My research lies at the intersection of data mining, education, and machine learning.
I am especially interested in explainability and fairness in algorithmic decision-making.
Publications
- SAARELA, M. (2024):
On the relation of causality- versus correlation-based feature selection on model fairness.
Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing (SAC ’24), pp. 56–64.
- SAARELA, M. & PODGORELEC V. (2024):
Recent Applications of Explainable AI (XAI): A Systematic Literature Review.
Applied Sciences. 2024; 14(19):8884.
-
HAUKALA, J., SAARELA, M., LOBERG, O. & KÄRKKÄINEN, T. (2024):
A design for neural network model of continuous reading.
Cognitive Systems Research, ISSN 1389-0417, 101284.
- HEILALA, V., JÄÄSKELÄ, P., SAARELA, M. & KÄRKKÄINEN, T. (2024):
Adapting Teaching and Learning in Higher Education Using Explainable Student Agency Analytics.
Chapter 2 in Principles and Applications of Adaptive Artificial Intelligence, IGI Global, pp.20-51.
- GUNASERKA, S.& SAARELA, M.;(2024):
Explainability in Educational Data Mining and Learning Analytics: An Umbrella Review.
Proceedings of the 17th International Conference on Educational Data Mining (EDM).
International Educational Data Mining Society, pp. 887–892.
- KARIMOV, A.; SAARELA, M.; KÄRKKÄINEN, T. & AGHAYEVA, S. (2024):
Principals’ use of data analytics in Finnish schools.
Proceedings of the 17th International Conference on Educational Data Mining (EDM).
International Educational Data Mining Society, pp. 452–457.
- KARIMOV, A.; SAARELA, M.; KÄRKKÄINEN, T.(2024):
AI-Powered Education Equality: Evidence from Five Countries.
E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education.
Association for the Advancement of Computing in Education (AACE), pp. 500-505.
- KARIMOV, A.; SAARELA, M.; & KÄRKKÄINEN, T.(2024):
Ethical Educational Data Processing Differences of Students with Special Needs in Post-Soviet Countries.
Proceedings of the 17th International Conference on Educational Data Mining (EDM).
International Educational Data Mining Society, pp. 898–902.
- KARIMOV, A.; SAARELA, M.; & KÄRKKÄINEN, T. (2024):
Understanding teachers’ perspectives on ethical concerns and skills to use AI tools.
14th International Conference on Learning Analytics & Knowledge (LAK24) Companion Proceedings, pp. 230-232.
- ZHIDKIKH, D., SAARELA, M., & KÄRKKÄINEN, T. (2023):
Measuring self-regulated learning in a junior high school mathematics classroom: Combining aptitude and event measures in digital learning materials..
Journal of Computer Assisted Learning, 39(6), pp. 1834–1851.
- KARIMOV, A.; SAARELA, M.; & KÄRKKÄINEN, T.(2023):
Clustering to define interview participants for analyzing student feedback: a case of Legends of Learning. 16th International Conference on Educational Data Mining (EDM).
- KARIMOV, A.; SAARELA, M.; & KÄRKKÄINEN, T.(2023):
The impact of online educational platform on students’ motivation and grades: the case of Khan Academy in the under-resourced communities. 16th International Conference on Educational Data Mining (EDM).
- SAARELA, M. & GEORGIEVA L.(2022):
"Robustness, Stability, and Fidelity of Explanations for a Deep Skin Cancer Classification Model".
In Applied Sciences, 12(19), 9545.
- HEILALA, V., KELLY, R., SAARELA, M., JÄÄSKELÄ P. & KÄRKKÄINEN, T. (2022):
"The Finnish Version of the Affinity for Technology Interaction (ATI) Scale: Psychometric Properties and an Examination of Gender Differences".
In International Journal of Human–Computer Interaction, pp. 1-19.
- HEILALA, V., JÄÄSKELÄ &, P., SAARELA, M., KUULA, AS., ESKOLA, A., KÄRKKÄINEN, T.(2022):
“Sitting at the Stern and Holding the Rudder”: Teachers’ Reflections on Action in Higher Education Based on Student Agency Analytics".
In: Digital Teaching and Learning in Higher Education. Palgrave Macmillan, pages 71-91.
- SAARELA, M., HEILALA, V., JÄÄSKELÄ, P., RANTAKAULIO, A. & KÄRKKÄINEN, T.(2021):
"Explainable Student Agency Analytics".
In IEEE Access, Volume 9, pages 137444-137459.
- SAARELA, M. & JAUHIAINEN, S. (2021):
"Comparison of feature importance measures as explanations for classification models".
In Springer Nature Applied Sciences, Volume 3, Issue 2, 272.
- TIKKA, S., HAKANEN, J., SAARELA, M. & KARVANEN, J. (2021):
"Sima – an Open-source Simulation Framework for Realistic Large-scale Individual-level Data Generation".
In International Journal of Microsimulation, Volume 14, Number 3, pages 27-53.
- SAARELA, M. & KÄRKKÄINEN, T. (2020):
"Can we automate expert-based journal rankings? Analysis of the Finnish publication indicator".
In Journal of Informetrics, Volume 14, Issue 2, May 2020, 101008.
- HEILALA, V., SAARELA, M., JÄÄSKELÄ, P. & KÄRKKÄINEN, T.(2020):
"Course Satisfaction in Engineering Education Through the Lens of Student Agency Analytics".
In IEEE Frontiers in Education Conference (FIE), pages 1-9.
- HEILALA, V., SAARELA, M., REPONEN, S. & KÄRKKÄINEN, T. (2020):
"Let Me Hack It : Teachers’ Perceptions About ‘Making’ in Education".
In Advances in Smart Technologies Applications and Case Studies, Lecture Notes in Electrical Engineering. Cham: Springer 684, pages 509-518.
- HEILALA, V., JÄÄSKELÄ, P., KÄRKKÄINEN, T. & SAARELA, M.(2020):
"Understanding the Study Experiences of Students in Low Agency Profile: Towards a Smart Education Approach".
In Advances in Smart Technologies Applications and Case Studies, Lecture Notes in Electrical Engineering. Cham: Springer 684, pages 509-518.
- SAARELA, M., RYYNÄNEN, O.-P. & ÄYRÄMÖ, S. (2019):
"Predicting Hospital Associated Disability from Imbalanced Data Using Supervised Learning".
In Artificial Intelligence in Medicine, Volume 95, pages 88-95.
-
SAARELA, M., LAHTONEN, J., RUORANEN, M., MÄKELÄINEN, A., ANTIKAINEN, T. & KÄRKKÄINEN, T. (2019):
“Automated Profiling of Open-Ended Survey Data on Medical Workplace Learning”.
In the International Journal of Emerging Technologies in Learning, Vol 14, No 05, pages 97-107.
- AKUSOK, A., SAARELA, M., KÄRKKÄINEN, T., BJÖRK, K.-M. & LENDASSE, A. (2019):
"Mislabel Detection of Finnish Publication Ranks".
In Proceedings of the 8th International Conference on Extreme Learning Machines (ELM 2017),
Springer International Publishing, pages 240-248.
-
IFENEDO, E., SAARELA, M. & HÄMÄLÄINEN, T. (2019):
“Analysing the Nigerian Teacher’s Readiness for Technology Integration”.
In the International Journal of Education and Development using Information and Communication Technology, Vol 15, No 03, pages 34-52.
- KÄRKKÄINEN, T., JUUTINEN, S., SAARELA, M. & NISSINEN, K. (2018):
"Lokidatan käyttö oppilaiden profiloimisessa – sovellus matematiikan PISA-aineistoon".
In PISA pintaa syvemmältä: PISA 2015 Suomen pääraportti (PISA National Reports), pages 259-289.
- GAVRIUSHENKO, SAARELA, M. & KÄRKKÄINEN, T. (2018):
"Towards Evidence-Based Academic Advising Using Learning Analytics".
In Communications in Computer and Information Science book series (CCIS, volume 865), Springer International Publishing,
pages 44-65.
- SEIDEL, N. & SAARELA, M. (2018):
"Course of Study Analytics in Distance Learning".
To appear in CEUR workshop proceedings.
- SAARELA, M. & KÄRKKÄINEN, T. (2017):
"Knowledge Discovery from the Programme
for International Student Assessment".
Book Chapter in Learning Analytics: Fundaments, Applications,
and Trends, Springer International Publishing, pages 229 - 267.
- SAARELA, M., HÄMÄLÄINEN, J. & KÄRKKÄINEN, T. (2017):
"Feature Ranking of Large, Robust, and Weighted Clustering Result".
In Proceedings of the 21th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD 2017), Springer International Publishing, pages 96 - 109.
- SAARELA, M., RYYNÄNEN, O.-P. & ÄYRÄMÖ, S. (2017):
"Predicting hospital associated disability using supervised learning".
In Raportti esittelee Value from Public Health Data with Cognitive Computing -projektin osatutkimusten tuloksia, pages 73-83
(D-2).
- SAARELA, M. (2017):
"Automatic Knowledge Discovery from Sparse and Large-Scale Educational Data. Case Finland".
Dissertation. Jyväskylä studies in computing 262.
- GAVRIUSHENKO, SAARELA, M. & KÄRKKÄINEN, T. (2017):
"Supporting Institutional Awareness and Academic Advising Using Clustered Study Profiles".
In Proceedings of the 9th International Conference on Computer Supported Education (CSEDU 2017), pages 35-46.
- SAARELA, M., KÄRKKÄINEN, T., LEHTONEN, T., & ROSSI, T. (2016):
"Expert-based versus citation-based ranking of
scholarly and scientific publication channels".
Journal of Informetrics, Vol. 10.3, pages 693 - 718.
- SAARELA, M., YENER, B., ZAKI, M, & KÄRKKÄINEN, T. (2016):
"Predicting Math Performance from Raw Large-Scale
Educational Assessments Data : A Machine Learning Approach".
Workshop on Machine Learning for Digital Education and Assessment Systems of the 33rd International Conference on Machine Learning (ICML 2016).
- SAARELA, M., & KÄRKKÄINEN, T. (2015):
"Analysing Student Performance using Sparse Data
of Core Bachelor Courses".
Journal of Educational Data Mining, Vol. 7.1, pages 3 − 32.
- SAARELA, M., & KÄRKKÄINEN, T. (2015):
"Weighted Clustering of Sparse Educational Data".
In Proceedings of The 23rd European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN 2015), pages 337 − 342.
- KÄRKKÄINEN, T., & SAARELA, M. (2015):
"Robust Principal Component Analysis of Data with
Missing Values".
In Proceedings of The 11th International Conference on Machine Learning and
Data Mining (MLDM 2015), Springer International Publishing, pages 140 − 154.
- SAARELA, M., & KÄRKKÄINEN, T. (2015):
"Do Country Stereotypes exist in Educational Data?
A Clustering Approach for Large, Sparse, and Weighted Data". In Proceedings of The 8th International
Conference on Educational Data Mining (EDM 2015), pages 156 − 163.
- SAARELA, M., & KÄRKKÄINEN, T. (2014):
"Discovering Gender-Specific Knowledge from Finnish
Basic Education using PISA Scale Indices".
In Proceedings of The 7th International Conference on
Educational Data Mining (EDM 2014), pages 60 − 68.