however, get ‘stuck’ (many rejects), when

∑
j V

(j)
k−1 gets over-estimated

(unusually high value). The paper [3] contained also another scheme, which has
better scalability properties wrt. T . It is based on a modified conditional particle
filter (CPF) algorithm.

Algorithm 9.5. CPF(n,M
(θ)
1:T , G

(θ)
1:T , X

∗
1:T )
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(i) Set X
(1)
1 = X∗1 and sample X

(2:n)
1

i.i.d.∼ M1. Set X
(1:n)
1 = X

(1:n)
1 .

(ii) Calculate ω
(i)
1 := G1(X

(i)
1 ) and set ω̄

(i)
1 := ω

(i)
1 /ω∗1 where ω∗1 =

∑n
j=1 ω

(j)
1 .

For t = 2, . . . , T , do:
(iii) Sample A

(2:n)
t−1 independently with P(A

(i)
t−1 = j) = ω̄

(j)
t−1, j ∈ 1:n.

(iv) Set X
(1)
t = X∗t and sample X

(i)
t ∼Mt( · | X

(A
(i)
t−1)

t−1 ) for i = 2:n.

(v) Set X
(1)
t = (X

(1)
t−1, X

∗
t ) and X

(i)
t = (X

(A
(i)
t−1)

t−1 , X
(i)
t ) for i = 2:n.

(vi) Calculate ω
(i)
t := Gt(X

(i)
t ) and set ω̄

(i)
t := ω

(i)
t /ω

∗
t where ω∗t =

∑n
j=1 ω

(j)
t .

Draw B ∼ Categorical(ω̄
(1:n)
T ) and output X

(B)
T .

Remark 9.6. The CPF defines a Markov transition in the trajectory space ST . It
turns out that the transition is reversible with respect to p(θ) ∝ p

(θ)
u , again thanks

to Theorem 8.22.

Remark 9.7. When Mt(xt | x1:t−1) = Mt(xt | xt−1) and Gt(x1.t) = Gt(xt−1:t),
the CPF may be substantially enhanced by applying it together with so-called
backward sampling [32] (or the equivalent ancestor sampling [15]). That is, instead

of selecting one of X
(1:n)
T , the output is ‘reselected’ among all particles X

(1:n)
1:T as

follows: (X
(B1)
1 , . . . , X

(BT−1)
T−1 , X

(BT )
T ), where BT = B and for t = T − 1, . . . , 1:

P(Bt = i | Bt+1 = j) ∝ ω
(i)
t Mt+1(X

(j)
t+1 | X

(i)
t )Gt+1(X

(i)
t , X

(j)
t+1). (25)

The backward sampling version of the CPF is also p(θ)-reversible [6]. (Note also
that if Gt(xt−1:t) = Gt(xt), then the term Gt+1( · ) vanishes from (25).)

Remark 9.8. When using the CPF n has to increase in T linearly n = O(T ), but
with the backward sampling modification, n need not be increased wrt. T [cf. 13].

9.4 Particle Gibbs (*)

Algorithm 9.9 (Particle Gibbs). Let Θ0 ∈ T and X0 ∈ SpT such that
pu(Θ0,X0) > 0.

For k = 1, 2, . . . , N , iterate:

(i) Xk ← CPF(n,M
(Θk−1)
1:T , G

(Θk−1)
1:T ,Xk−1).

(ii) Sample Θ̂k ∼ q(Θk−1, · ), and with probability

min

{
1,

pu(Θ̂k,Xk)q(Θ̂k,Θk−1)

pu(Θk−1,Xk)q(Θk−1, Θ̂k)

}
,

accept and set Θk ← Θ̂k; otherwise reject and set Θk ← Θk−1.
Report the following approximation of Ep[f(Θ, X1:T )]:

I
(N,n)
PG (f) :=

1

N

N∑
k=1

f(Θk,Xk).

Theorem 9.10. The particle Gibbs defines a Markov transition which leaves p
invariant.
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Proof. Step (i) is a component-wise update of Xk−1 → Xk by the CPF that leaves

the conditional ∝ p
(Θk−1)
u invariant, and the step (ii) is a Metropolis-within-Gibbs

step.

Remark 9.11. Consider the PMMH output, and sample Ik ∼ Categorical(W
(1:n)
k ),

where W
(i)
k = V

(i)
k /(

∑n
j=1 V

(j)
k ), then we may also use

Î
(N,n)
PMMH(f) :=

1

N

N∑
k=1

f(Θk,X
(Ik)
k ),

which remains consistent, but it worse in terms of variance.
Analogously, it is direct to use a more ‘refined’ estimator in the PG, where

the selection of output (sampling of B in Algorihm 9.5) is ‘Rao-Blackwellised’. . .

Remark 9.12. Some authors refer also the CPF as ‘particle Gibbs’, but the ter-
minology here follows the terminology in the original paper [3].
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