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4.6. Hölder continuity 119
4.7. Remarks 121
5. Schauder estimates 122
6. Notes and comments 133



PDE 2 3

1. Introduction

Partial differential equations (PDEs) have a great variety of applica-
tions to mechanics, electrostatics, quantum mechanics and many other
fields of physics as well as to finance.

In addition, PDEs have a rich mathematical theory. In the ICM
at 1900, a German mathematician David Hilbert published part of a
nowadays legendary list of 23 mathematical problems that have been
very influential for 20th century mathematics. We are interested in
particular with the problems:

(1) 20th problem: Has not every regular variational problem a solu-
tion provided certain assumptions regarding the given boundary
conditions, and provided that, if needed, the notion of solutions
shall be suitably extended?

(2) 19th problem: Are the solutions of regular problems in the cal-
culus of variations always necessarily analytic?

Comments:

• Variational problems and PDEs have a tight connection. We
will return to this later.
• As Hilbert suggested, in most of the cases we will have to relax
the definition of the solution to PDEs to obtain existence of a
solution. Still we would like to preserve the uniqueness and to
some extend regularity and stability. These are the question
we will deal with in this course.

2. Sobolev spaces

2.1. Notations.

DOM = Lebesgue’s dominated convergence theorem,

Ω ⊂ Rn open set, bounded unless otherwise stated

|x| =
√
x21 + . . .+ x2n for x ∈ Rn,

m(E) = |E| = a Lebesgue measure of a set E∫
B(0,ε)

. . . dy =
1

|B(0, ε)|

∫
B(0,ε)

. . . dy

f : Ω→ R a function

spt f = {x ∈ Ω : f(x) ̸= 0} = the support of f

C(Ω) = {f : f continuous in Ω}
C0(Ω) = {f ∈ C(Ω) : spt f is compact subset of Ω}
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Ck(Ω) = {f ∈ C(Ω) : f is k times continuously differentiable}
Ck

0 (Ω) = Ck(Ω) ∩ C0(Ω)

C∞(Ω) = ∩∞k=1C
k(Ω) = smooth functions

C∞
0 (Ω) = C∞(Ω) ∩ C0(Ω) = compactly supported smooth functions

Remark 2.1. Recall that

u ∈ Ck(Ω) ⇐⇒ Dαu ∈ C(Ω)

for multi-index α = (α1, . . . , αn) ∈ Nn and |α| := α1 + . . . + αn ≤ k,
where

Dαu :=
∂α1

∂xα1
1

. . .
∂αn

∂xαn
n

.

Example 2.2 (Warning). It is not always the case that spt f ⊂ Ω.

Example 2.3. (1)

f : R→ R, f(x) =

{
x2, x ≥ 0

−x2, x < 0

f ∈ C1(Ω) \ C2(Ω)

(2)

φ : Rn → R, φ(x) =

{
e1/(|x|

2−1), |x| < 1

0, |x| ≥ 1.

φ ∈ C∞
0 (Ω), sptφ ⊂ B(0, 1)

Exercise.

2.2. Reminders (from the Measure and Integration). Let E be
Lebesgue measurable, 1 ≤ p ≤ ∞, and f : E → [−∞,∞] a Lebesgue
measurable function. Then we define

||f ||Lp(E) =

{(∫
E
|f |p dx

)1/p
, p <∞

ess supE |f |, p =∞.
where

ess sup
E
|f | := inf{M : |f | ≤M a.e. in E}.

Then we define Lp(E) to be a linear space of all Lebesgue measurable
functions f : E → [−∞,∞] for which

||f ||Lp(E) <∞.
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If we identify functions that coincide a.e., then this will be a Banach
space with the norm defined above.

We also recall

Lp
loc(E) := {f : E → [−∞,∞] : f ∈ Lp(F ) for each F ⋐ E},

where ⋐ means that F is a compact subset of E.

Remark 2.4. There is usually no inclusions between Lp spaces:

Lp ⊈ Lq Lq ⊈ Lp.

This can be seen by recalling that

xα ∈ L1((0, 1)) ⇐⇒ α > −1
xα ∈ L1((1,∞)) ⇐⇒ α < −1.

Thus if we let 1 ≤ p < q ≤ ∞ and choose β > 0 such that

−1

q
> −β > −1

p

we have

x−β ∈ Lp((0, 1)), but x−β /∈ Lq((0, 1))

x−β /∈ Lp((1,∞)), but x−β ∈ Lq((1,∞)).

Nonetheless, Hölder’s inequality is often a useful tool:

||fg||L1 ≤ ||f ||Lp ||g||Lq ,

that is ∫
|fg| dx ≤

( ∫
|f |p dx

)1/p( ∫ |g|q dx)1/q,
where 1 ≤ p, q ≤ ∞ are Hölder-conjugates that is

1

q
+

1

p
= 1.

This implies, in particular, for 1 ≤ p′ < q′ ≤ ∞ and for a set |E| <∞
that

f ∈ Lq′(E)⇒ f ∈ Lp′(E)

because (1− p′/q′ = (q′ − p′)/q′)∫
E

|f |p
′
dx ≤

( ∫
E

1q
′/(q′−p′) dx

)(q′−p′)/q′( ∫
E

|f |q
′
dx
)p′/q′

≤ |E|(q
′−p′)/q′ ||f ||p

′

Lq′ (E)
.
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Also the following inequalities are worth recalling. Young’s inequality:
for each ε > 0, 1 < p, q <∞, 1/p+ 1/q = 1 and a, b ≥ 0 it holds

ab ≤ εap + Cbq,

where C = C(ε, p, q) (meaning that C depends on the quantities in the
parenthesis). Minkowski’s inequality: for 1 ≤ p ≤ ∞ and f, g ∈ Lp(E)
it holds that

||f + g||Lp(E) ≤ ||f ||Lp(E) + ||g||Lp(E) .

2.3. Weak derivatives. Let u ∈ C1(Ω) and φ ∈ C∞
0 (Ω). Then by

integrating by parts∫
Ω

u
∂φ

∂xi
dx = −

∫
Ω

∂u

∂xi
φdx, for i = 1, . . . , n.

Observe that φ vanishes at the boundary and thus there is no boundary
term above.

More generally for multi-index α, |α| ≤ k, and u ∈ Ck(Ω), we have∫
Ω

uDαφdx = (−1)|α|
∫
Ω

Dαuφ dx.

Remark 2.5. Observe that the left hand side does not require u to be
continuously differentiable. This will be our starting point for defining
weak derivatives for functions that are not continuous differentiable.

Definition 2.6. Let u, v ∈ L1
loc(Ω) and α a multi-index. Then v is αth

weak partial derivative of u if∫
Ω

uDαφdx = (−1)|α|
∫
Ω

vφ dx,

for every test function φ ∈ C∞
0 (Ω). We denote

Dαu := v.

We denote weak partial derivatives with the familiar notation

∂u

∂xi
.

We also use

Du = (
∂u

∂x1
, . . . ,

∂u

∂xn
)

for the weak gradient.
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Example 2.7.

u : (0, 2)→ R, u(x) =

{
x, 0 < x ≤ 1

1, 1 < x < 2.

We claim that a weak derivative is

u′(x) = v(x) =

{
1, 0 < x ≤ 1

0, 1 < x < 2.

This is in L1
loc so by definition, the task is to show that∫

(0,2)

vφ dx = −1
∫
(0,2)

uφ′ dx.

To see this, we calculate using the integration by parts∫
(0,2)

uφ′ dx
DOM
= lim

ε→0

(∫
(0,1−ε)

uφ′ dx+

∫
(1+ε,2)

uφ′ dx
)

= u(1)φ(1)− u(0)φ(0)︸ ︷︷ ︸
0

+u(2)φ(2)︸ ︷︷ ︸
0

−u(1)φ(1)

−
∫
(0,1)

u′︸︷︷︸
1

φdx−
∫
(1,2)

u′︸︷︷︸
0

φdx

= −
∫
(0,1)

φdx

= −
∫
(0,2)

vφ dx.

Note that above u /∈ C1((0, 2)) and u′ /∈ C((0, 2)). Also observe that
weak derivatives are only defined a.e. and thus it is irrelevant what is
the point value for example at 1.

We found one weak derivative but could there be several? Answer:
No, weak derivatives are unique up to a set of measure zero.

Theorem 2.8. A weak αth derivate of u is uniquely defined up to a
set of measure zero.

Proof. Suppose that v, v ∈ L1
loc(Ω) satisfy∫

Ω

uDαφdx = (−1)|α|
∫
Ω

vφ dx

= (−1)|α|
∫
Ω

vφ dx
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for all φ ∈ C∞
0 (Ω). It follows that∫

Ω

(v − v)φdx = 0

for every φ ∈ C∞
0 (Ω). This implies that v = v a.e. by the following

reason:
Let Ω′ ⋐ Ω and observe that C∞

0 (Ω′) is dense in L1(Ω′). Indeed, then
there exists

φi ∈ C∞
0 (Ω′), |φi| ≤ 2

such that

φi → sign(v − v) a.e. in Ω′,

(more about approximations later) where

sign(x) =


1 x > 0

0 x = 0

−1 x < 0.

Then

0 = lim
i

∫
Ω′
(v − v)φi dx

DOM, below
=

∫
Ω′
lim
i
((v − v)φi) dx

=

∫
Ω′
(v − v) sign(v − v) dx

=

∫
Ω′
|v − v| dx,

where the use of DOM is based on |(v − v)φi| ≤ 2(|v| + |v|) ∈ L1(Ω′).
This implies that v = v a.e. in Ω′, for any Ω′ ⋐ Ω, and thus a.e. in
Ω. □

The above proof also yields a useful result.

Lemma 2.9 (Fundamental lemma in calc var). If f ∈ L1
loc(Ω), and∫

Ω

fφ dx = 0

for every φ ∈ C∞
0 (Ω), then f = 0 a.e.

Example 2.10.

u : (0, 2)→ R, u(x) =

{
x 0 < x ≤ 1

2 1 < x < 2.
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This time u′ does not exist even in the weak sense.
Counterproposition: Suppose that there is v ∈ L1

loc(Ω) such that∫
(0,2)

uφ′ dx = −1
∫
(0,2)

vφ dx,

for every test function φ ∈ C∞
0 (Ω). Then∫

(0,2)

vφ dx = −
∫
(0,2)

uφ′ dx

= −
∫
(0,1)

uφ′ dx−
∫
(1,2)

uφ′ dx

= −
∫
(0,1)

xφ′ dx−
∫
(1,2)

2φ′ dx

= −φ(1) + 2φ(1) +

∫
(0,1)

φdx

= φ(1) +

∫
(0,1)

φdx.

Then we can choose a sequence φi ∈ C∞
0 (Ω), |φi| ≤ 2 such that φi(1) =

1 and φi(x) → 0 if x ̸= 1. We obtain the desired contradiction by
calculating

0 = lim
i

( ∫
(0,2)

vφi dx−
∫
(0,1)

φi dx− φi(1)
)

DOM
=
( ∫

(0,2)

v lim
i
φi dx−

∫
(0,1)

lim
i
φi dx− 1

)
= 0− 0− 1 = −1.

The Sobolev spaces are named after a Soviet mathematician S.L.
Sobolev for his significant contributions to the theory starting 1930’s.

Definition 2.11 (Sobolev space). Let 1 ≤ p ≤ ∞ and k ∈ N. A
function u : Ω → [−∞,∞] belongs to a Sobolev space W k,p(Ω) if u ∈
Lp(Ω) and its weak derivatives Dαu, |α| ≤ k exist and belong to Lp(Ω).

The function u belongs to the local Sobolev spaceW k,p
loc , if u ∈ W k,p(Ω′)

for each Ω′ ⋐ Ω.

Remark 2.12. (1) Sobolev functions are only defined up to a mea-
sure zero similarly as Lp functions.

(2) Notation Hk := W k,2 as well as some further variants are en-
countered in the literature
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Example 2.13. For the function in Example 2.7, it holds

u ∈ W 1,p((0, 2)) for every p ≥ 1

and

u /∈ W k,p((0, 2)) for any k ≥ 2.

Example 2.14.

u : B(0, 1)→ [0,∞], u(x) = |x|−β, x ∈ Rn, β > 0, n ≥ 2

will be in a Sobolev space for a suitable β. When x ̸= 0

∂u

∂xi
(x) = −β|x|−β−1 xi

|x|
= −β xi

|x|β+2

as well as

Du(x) = −β x

|x|β+2
.

We aim at showing that this function satisfies the definition of the weak
derivative but we will have to be careful with the singularity. Therefore
let φ ∈ C∞

0 (B(0, 1)) and use Gauss’ theorem∫
B(0,1)\B(0,ε)

∂(uφ)

∂xi
dx =

∫
∂
(
(B(0,1)\B(0,ε)

) uφνi dS
where ν = (ν1, . . . , νn) is the outer unit normal vector of the boundary.
Recalling that φ = 0 on ∂B(0, 1) we get∫

B(0,1)\B(0,ε)

∂u

∂xi
φdx = −

∫
B(0,1)\B(0,ε)

u
∂φ

∂xi
dx+

∫
∂B(0,ε)

uφνi dS

(2.1)

If we can pass to the limit ε→ 0 and to show that
∫
∂B(0,ε)

uφνi dS → 0,

we are done. To establish this we estimate∣∣∣∣∫
∂B(0,ε)

uφνi dS

∣∣∣∣ ≤ ||φ||L∞(B(0,1))

∫
∂B(0,ε)

ε−β dS

≤ ||φ||L∞(B(0,1)) ωn−1ε
n−1−β → 0
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as ε→ 0, if n− 1− β > 0. Next we calculate∫
B(0,1)

∣∣∣∣ ∂u∂xi
∣∣∣∣ dx =

∫
B(0,1)

β
|xi|
|x|β+2

dx

≤ β

∫
B(0,1)

|x|
|x|β+2

dx

= β

∫
B(0,1)

1

|x|β+1
dx

= β

∫ 1

0

∫
∂B(0,ρ)

1

ρβ+1
dS dρ

= β

∫ 1

0

ωn−1ρ
n−2−β dρ

= βωn−1

/1

0

ρn−1−β

n− 1− β
<∞,

(2.2)

whenever n − 1 − β > 0. Thus, we have integrable upper bound for
χB(0,1)\B(0,ε)

∂u
∂xi

and we have

lim
ε→0

∫
B(0,1)\B(0,ε)

∂u

∂xi
φdx

DOM
=

∫
B(0,1)

lim
ε→0

χB(0,1)\B(0,ε)

∂u

∂xi
φdx

=

∫
B(0,1)

∂u

∂xi
φdx

Similarly as in (2.2), we see that∫
B(0,1)

|u| dx =

∫ 1

0

ωn−1ρ
n−1−β dρ

= ωn−1

/1

0

ρn−β

n− β
<∞,

whenever n− β > 0. Thus we can again pass to the limit

lim
ε→0

∫
B(0,1)\B(0,ε)

u
∂φ

∂xi
dx

DOM
=

∫
B(0,1)

u
∂φ

∂xi
dx.

Recalling (2.1), passing to the limit ε → 0 and combining the above
estimates, we deduce∫

B(0,1)

∂u

∂xi
φdx = −

∫
B(0,1)

u
∂φ

∂xi
dx+ 0

for all φ ∈ C∞
0 (Ω).
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By modifying calculation (2.2), we have

∂u

∂xi
∈ Lp ⇐⇒ n− p(β + 1) > 0 ⇐⇒ β <

n− p
p

and

u ∈ Lp(Ω) ⇐⇒ n− pβ > 0 ⇐⇒ n

p
> β.

As a conclusion

u ∈ W 1,p(B(0, 1)) ⇐⇒ β <
n− p
p

Observe: If p ≥ n, then u /∈ W 1,p(B(0, 1)) for all β > 0. Actually,
we will later see that when p > n, Sobolev functions have a Hölder
continuous representative.

Example 2.15. A Sobolev function can be rather singular! Indeed, let
qi be a set of points with rational coordinates in B(0, 1) ⊂ Rn. Then
for

u : B(0, 1)→ [0,∞], u(x) =
∞∑
i=1

1

2i
|x− qi|−β

holds

u ∈ W 1,p(B(0, 1)) ⇐⇒ β <
n− p
p

.

Observe: u explodes at every rational point!

Example 2.16. Without a proof, we state that Cantor function is not
in W 1,1(0, 1).

Theorem 2.17 (Calculation rules). Let u, v ∈ W k,p(Ω) and |α| ≤ k.
Then

(1) Dαu ∈ W k−|α|,p(Ω).
(2) Dα(Dβu) = Dβ(Dαu) for all multi-indexes with |α|+ |β| ≤ k.
(3) Let λ, µ ∈ R. Then λu+ µv ∈ W k,p(Ω) and

Dα(λu+ µv) = λDαu+ µDαv.

(4) If ξ ∈ C∞
0 (Ω), then ξu ∈ W k,p(Ω) and

Dα(ξu) =
∑
β≤α

(
α

β

)
Dβξ Dα−βu

where (
α

β

)
=

α!

β!(α− β)!
, α! = α1! · . . . · αn!
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and β ≤ α means βi ≤ αi for each i = 1, . . . , n.

Proof. (1) Clear.
(2) Let φ ∈ C∞

0 (Ω). By the first statement, the weak derivatives
exist and

(−1)|β|
∫
Ω

DβDαuφ dx
φ smooth

= (−1)|α|
∫
Ω

uDβDαφdx

def
= (−1)|α|(−1)|α|+|β|

∫
Ω

φDαDβu dx

= (−1)|β|
∫
Ω

φDαDβu dx.

(3) Clear.
(4) When |α| = 1, then (4) says

Dα(ξu) = uDαξ + ξDαu

which follows from the definition by observing∫
Ω

ξuDαφdx =

∫
Ω

uDα(ξφ)− uφDαξ dx

= −
∫
Ω

ξDαuφ dx−
∫
Ω

u(Dαξ)φdx

= −
∫
Ω

(ξDαu+ uDαξ)φdx.

The rest follows by induction, but details are omitted.
□

Remark 2.18 (Reminder). Vector space with the norm satisfying

(1) 0 ≤ ||u|| <∞
(2) ||u|| = 0 ⇐⇒ u = 0
(3) ||cu|| = |c| ||u|| for each c ∈ R
(4) ||u+ v|| ≤ ||u||+ ||v||

is a normed vector space. If, in addition, the space is complete, it
is called Banach space. Completeness means that all of its Cauchy
sequences converge.

Definition 2.19 (Sobo norm). If u ∈ W k,p(Ω), we define its norm to
be

||u||Wk,p(Ω) =


(∑

|α|≤k

∫
Ω
|Dαu|p dx

)1/p
1 ≤ p <∞∑

|α|≤k ess supΩ |Dαu| p =∞.
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Remark 2.20. The norm ||u||Wk,p(Ω) is equivalent with the norm∑
|α|≤k

(∫
Ω

|Dαu|p dx
)1/p

if 1 ≤ p ≤ ∞.

Further in the case p =∞ the norm ||u||Wk,∞(Ω) is equivalent with

max
|α|≤k

ess sup
Ω
|Dαu| = max

|α|≤k
||Dαu||L∞(Ω) .

Definition 2.21. Let ui, u ∈ W k,p(Ω). We say that ui converges to u
in W k,p(Ω) denoted by

ui → u in W k,p(Ω),

if

lim
i→∞
||u− ui||Wk,p(Ω) = 0.

Let ui, u ∈ W k,p
loc (Ω). We say that ui converges to u locally inW k,p(Ω)

denoted by

ui → u in W k,p
loc (Ω),

if

lim
i→∞
||u− ui||Wk,p(Ω′) = 0

for every Ω′ ⋐ Ω.

The space C1(Ω) is not complete with respect to the Sobolev norm:
to see this approximate in Example 2.7 the weak derivative by a smooth
function vi in L

p. Then by integrating vi, we obtain ui ∈ C1((0, 2)) so
that

ui → u in W 1,p((0, 2)),

but clearly u /∈ C1((0, 2)). However, the Sobolev space ’fixes’ this issue.

Theorem 2.22. The Sobolev space W k,p(Ω) is a Banach space.

Proof. First we check that ||u||Wk,p(Ω) is a norm.

(1) ||u||Wk,p(Ω) = 0 ⇐⇒ u = 0 a.e. in Ω
”⇒”
||u||Wk,p(Ω) = 0 implies that ||u||Lp(Ω) = 0 and this implies by

Chebysev’s inequality (see Measure and integration 1) that u =
0 a.e. in Ω.
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”⇐”
Suppose that u = 0 a.e. in Ω. Then

0 =

∫
Ω

uDαφdx = (−1)|α|
∫
Ω

0φdx

for every φ ∈ C∞
0 (Ω), i.e. Dαu = 0.

(2) ||λu||Wk,p(Ω) = |λ| ||u||Wk,p(Ω) is clear.

(3) Let (1 ≤ p <∞, if p =∞ a similar proof applies). Then

||u+ v||Wk,p(Ω) ≤
( ∑

|α|≤k

||Dαu+Dαv||pLp(Ω)

)1/p
Minkowski

≤
( ∑

|α|≤k

(
||Dαu||Lp(Ω) + ||D

αv||
)p
Lp(Ω)

)1/p
Minkowski for |·|p

≤
( ∑
|α|≤k

||Dαu||pLp(Ω)

)1/p
+
( ∑
|α|≤k

||Dαv||pLp(Ω)

)1/p
.

Next we show that if ui is a Cauchy sequence in W k,p(Ω), then it
converges in W k,p(Ω) i.e. W k,p(Ω) is complete. To this end, let ui be a
Cauchy sequence in W k,p(Ω).
Claim: Dαui is a Cauchy sequence in Lp(Ω) for each α, |α| ≤ k.

Proof: This follows by fixing ε > 0 and observing that

||Dαui −Dαuj||Lp(Ω) ≤ ||ui − uj||Wk,p(Ω) < ε

whenever i, j are large enough, since ui is a Cauchy sequence inW
k,p(Ω).///

The space Lp is complete and thus there exists uα ∈ Lp(Ω) such that

Dαui → gα in Lp(Ω).

In particular for α = 0

ui → u in Lp(Ω).

Claim: gα is the weak derivative Dαu
Proof: Let φ ∈ C∞

0 (Ω)

1

p
+

1

q
= 1, p, q ≥ 1

and observe that∣∣∣∣∫
Ω

(u− ui)Dαφdx

∣∣∣∣ Hölder

≤
( ∫

Ω

|u− ui|p dx
)1/p( ∫

Ω

|Dαφ|q dx
)1/q → 0

(2.3)



16 PDE 2

by Lp convergence. Thus∫
Ω

uDαφdx
(2.3)
= lim

i

∫
Ω

uiD
αφdx

= lim
i
(−1)|α|

∫
Ω

Dαuiφdx

sim to (2.3)
= (−1)|α|

∫
Ω

gαφdx.

This completes the proof of the auxiliary claim.///
We have shown that Dαu := gα ∈ Lp(Ω) exists and

Dαui → gα = Dαu in Lp(Ω)

as desired. □

Remark 2.23 (Warning). The Sobolev space W k,p(Ω) is not compact
in the sense that from

||ui||Wk,p(Ω) ≤ C <∞ (2.4)

it does not follow that there would be u ∈ W k,p(Ω) and a subsequence
such that

ui → u in W k,p(Ω).

If this were true some existence results would be much easier. For
example, the functions

ui : (0, 2)→ R, ui(x) =


0 0 < x ≤ 1

(x− 1)i 1 ≤ x ≤ 1 + 1/i

1 1 + 1/i < x < 2

(2.5)

are in W 1,1((0, 2)) and furthermore

||ui||W 1,1((0,2)) ≤ 2.

However, there is no in W 1,1((0, 2)) convergent subsequence. If there
was a limit, it should be (to have even L1 convergence)

u(x) =

{
0 0 < x ≤ 1

1 1 < x < 2

but this is not in W 1,1((0, 2)).
When p > 1, W k,p(Ω) is a reflexive Banach space and thus from (2.4)

it follows that there is weakly convergent subsequence ui (consequence
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of Banach-Alaoglu’s theorem). Especially, there is the weak limit u ∈
W k,p(Ω) such that

||u||Wk,p ≤ lim inf
i
||ui||Wk,p .

We omit the details here but observe that (2.5) shows that this fails in
the case p = 1. By modifying the example to be

ui(x) =


0 0 < x ≤ 1

(x− 1)
√
i 1 ≤ x ≤ 1 + 1/i

1/
√
i 1 + 1/i < x < 2,

we have ui ∈ W 1,2((0, 2)), ||ui||W 1,2((0,2)) ≤ C and

ui → u weakly in W 1,2((0, 2)),

where u = 0. It clearly holds that

0 = ||u||W 1,2((0,2)) ≤ lim inf
i
||ui||W 1,2((0,2)) .

Observe carefully that strong convergence does not hold

ui ↛ u in W 1,2((0, 2)).

2.4. Approximations. Below we denote

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}

which is an open set by continuity of dist(x, ∂Ω).

Definition 2.24 (Standard mollifier). Let

η : Rn → R, η(x) =

{
Ce1/(|x|

2−1) |x| < 1

0 |x| ≥ 1

where C is chosen so that ∫
Rn

η dx = 1.

Then we set for ε > 0

ηε(x) :=
1

εn
η(
x

ε
)

which is called a standard mollifier.

Remark 2.25. Observe that

ηε ∈ C∞
0 (Rn), spt ηε ⊂ B(0, ε)
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and ∫
Rn

ηε(x) dx =
1

εn

∫
Rn

η(
x

ε
) dx

y=x/ε,εn dy= dx
=

∫
Rn

η(y) dy = 1.

Definition 2.26 (Standard mollification). Let

f : Ω→ [−∞,∞], f ∈ L1
loc(Ω).

Then we define the standard mollification for f by

fε : Ωε → R, fε := ηε ∗ f,

where ηε ∗ f =
∫
Ω
ηε(x− y)f(y) dy denotes the convolution for x ∈ Ωε.

Theorem 2.27. The standard mollification has the following properties
(f ∈ L1

loc(Ω) unless otherwise specified)

(1)

Dαfε = f ∗Dαηε in Ωε

and

fε ∈ C∞(Ωε).

(2) Let f ∈ Lp(Ω). Then

fε → f a.e. in Ω.

(3) If f ∈ C(Ω), then

fε → f, uniformly in compact subsets of Ω.

(4) If f ∈ Lp
loc(Ω) for 1 ≤ p ≤ ∞, then for Ω′ ⋐ Ω′′ ⋐ Ω

||fε||Lp(Ω′) ≤ ||f ||Lp(Ω′′)

for small enough ε > 0, and for 1 ≤ p <∞

fε → f in Lp
loc(Ω).

Warning: The convergence does not hold for p =∞.
(5) If f ∈ W k,p

loc (Ω) for 1 ≤ p ≤ ∞, k ∈ N, then

Dαfε = ηε ∗Dαf in Ωε.

(6) If f ∈ W k,p
loc (Ω), for 1 ≤ p <∞, k ∈ N, then

fε → f in W k,p
loc (Ω).
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Proof. (1) Let

x ∈ Ωε, ei = (0, . . . , 1︸︷︷︸
ith

, . . . , 0)

and h > 0 such that x+ hei ∈ Ωε. Intuitive idea is

∂fε
∂xi

(x) =

∫
Ω

∂ηε(x− y)
∂xi

f(y) dy.

To make this rigorous we would like to deduce

∂fε
∂xi

(x) = lim
h→0

fε(x+ hei)− fε(x)
h

= lim
h→0

1

h

(∫
Ω′
ηε(x+ hei − y)f(y) dy −

∫
Ω′
ηε(x− y)f(y) dy

)
DOM,below

=
1

εn

∫
Ω′
lim
h→0

1

h

(
η(
x+ hei − y

ε
)− η(x− y

ε
)
)
f(y) dy

=

∫
Ω′

∂ηε(x− y)
∂xi

f(y) dy

=
∂ηε
∂xi
∗ f

(2.6)

where B(x + hei, ε) ∪ B(x, ε) ⊂ Ω′ ⋐ Ω. For this we need
to calculate the limit inside the integral and to look for an
integrable upper bound to be able to use DOM:
Claim 1:

1

h

(
η(
x+ hei − y

ε
)− η(x− y

ε
)
)
→ 1

ε

∂η

∂xi
(
x− y
ε

).

Proof: This can be seen to hold by setting

ψ(x) = η(
x− y
ε

)

and the limit is

∂ψ

∂xi
(x) =

1

ε

∂η

∂xi
(
x− y
ε

). ///

Claim 2: 1
h

(
η(x+hei−y

ε
) − η(x−y

ε
))f(y) has an integrable upper

bound in Ω′.
Proof:
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ψ(x+ hei)− ψ(x) =
∫ h

0

∂

∂t
ψ(x+ tei) dt

=

∫ h

0

Dψ(x+ tei) · ei dt

Thus

|ψ(x+ hei)− ψ(x)| ≤ h ||Dψ||L∞(Ω)

and∣∣∣∣1h(η(x+ hei − y
ε

)− η(x− y
ε

))f(y)

∣∣∣∣ ≤ ||Dψ||L∞(Ω) |f(y)| ∈ L
1(Ω′). ///

Thus the use of DOM in (2.6) was correct and the proof is
complete. A similar argument shows that for every multi-index
α, Dαfε exists and

Dαfε = Dαηε ∗ f.

Moreover, the convolution on the RHS is continuous (ex). Now,
repeating the argument for the higher derivatives of fε ∈ C∞(Ωε)
implies the result.

(2) Let x ∈ Ω′ ⋐ Ω so that the convolution below is well defined
for a small enough ε, recall

∫
Rn ηε dy = 1, and estimate

|fε(x)− f(x)| =
∣∣∣∣∫

Ω

ηε(x− y)f(y) dy − f(x)
∣∣∣∣

=

∣∣∣∣∫
Ω

ηε(x− y)(f(y)− f(x)) dy
∣∣∣∣

≤ ||η||L∞(Rn)

1

εn

∫
B(x,ε)

|f(y)− f(x)| dy

≤ C||η||L∞(Rn)

∫
B(0,ε)

|f(y)− f(x)| dy *→ 0

(2.7)

a.e. in Ω, where at * we used Lebesgue’s differentiation theo-
rem. Above

∫
B(0,ε)

. . . dy := 1
|B(0,ε)|

∫
B(0,ε)

. . . dy.

(3) Let Ω′ ⋐ Ω′′ ⋐ Ω. Then f is uniformly continuous on a compact

subset Ω
′′
. Let ε > 0 be small enough so that for x ∈ Ω′ we

have B(x, ε) ⊂ Ω′′. By uniform continuity, for any δ > 0, there
exists ε > 0 such that

|x− y| < ε⇒ |f(x)− f(y)| < δ
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for any x, y ∈ Ω
′′
. Then by this and (2.7), we have

|fε(x)− f(x)| ≤ C||η||L∞(Rn)

∫
B(x,ε)

|f(y)− f(x)| dy

≤ C||η||L∞(Rn)

∫
B(x,ε)

δ dy

≤ C ||η||L∞(Rn) δ

independent of x ∈ Ω′ for all small enough ε.

(4) Let 1 ≤ p < ∞ (bound in the case p = ∞ is straightforward)
and x ∈ Ω′ ⋐ Ω′′ ⋐ Ω. Then

|fε(x)| =
∣∣∣∣∫

B(x,ε)

ηε(x− y)f(y) dy
∣∣∣∣

≤
∫
B(x,ε)

ηε(x− y)1−1/pηε(x− y)1/p|f(y)| dy

Hölder

≤
(∫

B(x,ε)

ηε(x− y) dy
)(p−1)/p

︸ ︷︷ ︸
1

(∫
B(x,ε)

ηε(x− y)|f(y)|p dy
)1/p

.

We apply this estimate together with Fubini’s/Tonelli’s theorem
(R2n measurability ok). Thus, whenever ε > 0 is small enough,∫

Ω′
|fε(x)|p dx ≤

∫
Ω′

∫
B(x,ε)

ηε(x− y)|f(y)|p dy dx

=

∫
Ω′

∫
Ω′′
ηε(x− y)|f(y)|p dy dx

Fubini
=

∫
Ω′′

∫
Ω′
ηε(x− y)|f(y)|p dx dy

=

∫
Ω′′
|f(y)|p

∫
Ω′
ηε(x− y) dx dy

≤
∫
Ω′′
|f(y)|p

∫
Rn

ηε(x− y) dx︸ ︷︷ ︸
1

dy

=

∫
Ω′′
|f(y)|p dy.

It remains to show that fε → f in Lp
loc(Ω). Recall (not

proven here) that C(Ω′′) is dense in Lp(Ω′′) ie. for any f ∈
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Lp(Ω′′) and δ > 0, there exists g ∈ C(Ω′′) such that( ∫
Ω′′
|f − g|p dy

)1/p
< δ/3.

From this and the beginning of the proof, we deduce( ∫
Ω′
|f − fε|p dx

)1/p
Minkowski

≤
( ∫

Ω′
|f − g|p dx

)1/p
+
( ∫

Ω′
|g − gε|p dx

)1/p
+
( ∫

Ω′
|gε − fε|p dx

)1/p
≤ δ/3 +

( ∫
Ω′
|g − gε|p dx

)1/p
+
( ∫

Ω′′
|g − f |p dx

)1/p
≤ δ/3 +

( ∫
Ω′
|g − gε|p dx

)1/p
+ δ/3

≤ δ/3 + δ/3 + δ/3,

where the last inequality follows from fact we proved earlier:
for continuous functions the convergence is uniform and thus( ∫

Ω′
|g − gε|p dx

)1/p ≤ sup
x∈Ω′
|g − gε||Ω′|1/p ≤ δ/3

for small enough ε.

(5) Exercise.
(6) Exercise.

□

2.5. Global approximation in Sobolev space. We already stated
in Theorem 2.27 (6) that Sobolev functions can be estimated locally
by mollifying. At the vicinity of the boundary this does not hold as
such since we need some space to mollify. To establish a global approx-
imation the idea is to take smaller and smaller ε when approaching the
boundary so that B(x, ε(x)) ⊂ Ω always holds.

Theorem 2.28. Let u ∈ W k,p(Ω) for some 1 ≤ p <∞. Then there is
a sequence ui ∈ C∞(Ω) ∩W k,p(Ω) of functions such that

ui → u in W k,p(Ω).

Proof. We define

Ω0 = ∅
Ωi = {x ∈ Ω : dist(x, ∂Ω) > 1/i} ∩B(0, i)
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and observe that Ωi are bounded sets such that Ω0 ⋐ Ω1 ⋐ . . . ⋐ Ω
and

Ω =
∞⋃
i=1

Ωi.

Claim: There are ξi ∈ C∞
0 (Ωi+2 \ Ωi−1) such that

0 ≤ ξi ≤ 1,
∞∑
i=1

ξi = 1 in Ω.

This is called partition of unity.
Proof: Clearly we can choose functions ξ̃i ∈ C∞

0 (Ωi+2 \Ωi−1) such that

0 ≤ ξ̃i ≤ 1, and ξ̃i = 1 in Ωi+1 \ Ωi.

We set

ξi(x) =
ξ̃i(x)∑∞
j=1 ξ̃j(x)

, i = 1, . . .

Observe that for any fixed x ∈ Ω, only three terms in the sum will be
nonzero. Similarly ξi is nonzero at the most for three indices. Then by∑∞

i=1 ξi(x) =
∑∞

i=1
ξ̃i(x)∑∞

j=1 ξ̃j(x)
= 1 the claim follows.///

We continue with the original proof. By Theorem 2.17 (4) ξiu ∈
W k,p(Ω) and

spt(ξiu) ⊂ Ωi+2 \ Ωi−1.

Hence for small enough εi

ηεi ∗ (ξiu) ∈ C∞
0 (Ωi+2 \ Ωi−1)

and

||ηεi ∗ (ξiu)− ξiu||Wk,p(Ω) ≤
δ

2i
.

We define

v =
∞∑
i=1

ηεi ∗ (ξiu).



24 PDE 2

Then it holds that v ∈ C∞(Ω) because at each point x ∈ Ω there are
at the most three smooth functions that are nonzero in the sum. Then

||v − u||Wk,p(Ω)

∑
ξi = 1
=

∣∣∣∣∣
∣∣∣∣∣

∞∑
i=1

ηεi ∗ (ξiu)−
∞∑
i=1

ξiu

∣∣∣∣∣
∣∣∣∣∣
Wk,p(Ω)

≤
∞∑
i=1

||ηεi ∗ (ξiu)− ξiu||Wk,p(Ω)

≤
∞∑
i=1

δ

2i
≤ δ. □

Corollary 2.29 (Approximation characterization of the Sobolev space).

u ∈ W k,p(Ω)

if and only if there exists a sequence ui ∈ C∞(Ω) such that

ui → u in W k,p(Ω).

Proof. ”⇒”: This follows from the previous theorem.
”⇐”: ui is a Cauchy sequence, and since W k,p(Ω) is a Banach space
by Theorem 2.22, it follows that u ∈ W k,p(Ω). □

In other words: W k,p(Ω) can be characterized as a completion of
C∞(Ω) (or

(
C∞(Ω), ||·||Wk,p(Ω)

)
to be more precise).

2.6. Sobolev spaces with zero boundary values: W k,p
0 (Ω). Above,

we showed thatW k,p(Ω) can be characterized as a completion of C∞(Ω).
By following this idea, we define Sobolev spaces with zero boundary
values as a completion of C∞

0 (Ω).

Definition 2.30. u ∈ W k,p
0 (Ω) if there exists a sequence ui ∈ C∞

0 (Ω)
such that

ui → u in W k,p(Ω).

Remark 2.31 (Purpose). u ∈ W k,p
0 (Ω) has ”zero boundary values in

the Sobolev sense”. Later, we want to set boundary values for weak
solutions of PDEs: given v ∈ W 1,p(Ω), we say that u takes boundary
values v in the ”Sobolev sense” if

u− v ∈ W 1,p
0 (Ω).

Remark 2.32 (Warning). The regularity of Ω affect the outcome,
and W 1,p

0 (Ω) functions do not always look what one might intuitively
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expect by thinking smooth functions with zero boundary values. Set
Ω = B(0, 1) \ {0}. Then for

u : Ω→ R, u(x) = dist(x, ∂B(0, 1)) = 1− |x|

it holds that u ∈ W 1,p
0 (Ω) whenever p < n.

Reason (with omitting some details): Choose a cut-off function ξε ∈
C∞

0 (B(0, 1)), 0 ≤ ξi ≤ 1 such that ξε(x) = 1 in B(0, ε) and in B(0, 1)\
B(0, 1 − ε), ξε = 0 in B(0, 1 − 2ε) \ B(0, 2ε) and |Dξε| ≤ C/ε. Then
(1− ξε)u ∈ C∞

0 (Ω) and

(1− ξε)u→ u in W 1,p(Ω)

as ε → 0, whenever p < n. Indeed, by MON (=Lebesgue’s monotone
convergence thm) (1− ξε)u → u in Lp(Ω) and we may concentrate on
showing that ∂

∂xi
((1 − ξε)u) → ∂u

∂xi
in Lp(Ω). To see this, we calculate

using Theorem 2.17∫
Ω

∣∣∣∣ ∂∂xi ((1− ξε)u)− ∂u

∂xi

∣∣∣∣p dx
=

∫
Ω

∣∣∣∣−∂ξε∂xi
u+ (1− ξε)

∂u

∂xi
− ∂u

∂xi

∣∣∣∣p dx
≤ C

∫
B(0,2ε)

∣∣∣∣∂ξε∂xi

∣∣∣∣p dx+ C

∫
B(0,1)\B(0,1−2ε)

∣∣∣∣∂ξε∂xi

∣∣∣∣p(1− |x|)p dx
+ C

∫
Ω

∣∣∣∣ξε ∂u∂xi
∣∣∣∣p dx

≤ C

∫
B(0,2ε)

|Dξε|p dx+ Cε1−p+p + C ||Du||L∞(Ω)︸ ︷︷ ︸
=1

∫
Ω

|ξε|p dx

≤ Cεn/εp + Cε+ C(2ε+ (2ε)n)→ 0,

when ε→ 0 and p < n.
The problem in this example is that {0} is too small to be ”seen”

by W 1,p(Ω) function when p < n. Let us also remark that Lebesgue
measure is not the most accurate gauge to measure smallness of sets in
the Sobolev theory. In a sense right gauge is so called p-capacity.

The following lemma shows that when considering Sobolev spaces
over the whole Rn, W 1,p

0 (Rn) coincides with W 1,p(Rn).

Lemma 2.33. W 1,p
0 (Rn) = W 1,p(Rn).

Proof. Exercise. □
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2.7. Properties of W 1,p(Ω), 1 ≤ p <∞.

Lemma 2.34 (Chain rule). Let f ∈ C1(R), ||f ′||L∞(R) < ∞, and

u ∈ W 1,p(Ω). Then

∂f(u)

∂xj
= f ′(u)

∂u

∂xj
, j = 1, . . . , n

a.e. in Ω, and where ∂u
∂xj
, ∂f(u)

∂xj
denotes the weak derivative.

Proof. We have proven that we can choose ui ∈ C∞(Ω)∩W 1,p(Ω) such
that

ui → u in W 1,p(Ω).

Claim: For any φ ∈ C∞
0 (Ω)∫

Ω

f(u)
∂φ

∂xj
dx = lim

i→∞

∫
Ω

f(ui)
∂φ

∂xj
dx.

Proof: Let 1 < p < ∞ (the case p = 1 is similar). Then since 1/p +
(p− 1)/p = 1, we have∣∣∣∣∫

Ω

f(u)
∂φ

∂xj
dx−

∫
Ω

f(ui)
∂φ

∂xj
dx

∣∣∣∣
≤
∫
Ω

|f(u)− f(ui)||Dφ| dx

Hölder

≤
( ∫

Ω

|f(u)− f(ui)|p dx
)1/p( ∫

Ω

|Dφ|p/(p−1) dx
)(p−1)/p

*

≤ ||f ′||L∞(R)
( ∫

Ω

|u− ui|p dx
)1/p( ∫

Ω

|Dφ|p/(p−1) dx
)(p−1)/p → 0,

where * follows from |f(u)− f(ui)| =
∣∣∣∫ u

ui
f ′(t) dt

∣∣∣ ≤ ||f ′||L∞(R) |ui − u|.///∫
Ω

f(u)
∂φ

∂xj
dx = lim

i→∞

∫
Ω

f(ui)
∂φ

∂xj
dx

calc for smooth functions
= − lim

i→∞

∫
Ω

f ′(ui)
∂ui
∂xj

φdx

*
= −

∫
Ω

lim
i→∞

f ′(ui)
∂ui
∂xj

φdx

= −
∫
Ω

f ′(u)
∂u

∂xj
φdx.
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Since the LHS above is as in the definition of the weak derivative of
∂f(u)
∂xj

, the proof is complete. At * we used∣∣∣∣∫
Ω

(f ′(ui)
∂ui
∂xj
− f ′(u)

∂u

∂xj
)φdx

∣∣∣∣
=

∣∣∣∣∫
Ω

(f ′(ui)
∂ui
∂xj
− f ′(ui)

∂u

∂xj
+ f ′(ui)

∂u

∂xj
− f ′(u)

∂u

∂xj
)φdx

∣∣∣∣
=

∣∣∣∣∫
Ω

f ′(ui)(
∂ui
∂xj
− ∂u

∂xj
)φ+ (f ′(ui)− f ′(u))

∂u

∂xj
φdx

∣∣∣∣→ 0.

The first term converges because of Hölder’s inequality and the second
by the fact that since ui → u in Lp we can choose a.e. converging
subsequence to u. Moreover, as f ′ is continuous, also f ′(ui) → f ′(u)
a.e., and the conditions of DOM are satisfied. □

Theorem 2.35. If u ∈ W 1,p(Ω), then recalling u+ = max(u, 0) and
u− = −min(u, 0), we have u+, u−, |u| ∈ W 1,p(Ω) and

Du+ =

{
Du a.e. in {x ∈ Ω : u(x) > 0}
0 a.e. in {x ∈ Ω : u(x) ≤ 0}

Du− =

{
−Du a.e. in {x ∈ Ω : u(x) < 0}
0 a.e. in {x ∈ Ω : u(x) ≥ 0}

and

D|u| =


Du a.e. in {x ∈ Ω : u(x) > 0}
0 a.e. in {x ∈ Ω : u(x) = 0}
−Du a.e. in {x ∈ Ω : u(x) < 0}.

Proof. We aim at using the previous theorem for a suitable f . Let

fε(s) =

{√
s2 + ε2 − ε s ≥ 0

0 s < 0.

It holds that fε ∈ C1(R) and limε→0 fε(s) = f(s), where

f(s) =

{
s s ≥ 0

0 s < 0.

Also observe that

||f ′
ε||L∞(R) <∞.

Thus by Lemma 2.34∫
Ω

fε(u)
∂φ

∂xj
dx = −

∫
Ω

f ′
ε(u)

∂u

∂xj
φdx
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for every φ ∈ C∞
0 (Ω). Observe that

lim
ε→0

fε(u) = u+ in Ω

and

lim
ε→0

f ′
ε(u(x)) =

{
1 in {x ∈ Ω : u(x) > 0}
0 in {x ∈ Ω : u(x) ≤ 0}.

By DOM ∫
Ω

u+
∂φ

∂xj
dx =

∫
Ω

lim
ε→0

fε(u)
∂φ

∂xj
dx

= lim
ε→0

∫
Ω

fε(u)
∂φ

∂xj
dx

prev. lemma
= lim

ε→0
−
∫
Ω

f ′
ε(u)

∂u

∂xj
φdx

DOM,||f ′
ε||L∞<C
= −

∫
Ω

lim
ε→0

f ′
ε(u)

∂u

∂xj
φdx

= −
∫
{x∈Ω :u(x)>0}

∂u

∂xj
φdx.

This proves the first part of the claim. The second and the third follow
by observing

u− = (−u)+ and |u| = u+ + u−. □

Corollary 2.36. Let u, v ∈ W 1,p(Ω) and λ ∈ R. Then

min(u, v),max(u, v) ∈ W 1,p(Ω),

and if Ω bounded

min(u, λ) ∈ W 1,p(Ω)

and

Dmin(u, λ) =

{
Du a.e. in {x ∈ Ω : u(x) < λ}
0 a.e. in {x ∈ Ω : u(x) ≥ λ}.
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Proof.

max(u, v) =

{
u, {x ∈ Ω : u(x) ≥ v(x)}
v, {x ∈ Ω : u(x) < v(x)}

=

{
1
2
(u+ v + (u− v)), {x ∈ Ω : u(x) ≥ v(x)}

1
2
(u+ v − (u− v)), {x ∈ Ω : u(x) < v(x)}

=
1

2
(u+ v + |u− v|)

and

min(u, v) =
1

2
(u+ v − |u− v|). □

Corollary 2.37. Let u ∈ W 1,p(Ω) and λ > 0. Then for

uλ := min(max(u,−λ), λ)) =


λ {x ∈ Ω : u(x) ≥ λ}
u {x ∈ Ω : λ < u(x) < λ}
−λ {x ∈ Ω : u(x) ≤ λ}

we have

uλ → u in W 1,p(Ω)

when λ→∞.

Proof. Exercise. □

Theorem 2.38. If u, v ∈ W 1,p(Ω) ∩ L∞(Ω), then uv ∈ W 1,p(Ω) ∩
L∞(Ω), and

∂(uv)

∂xj
=

∂u

∂xj
v + u

∂v

∂xj

almost everywhere in Ω.

Proof. Exercise: The derivatives in the statement denote weak deriva-
tives, so start from the integral definition and use similar techniques
as in Lemma 2.34. □

2.8. Difference quotient characterization of Sobolev spaces.

Definition 2.39. Let u ∈ L1
loc(Ω) and Ω′ ⊂ Ω and ei = (0, . . . , 1︸︷︷︸

ith

, 0, . . . , 0).

Then difference quotient of u to direction ei is

Dh
i u(x) :=

u(x+ hei)− u(x)
h

for x ∈ Ω′ and |h| < dist(Ω′, ∂Ω). Further, we denote

Dhu = (Dh
1u, . . . , D

h
nu).
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Theorem 2.40. Let u ∈ W 1,p(Ω) for 1 ≤ p < ∞. Then there exists
C = C(n, p) > 0 such that

∣∣∣∣Dhu
∣∣∣∣
Lp(Ω′)

≤ C ||Du||Lp(Ω)

for every Ω′ ⋐ Ω and |h| < dist(Ω′, ∂Ω). Here
∣∣∣∣Dhu

∣∣∣∣
Lp(Ω′)

:=
∣∣∣∣ ∣∣Dhu

∣∣ ∣∣∣∣
Lp(Ω′)

.

Proof. Let first u ∈ C∞(Ω) ∩W 1,p(Ω). Then

|u(x+ hei)− u(x)| =
∣∣∣∣∫ h

0

∂

∂t
u(x+ tei) dt

∣∣∣∣
=

∣∣∣∣∫ h

0

Du(x+ tei) · ei dt
∣∣∣∣

=

∣∣∣∣∫ h

0

∂u(x+ tei)

∂xi
dt

∣∣∣∣
≤
∫ h

0

∣∣∣∣∂u(x+ tei)

∂xi

∣∣∣∣ dt.
Thus

∣∣Dh
i u(x)

∣∣ = ∣∣∣∣u(x+ hei)− u(x)
h

∣∣∣∣
≤ 1

|h|

∫ |h|

0

∣∣∣∣∂u(x+ tei)

∂xi

∣∣∣∣ dt
Hölder

≤
( 1

|h|

∫ |h|

0

∣∣∣∣∂u(x+ tei)

∂xi

∣∣∣∣p dt)1/p

i.e.

∣∣Dh
i u(x)

∣∣p ≤ 1

|h|

∫ |h|

0

∣∣∣∣∂u(x+ tei)

∂xi

∣∣∣∣p dt.
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Using this∫
Ω′

∣∣Dh
i u(x)

∣∣p dx ≤ 1

|h|

∫
Ω′

∫ |h|

0

∣∣∣∣∂u(x+ tei)

∂xi

∣∣∣∣p dt dx
t = s|h|
=

∫
Ω′

∫ 1

0

∣∣∣∣∂u(x+ s|h|ei)
∂xi

∣∣∣∣p ds dx
Fubini
=

∫ 1

0

∫
Ω′

∣∣∣∣∂u(x+ s|h|ei)
∂xi

∣∣∣∣p dx ds
≤ sup

s∈[0,1]

∫
Ω′

∣∣∣∣∂u(x+ s|h|ei)
∂xi

∣∣∣∣p dx
≤
∫
Ω

∣∣∣∣∂u(x)∂xi

∣∣∣∣p dx.
Then we deduce the result for the full gradient∫

Ω′

∣∣Dhu(x)
∣∣p dx =

∫
Ω′

( n∑
i=1

∣∣Dh
i u(x)

∣∣2)p/2 dx
≤ C

∫
Ω′

n∑
i=1

∣∣Dh
i u(x)

∣∣p dx
= C

n∑
i=1

∫
Ω′

∣∣Dh
i u(x)

∣∣p dx
previous

≤ C
n∑

i=1

∫
Ω

∣∣∣∣∂u(x)∂xi

∣∣∣∣p dx
≤ C

∫
Ω

( n∑
i=1

∣∣∣∣∂u(x)∂xi

∣∣∣∣2)p/2 dx
= C

∫
Ω

|Du(x)|p dx.

We assumed u ∈ W 1,p(Ω) ∩ C∞(Ω), but we can extend the result for
W 1,p(Ω) by approximation. □

Theorem 2.41. Let Ω ⋐ Ω. If u ∈ Lp(Ω), 1 < p < ∞ and if there
exists a uniform constant ∣∣∣∣Dhu

∣∣∣∣
Lp(Ω′)

≤ C (2.8)

for all |h| < dist(Ω′, ∂Ω), then u ∈ W 1,p(Ω′) and

||Du||Lp(Ω′) ≤ C
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for the same constant C.

Proof. Let φ ∈ C∞
0 (Ω′). Then∫

Ω′
u(x)

φ(x+ hei)− φ(x)
h

dx

=
1

h

∫
Ω′
u(x)φ(x+ hei) dx−

1

h

∫
Ω′
u(x)φ(x) dx

y = x+ hei=
1

h

∫
Ω′
u(y − hei)φ(y) dy −

1

h

∫
Ω′
u(x)φ(x) dx

= −
∫
Ω′

u(x)− u(x− hei)
h

φ(x) dx

= −
∫
Ω′

u(x− hei)− u(x)
−h

φ(x) dx

for |h| so small that sptφ(·+ hei) ⊂ Ω′. Then∫
Ω′
uDh

i φdx = −
∫
Ω′
(D−h

i u)φdx, (2.9)

”integration by parts for difference quotients”. From the assumption
(2.8) it follows that

sup
0<|h|<dist(Ω′,∂Ω)

∣∣∣∣D−h
i u

∣∣∣∣
Lp(Ω′)

<∞,

and because Lp(Ω′), p > 1 is reflexive, there exist vi ∈ Lp(Ω′) and a
subsequence hj → 0 such that (see Remark 2.42)

D
−hj

i u→ vi weakly in Lp(Ω′).

Next we check that this weak limit is a weak derivative. Recalling (2.9),
it follows that ∫

Ω′
u
∂φ

∂xi
dx =

∫
Ω

u
∂φ

∂xi
dx

=

∫
Ω

lim
hj→0

D
hj

i φu dx

DOM
= lim

hj→0

∫
Ω

D
hj

i φu dx

(2.9)
= − lim

hj→0

∫
Ω

φD
−hj

i u dx

weak convergence
= −

∫
Ω

φvi dx.
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As a conclusion vi = ∂u
∂xi

in a weak sense, and thus u ∈ W 1,p(Ω′).
Moreover, for weakly convergent sequence, we have

||vi||Lp(Ω′) =

∣∣∣∣∣∣∣∣ ∂u∂xi
∣∣∣∣∣∣∣∣
Lp(Ω′)

≤ lim inf
hj→0

∣∣∣∣∣∣D−hj

i u
∣∣∣∣∣∣
Lp(Ω′)

≤ C.

□

Remark 2.42 (Reminder).

fj → f weakly in Lp(Ω′)

if ∫
Ω′
fjg dx =

∫
Ω′
fg dx

for every g ∈ Lp′(Ω′), where 1/p + 1/p′ = 1, 1 < p < ∞. If space is
reflexive, it is weakly sequentially compact: every bounded (in the norm
of the space) sequence has a weakly convergent subsequence. Moreover
for this sequence

||f ||Lp(Ω′) ≤ lim inf
j→∞

||fj||Lp(Ω′) .

2.9. Sobolev type inequalities. Study of Sobolev type inequalities
is divided in three intervals of exponents:

(1) 1 ≤ p < n, Gagliardo-Nirenberg-Sobolev inequality
(2) p = n
(3) n < p ≤ ∞, Morrey’s inequality

Also recall the notation 1
|B(x,r)|

∫
B(x,r)

. . . dy =
∫

B(x,r)
. . . dy.

2.9.1. Gagliardo-Nirenberg-Sobolev inequality, 1 ≤ p < n. We define a
Sobolev conjugate

p∗ =
pn

n− p
> p,

or in other words

1

p
− 1

n
=

1

p∗
.

Motivation for this form of the Sobolev conjugate is as follows: We
want to prove that an inequality of the form( ∫

Rn

|u|q dx
)1/q ≤ C

( ∫
Rn

|Du|p dx
)1/p

,
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for every u ∈ C∞
0 (Rn) and constant independent of u. Then it should

also hold for

uλ(x) = u(λx) ∈ C∞
0 (Rn), λ > 0.

For this function∫
Rn

|u(λx)|q dx y = λx
=

1

λn

∫
Rn

|u(y)|q dy

and ∫
Rn

|Duλ(x)|p dx =

∫
Rn

|λDu(λx)|p dx

y = λx
=

1

λn−p

∫
Rn

|Du(y)|p dy.

Thus we would have( 1

λn

∫
Rn

|u(y)|q dy
)1/q
≤
( 1

λn−p

∫
Rn

|Du(y)|p dy
)1/p

and constant would be independent of λ only if

λn/q+1−n/p = λ0

that is

1

p
− 1

n
=

1

q
,

i.e. q = p∗.
Next theorem shows that any function inW 1,p(Rn) can be controlled

by its gradient. Later we will see that this holds in general forW 1,p
0 (Ω)-

functions (recall that W 1,p
0 (Rn) = W 1,p(Rn)). Also observe that the

constant below does not depend on the function u itself.

Theorem 2.43 (Sobolev’s inequality, 1 ≤ p < n, Rn). Let 1 ≤ p < n.
Then there exists C = C(n, p) such that( ∫

Rn

|u|p
∗
dx
)1/p∗ ≤ C

( ∫
Rn

|Du|p dx
)1/p

.

for any u ∈ W 1,p(Rn).

Proof. By approximation argument, as shown at the end of the proof,
we may again assume that u ∈ C∞

0 (Rn). Then

u(x1, . . . , xj, . . . , xn) =

∫ xj

−∞

∂u

∂xj
(x1, . . . , tj, . . . , xn) dtj
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implying

|u(x)| ≤
∫
R
|Du(x1, . . . , xj, . . . , xn)| dxj.

Multiplying we obtain

|u(x)|n/(n−1) ≤
n∏

j=1

(∫
R
|Du(x1, . . . , xj, . . . , xn)| dxj

)1/(n−1)

and further∫
R
|u(x)|n/(n−1) dx1 ≤

(∫
R
|Du| dx1

)1/(n−1)
∫
R

n∏
j=2

(∫
R
|Du| dxj

)1/(n−1)

dx1

*

≤
(∫

R
|Du| dx1

)1/(n−1)
n∏

j=2

(∫
R

∫
R
|Du| dxj dx1

)1/(n−1)

,

in * we used generalized Hölder’s inequality, Lemma 2.45, with powers∑n−1
i=1

1
n−1

= 1. We repeat the argument for x2:∫
R

∫
R
|u(x)|n/(n−1) dx1 dx2

≤
∫
R

(∫
R
|Du| dx1

)1/(n−1)
n∏

j=2

(∫
R

∫
R
|Du| dxj dx1

)1/(n−1)

dx2

≤
(∫

R

∫
R
|Du| dx2 dx1

)1/(n−1)

·
∫
R

(∫
R
|Du| dx1

)1/(n−1)
n∏

j=3

(∫
R

∫
R
|Du| dxj dx1

)1/(n−1)

dx2

gen Hölder

≤
(∫

R

∫
R
|Du| dx1 dx2

)1/(n−1)(∫
R

∫
R
|Du| dx1 dx2

)1/(n−1)

·
n∏

j=3

(∫
R

∫
R

∫
R
|Du| dxj dx1 dx2

)1/(n−1)

Repeating the argument n times, we finally obtain∫
R
. . .

∫
R
|u(x)|n/(n−1) dx1 dx2 . . . dxn ≤

(∫
R
. . .

∫
R
|Du| dx1 dx2 . . . dxn

)n/(n−1)

.

This is the claim for p = 1.
When 1 < p < n, we apply the estimate for

v = |u|γ
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where γ is to be selected. The above result yields(∫
Rn

|u|nγ/(n−1) dx
)(n−1)/n

≤
∫
Rn

|D|u|γ| dx

=

∫
Rn

γ|u|γ−1|Du| dx

Hölder

≤ γ
(∫

Rn

|u|(γ−1)p/(p−1) dx
)(p−1)/p(∫

Rn

|Du|p dx
)1/p

Solving for γ so that on both sides u has a same power i.e.

nγ/(n− 1) = (γ − 1)p/(p− 1)

⇐⇒ nγ(p− 1) = (γ − 1)(n− 1)p

⇐⇒ γ(pn− n− np+ p) = −(n− 1)p

⇐⇒ γ =
p(n− 1)

n− p
.

Using this γ we have(∫
Rn

|u|p
∗
dx
)(n−1)/n

≤ p(n− 1)

n− p

(∫
Rn

|u|p
∗
dx
)(p−1)/p(∫

Rn

|Du|p dx
)1/p

and since

n− 1

n
− p− 1

p
=
n− p
np

we are done for C∞
0 (Rn).

We complete the proof by justifying the smoothness assumption. Let
u ∈ W 1,p(Rn) and ui a smooth sequence such that

ui → u in W 1,p(Rn).

We can also (not proven here) take a further subsequence so that

ui → u a.e.

This ui is a Cauchy sequence in Lp∗(Rn), since for any ε > 0

||ui − uj||Lp∗ (Rn)

ui − uj ∈ C∞
0 (Rn)

≤ ||D(ui − uj)||Lp(Rn) ≤ ε,

for all large enough i, j. Lp∗(Rn) is complete and thus there exists
u ∈ Lp∗(Rn) (more details at the end of the proof) such that

ui → u in Lp∗(Rn). (2.10)



PDE 2 37

Thus

||u||Lp∗ (Rn)

Minkowski

≤ ||ui − u||Lp∗ (Rn) + ||ui||Lp∗ (Rn)

≤ ||ui − u||Lp∗ (Rn) + C ||Dui||Lp(Rn)

≤ ||ui − u||Lp∗ (Rn) + C ||Dui −Du||Lp(Rn) + C ||Du||Lp(Rn)

→ 0 + 0 + C ||Du||Lp(Rn) ,

which completes the proof, in case, we can show the following: We
omitted one point above; why should Lp∗-limit also be u?
Claim: Lp∗ limit in (2.10) must be u.
Reason: Assume the contrary:

ui → g in Lp∗(Rn).

Choose a further subsequence

ui → g

pointwise a.e. and by our earlier choices

ui → u a.e.,

a contradiction. □

Corollary 2.44.

u ∈ W 1,p(Rn)⇒ u ∈ Lp(Rn) ∩ Lp∗(Rn).

Lemma 2.45 (Generalized Hölder). Let

1

p1
+ . . .+

1

pm
= 1

and suppose that u1 ∈ Lp1(Ω), . . . , um ∈ Lpm(Ω). Then∫
Ω

|u1 · . . . · um| dx ≤
m∏
i=1

(∫
Ω

|ui|pi dx
)1/pi

.

Theorem 2.46 (Sobolev’s inequality, 1 ≤ p < n, Ω). Let 1 ≤ p < n.
Then there exists C = C(n, p) such that( ∫

Ω

|u|p
∗
dx
)1/p∗ ≤ C

( ∫
Ω

|Du|p dx
)1/p

for any u ∈ W 1,p
0 (Ω).
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Proof. Idea. Similarly as before, we can concentrate on u ∈ C∞
0 (Ω)

and then obtain the general case by approximation. Now, u can be
extended by zero to have u ∈ C∞

0 (Rn). Then we can apply Theorem
2.43 to obtain the result. □

Remark 2.47 (Warning). The above theorem does not hold without
assumption u ∈ W 1,p

0 (Ω) on zero boundary values: consider a constant
function.

Corollary 2.48. Let 1 ≤ p < n. Then there exists C = C(n, p) such
that ( ∫

B(x,r)

|u|p
∗
dy
)1/p∗ ≤ Cr

( ∫
B(x,r)

|Du|p dy
)1/p

.

for any u ∈ W 1,p
0 (B(x, r)).

Theorem 2.49 (Sobolev’s inequality, n < p <∞, Ω). Let n < p <∞
and |Ω| <∞. Then there exists C = C(n, p) such that

ess sup
Ω
|u| ≤ C|Ω|(p−n)/pn

(∫
Ω

|Du|p dx
)1/p

for any u ∈ W 1,p
0 (Ω).

Proof. This result is proven later in the section of Morrey’s inequality.
□

Corollary 2.50. Let n < p <∞. Then there exists C = C(n, p) such
that

ess sup
B(x,r)

|u| ≤ Cr(p−n)/p
(∫

B(x,r)

|Du|p dy
)1/p

≤ Cr
(∫

B(x,r)

|Du|p dy
)1/p

,

for any u ∈ W 1,p
0 (B(x, r)).

Corollary 2.51. Let n < p <∞. Then there exists C = C(n, p) such
that (∫

B(x,r)

|u|q dy
)1/q
≤ Cr1−n/p+n/q

(∫
B(x,r)

|Du|p dy
)1/p

i.e. (∫
B(x,r)

|u|q dy
)1/q
≤ Cr

(∫
B(x,r)

|Du|p dy
)1/p

for any q ∈ (0,∞] and u ∈ W 1,p
0 (B(x, r)).
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The previous three results also extend to the case p =∞.

Theorem 2.52. Let p = n > 1. Then for any q ∈ (0,∞) there exists
C = C(n, q) such that(∫

B(x,r)

|u|q dy
)1/q
≤ Crp/q

(∫
B(x,r)

|Du|p dy
)1/p

i.e. (∫
B(x,r)

|u|q dy
)1/q
≤ Cr

(∫
B(x,r)

|Du|p dy
)1/p

,

for u ∈ W 1,p
0 (B(x, r)).

Proof. Exercise. □

2.9.2. Poincare’s inequalities. We denote uB(x,r) =
∫

B(x,r)
u dy.

Observe in particular that the constant in the next estimate is inde-
pendent of p.

Theorem 2.53. Let Ω ⊂ Rn be an open bounded set, and 1 ≤ p <∞.
Then there is a constant C = C(n) such that∫

Ω

|u|p dx ≤ Cp diam(Ω)p
∫
Ω

|Du|p dx,

for every u ∈ W 1,p
0 (Ω).

Proof. By approximation, we may assume u ∈ C∞
0 (Ω). Set/choose

r = diam(Ω)

y = (y1, . . . , yn) ∈ Ω,

Ω ⊂
n∏

j=1

[yj − r, yj + r]

Similarly as in the proof of Theorem 2.43

|u(x)| ≤
∫ y1+r

y1−r

|Du(t1, x2, . . . , xn)| dt1

Hölder

≤ (2r)(p−1)/p
(∫ y1+r

y1−r

|Du(x1, . . . , xn)|p dx1
)1/p

,

so that

|u(x)|p ≤ (2r)(p−1)

∫ y1+r

y1−r

|Du(x1, . . . , xn)|p dx1.
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Using this∫
Ω

|u|p dx ≤
∫ yn+r

yn−r

. . .

∫ y1+r

y1−r

|u|p dx1 . . . dxn

≤ (2r)p
∫ yn+r

yn−r

. . .

∫ y1+r

y1−r

|Du|p dx1 . . . dxn

≤ (2r)p
∫
Ω

|Du|p dx.

The case u ∈ W 1,p
0 (Ω) again by approximation. □

For simplicity, we next work in cubes:

Q = [a1, b1]× . . .× [an, bn] ⊂ Rn, (b1 − a1) = . . . = (bn − an),

l(Q) = (b1 − a1) = side length of the cube,

and

Q(x, l) = {y ∈ Rn : |yi − xi| ≤
l

2
, i = 1, . . . , n}.

Observe that |Q| = ln and diam(Q) =
√
n l.

Theorem 2.54 (1 ≤ p < ∞). Let 1 ≤ p < ∞ , Q ⊂ Rn and u ∈
W 1,p(Q). Then ∫

Q

|u− uQ|p dx ≤ lpnp

∫
Q

|Du|p dx.

Proof. By approximation argument, we may again concentrate on u ∈
C∞(Rn). Let x, y ∈ Q and approximate

|u(x)− u(y)| ≤ |u(x)− u(x1, . . . , xn−1, yn)|+ . . .+ |u(x1, y2, . . . , yn)− u(y)|

≤
n∑

i=1

∫ bi

ai

|Du(x1, . . . , xi−1, t, yi+1, . . . , yn| dt.

Thus

|u(x)− u(y)|p

≤
( n∑

i=1

∫ bi

ai

|Du(x1, . . . , xi−1, t, yi+1, . . . , yn| dt
)p

Hölder

≤
( n∑

i=1

(bi − ai)(p−1)/p
(∫ bi

ai

|Du(x1, . . . , xi−1, t, yi+1, . . . , yn)|p dt
)1/p)p

*

≤ np−1lp−1

n∑
i=1

∫ bi

ai

|Du(. . .)|p dt
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where at ∗ we used (c1 + . . . + cn)
p = (n

n
c1 + . . . + n

n
cn)

p
convexity

≤∑n
i=1(nci)

p/n.
Now∫

Q

|u− uQ|p dx =

∫
Q

∣∣∣∣u(x)− ∫
Q

u(y) dy

∣∣∣∣p dx
≤
∫
Q

∣∣∣∣∫
Q

u(x)− u(y) dy
∣∣∣∣p dx

Hölder

≤
∫
Q

∫
Q

|u(x)− u(y)|p dy dx

≤ np−1lp−1

|Q|

∫
Q

∫
Q

n∑
i=1

∫ bi

ai

|Du(. . .)|p dt dy dx

Fub+recall (...)
=

np−1lp−1

|Q|
ln+1

n∑
i=1

∫
Q

|Du(z)|p dz

≤ nplp
∫
Q

|Du(z)|p dz.

The general case u ∈ W 1,p(Q) again follows by approximation. □

Theorem 2.55 (1 ≤ p < n). Let 1 ≤ p < n and u ∈ W 1,p(B(x, r)).
Then there exists a constant C = C(n, p) > 0 such that(∫

B(x,r)

∣∣u− uB(x,r)

∣∣p∗ dy)1/p∗ ≤ C
(∫

B(x,r)

|Du|p dy
)1/p

i.e. (∫
B(x,r)

∣∣u− uB(x,r)

∣∣p∗ dy)1/p∗ ≤ Cr
(∫

B(x,r)

|Du|p dy
)1/p

.

Similarly to the above it holds that(∫
B(x,r)

∣∣u− uB(x,r)

∣∣p dy)1/p ≤ Cr
(∫

B(x,r)

|Du|p dy
)1/p

,

for 1 < p <∞.
We do not prove the result in this form, but prove a weaker result

in cubes with a bigger cube on the right hand side:

Theorem 2.56 (1 ≤ p < n). Let u ∈ W 1,p(2Q), Q := Q(z, l) ⊂ Rn

and 2Q := Q(z, 2l). Then there exists a constant C = C(n, p) > 0 such
that (∫

Q

|u− uQ|p
∗
dy
)1/p∗

≤ C
(∫

2Q

|Du|p dy
)1/p



42 PDE 2

i.e.

(∫
Q

|u− uQ|p
∗
dy
)1/p∗

≤ Cl
(∫

2Q

|Du|p dy
)1/p

.

Proof. Let η ∈ C∞
0 (Rn) be a cut-off function such that

0 ≤ η ≤ 1, |Dη| ≤ C

l
,

and

η(x) =

{
1 x ∈ Q
0 x ∈ Rn \ 2Q.

Then (u− uQ)η ∈ W 1,p
0 (2Q) and

(∫
Q

|u− uQ|p
∗
dx
)1/p∗

spt η ⊂ 2Q

≤
(∫

2Q

|(u− uQ)η|p
∗
dx
)1/p∗

Sobo ineq

≤
(∫

2Q

|D((u− uQ)η)|p dx
)1/p

≤ C
(∫

2Q

ηp|Du|p dx
)1/p

+ C
(∫

2Q

|Dη|p|u− uQ|p dx
)1/p

≤ C
(∫

2Q

|Du|p dx
)1/p

+
C

l

(∫
2Q

|u− uQ|p dx
)1/p

.



PDE 2 43

Further we may change uQ to u2Q as(∫
2Q

|u− uQ|p dx
)1/p

=
(∫

2Q

|u− uQ + u2Q − u2Q|p dx
)1/p

≤ C
(∫

2Q

|u− u2Q|p dx
)1/p

+ C
(∫

2Q

|u2Q − uQ|p dx
)1/p

≤ C
(∫

2Q

|u− u2Q|p dx
)1/p

+ C
(∫

2Q

∣∣∣∣u2Q − ∫
Q

u dy

∣∣∣∣p dx)1/p
Poincaré

≤ Cl
(∫

2Q

|Du|p dx
)1/p

+ . . .

Hölder

≤ Cl
(∫

2Q

|Du|p dx
)1/p

+ C
(∫

2Q

∫
2Q

|u− u2Q|p dy dx
)1/p

Poincaré

≤ Cl
(∫

2Q

|Du|p dx
)1/p

,

where we used the facts that
∫

Q
≤ C

∫
2Q

and
∫
2Q

1 dx = |2Q|. Combin-

ing the above estimates, l will cancel out, and we obtain the claim. □

Remark 2.57 (Warning). The global version∫
Ω

|u− uΩ|p dy ≤ C

∫
Ω

|Du|p dy.

does not (in contrast with Sobolev’s inequality) hold without regularity
assumptions on Ω. Exercise.

2.9.3. Morrey’s inequality, p > n.

Theorem 2.58. Let u ∈ W 1,p(Rn), p > n. Then there exists C =
C(n, p) such that

|u(x)− u(y)| ≤ C|x− y|1−n/p ||Du||Lp(Rn)

for almost every x, y ∈ Rn.

Proof. Let u ∈ C∞(Rn) ∩W 1,p(Rn) and x, y ∈ Q := Q(x0, l). Again

|u(x)− u(y)| =
∣∣∣∣∫ 1

0

∂u

∂t
(y + t(x− y)) dt

∣∣∣∣
≤
∣∣∣∣∫ 1

0

Du((1− t)y + tx) · (x− y) dt
∣∣∣∣.
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By using this

|u(y)− uQ| =
∣∣∣∣u(y)− ∫

Q

u dx

∣∣∣∣
≤
∫
Q

|u(y)− u(x)| dx

≤
∫
Q

∣∣∣∣∫ 1

0

Du((1− t)y + tx) · (x− y) dt
∣∣∣∣ dx

def of grad

≤ 1

|Q|

n∑
i=1

∫
Q

∫ 1

0

∣∣∣∣ ∂u∂zi ((1− t)y + tx)

∣∣∣∣ |(x− y)i|︸ ︷︷ ︸
≤l

dt dx

Fub

≤ 1

ln−1

n∑
i=1

∫ 1

0

∫
Q(x0,l)

∣∣∣∣ ∂u∂zi ((1− t)y + tx)

∣∣∣∣ dx dt.
Then we change variables z = (1− t)y+ tx i.e. z0 = (1− t)y+ tx0 and
dz = tn dx

1

ln−1

n∑
i=1

∫ 1

0

∫
Q(x0,l)

∣∣∣∣ ∂u∂zi ((1− t)y + tx)

∣∣∣∣ dx dt
≤ 1

ln−1

n∑
i=1

∫ 1

0

1

tn

∫
Q(z0,tl)

∣∣∣∣ ∂u∂zi (z)
∣∣∣∣ dz dt

Hölder

≤ 1

ln−1

n∑
i=1

∫ 1

0

1

tn

(∫
Q(z0,tl)

∣∣∣∣ ∂u∂zi (z)
∣∣∣∣p dz)1/p|Q(z0, tl)|(p−1)/p dt

Q((1− t)y + tx0, tl) ⊂ Q(x0, l)

≤ n

ln−1
||Du||Lp(Q(x0,l)

∫ 1

0

1

tn
|Q(x0, l)|(p−1)/p dt

≤ n

ln−1
||Du||Lp(Q(x0,l))

∫ 1

0

1

tn
(tl)n(p−1)/p dt

≤ nl(p−n)/p ||Du||Lp(Q(x0,l))

∫ 1

0

t−n/p dt,

where we also used n(p−1)/p−n+1 = (np−n−np+p)/p = (p−n)/p
and n(p− 1)/p−n = (np−n−np)/p = −n/p. Since, and here we use
the fact n < p, ∫ 1

0

t−n/p dt = (1− n

p
)−1 = p/(p− n),
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we get by combining the estimates that

|u(y)− uQ| ≤
np

p− n
l(p−n)/p ||Du||Lp(Q(x0,l))

≤ np

p− n
l1−n/p ||Du||Lp(Q(x0,l))

.

To establish the final estimate, we write

|u(x)− u(y)| ≤ |u(x)− uQ|+ |uQ − u(y)|

≤ 2np

p− n
l1−n/p ||Du||Lp(Q(x0,l))

.

for every x, y ∈ Q. Hence, as for every x, y ∈ Rn there is Q(x0, l) such
that l = 2|x− y| and x, y ∈ Q(x0, l), we finally have

|u(x)− u(y)| ≤ C|x− y|1−n/p ||Du||Lp(Rn) ,

for u ∈ C∞(Rn) ∩W 1,p(Rn).
We extend this result to u ∈ W 1,p(Rn) by approximation: Let uε be

a standard mollification of u. Then by the above

|uε(x)− uε(y)| ≤ C|x− y|1−n/p ||Duε||Lp(Rn) .

By passing to the limit ε→ 0 and using the results, proved for approx-
imations, we get for almost every x, y ∈ Rn (at Lebesgue points of u
to be more precise)

|u(x)− u(y)| ≤ C|x− y|1−n/p ||Du||Lp(Rn) . □

Remark 2.59. By Morrey’s inequality every u ∈ W 1,p(Rn) can be
redefined in a set of measure zero to be Hölder-continuous.

Moreover, it also holds

|u(x)− u(y)| ≤ Cr
(∫

B(z,r)

|Du|p dw
)1/p

for u ∈ W 1,p(B(z, r)), and almost all x, y ∈ B(z, r).

Remark 2.60. Let p > n. In the open set Ω the above only holds
locally in the sense that

u ∈ W 1,p(Ω)⇒ u ∈ C0,1−n/p
loc (Ω).

Ex: Find an example showing that global implication is false.



46 PDE 2

2.9.4. Lipschitz functions and W 1,∞.

Theorem 2.61. A function u : Rn → R has a Lipschitz continuous
representative if and only if u ∈ W 1,∞(Rn) .

Proof. ”⇐”: Let u ∈ W 1,∞(Rn) and sptu is compact (if not, we may
multiply by a cut-off function). By our results for approximations

uε ∈ C∞
0 (Rn)

uε → u a.e. Rn

||uε||L∞(Rn) ≤ ||u||L∞(Rn) ,

(the third one immediately follows from the def of mollification.) Thus
we may estimate

|uε(x)− uε(y)| =
∣∣∣∣∫ 1

0

Duε(y + t(x− y)) · (x− y) dt
∣∣∣∣

≤ ||Duε||L∞(Rn) |x− y|
≤ ||Du||L∞(Rn) |x− y|.

Then, we pass to the limit ε→ 0 and, since the left hand side converges
almost everywhere we obtain that

|u(x)− u(y)| ≤ ||Du||L∞(Rn) |x− y|.

”⇒”: Suppose that u is Lipschitz continuous i.e.

|u(x)− u(y)| ≤ L|x− y|

for all x, y ∈ Rn. We utilize the difference quotiens and estimate

∣∣D−h
j u(x)

∣∣ = ∣∣∣∣u(x− hej)− u(x)h

∣∣∣∣ ≤ L

and thus
∣∣∣∣D−h

j u(x)
∣∣∣∣

L2(Ω)
≤ L|Ω|

1
2 for a bounded Ω . Since L2 is

reflexive there exists a subsequence hi → 0 and functions vj ∈ L∞(Ω)
such that

D−hi
j u→ vj weakly in L2(Ω).
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Thus ∫
Ω

u
∂φ

∂xj
dx

def
=

∫
Ω

( lim
hi→0

Dhi
j φ)u dx

DOM
= lim

hi→0

∫
Ω

(Dhi
j φ)u dx

= lim
hi→0

∫
Ω

φD−hi
j u dx

=

∫
Ω

vjφdx

for every φ ∈ C∞
0 (Ω). Thus

∂u

∂xj
= −vj in the weak sense. □

2.10. Compactness theorem. Recall Remark 2.23 showing that Sobolev
space is not compact. However, Sobolev space embeds compactly to
suitable Lp spaces. This is sometimes useful for example in the exis-
tence proofs.

Theorem 2.62 (Rellich-Kontrachov compactness thm). Let B be a
ball, ui ∈ W 1,p(B), 1 ≤ p < n and ||ui||W 1,p(B) < C < ∞ for each
i = 1, 2, . . .. Then for each 1 ≤ q < p∗ there exists a subsequence and
a limit u ∈ W 1,p(B) such that

ui → u in Lq(B).

We don’t work out a detailed proof, but remark that the proof is
based on the following steps:

• By approximation, it holds that

(ui)ε → ui in Lq(B) as ε→ 0, uniformly in i.

• Thus it suffices to prove the result for mollified functions. We
show for mollified functions that

|(ui)ε| ≤
C

εn
, |D(ui)ε| ≤

C

εn+1
.

• Arzela-Ascoli’s compactness result completes the proof.

Remark 2.63. The case p > n is easier. Why?
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3. Uniformly elliptic linear PDEs

We consider the second order linear elliptic equations in the diver-
gence form, and the (Dirichlet) boundary value problem{

Lu = f in Ω

u = g on ∂Ω,

where Ω is a bounded open set, u : Ω → R is the (a priori unknown)
solution to the problem, and g : Ω → R and f : Ω → R. Finally, L
denotes a second order partial differential equation of the form

Lu(x) = −
n∑

i,j=1

Di(aij(x)Dju(x)) +
n∑

i=1

bi(x)Diu(x) + c(x)u(x)

for given coefficients aij, bi and c.

Example 3.1. Let A = I. Then λ = Λ and

− div(A(x)Du) = − div(Du) = −
n∑

i=1

DiDiu = −∆u

ie. we obtain the Laplacian studied in the course PDE1.

Example 3.2. Let bi = 0 and c = 0 and A(x) = [aij]i,j=1,2,...,n . Then

Lu = −
n∑

i,j=1

Di(aij(x)Dju(x)) = −
n∑

i=1

Di(
n∑

j=1

aij(x)Dju(x))

= − div(A(x)Du).

This explains, why we say that the equation is in the divergence form.

We always assume that A is a symmetric matrix ie. aij = aji.

Remark 3.3. Observe that here A does not depend on u or Du. If it
did, for example A = |Du|p−2I, yielding the so called p-Laplacian

∆pu := div(|Du|p−2Du) = 0,

the equation could be nonlinear. Our operator L instead is linear, ã, b̃ ∈
R

L(ãu+ b̃v) = ãLu+ b̃Lv.
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3.1. Physical interpretation. As mentioned above our divergence
form operator models diffusion as a physical interpretation. Consider
chemical which flows and diffusion takes place from the higher concen-
tration to lower. To be more precise

• t time
• x ∈ Ω ⊂ Rn location
• u(x, t) chemical concentration at place x at time t
• b ∈ Rn velocity
• a diffusion coefficient, constant for simplicity.

Also, we do not worry about smoothness etc. in the formal argument
below. In any subdomain Ω′ ⊂ Ω the the total amount of chemi-
cal
∫
Ω′ u(x, t) dx only changes because of the inward and outward flux

through the boundary

∂

∂t

∫
Ω′
u(x, t) dx︸ ︷︷ ︸

total change

= −
∫
∂Ω′

bu · ν dS︸ ︷︷ ︸
flow

−
∫
∂Ω′
−aDu · ν dS︸ ︷︷ ︸
diffusion

(3.11)

where ν = (ν1, . . . , νn) is the outward unit normal vector. The minus
sign in front of the integral on the right hand side is due to the fact that
we are using outward vector. It is natural to assume that the diffusion
is comparable to the difference in concentration of the chemical and
thus to −aDu. Recall Gauss-Green theorem∫

Ω′
Diu dx =

∫
∂Ω′

uνi dx, i = 1, 2 . . . , n.

which implies the divergence theorem for F : Ω′ → Rn F = (F1, . . . , Fn)∫
∂Ω′

F · ν dS =
n∑

i=1

∫
∂Ω′

Fiνi dS
G-G
=

n∑
i=1

∫
Ω′
DiFi dx =

∫
Ω′
divFi dx.

Thus
∂

∂t

∫
Ω′
u(x, t) dx = −

∫
∂Ω′

bu · ν dS +

∫
∂Ω′

aDu · ν dS

div-thm
= −

∫
Ω′
div(bu) dx+

∫
Ω′
a div(Du) dx.

Finally taking the time derivative inside the integral and using the fact
that the above argument holds for all Ω′ ⊂ Ω we get

ut = a∆u− div(bu).

If we have reached an equilibrium, then ∂
∂t

∫
Ω′ u(x, t) dx = 0 and we

end up with

0 = a∆u− div(bu) = a∆u− div(b)u− b ·Du,
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which is a special case of the equations we are studying. Moreover, if
we had a source/sink of the chemical then this would add

+

∫
Ω′
f dx

on the RHS of (3.11) where f is given. Moreover, decay (or creation)
of the chemical would be modelled by adding

−
∫
Ω′
cu dx

on the RHS of (3.11). Thus we would have

0 = a∆u︸︷︷︸
diffusion

− div(bu)︸ ︷︷ ︸
transport

+ f︸︷︷︸
source/sink

−cu︸︷︷︸
decay

= a∆u− b ·Du− (div(b)u+ c)u+ f.

Finally, if the diffusion coefficient is not the same constant to all the
directions, i.e. we have an anisotropic medium, then we replace aDu
by more general divergence form operator and end up with

−
n∑

i,j=1

Di(aijDju) + b ·Du+ (div(b)u+ c)u = f.

PUNCHLINE: Our equation models general diffusion, transport, de-
cay, and source/sink.

Definition 3.4 (uniformly elliptic). PDE is uniformly elliptic if there
exists constants

0 < λ ≤ Λ <∞
such that

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2

for a.e. x ∈ Ω and ξ ∈ Rn.

Our standing assumptions are (unless otherwise stated)

aij, c, bi ∈ L∞(Ω), uniform ellipticity

A symmetric, Ω open, bounded.
(3.12)

Intuitively, uniform ellipticity tells us how degenerate the diffusion
determined by the diffusion coefficients to each direction can be: dif-
fusion does not extinct or blow up. This helps in existence, regularity
etc. Uniform ellipticity tells that real (due to symmetry) eigenvalues
λi(x) of A satisfy λ ≤ λi(x) ≤ Λ.
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3.2. Weak solutions.

Example 3.5. x ∈ (0, 2) = Ω, b = 0 = c, a = 1 and

f(x) =

{
1 x ∈ (0, 1]

2 x ∈ (1, 2).

Consider the problem{
Lu = f, x ∈ Ω

u(0) = 0 = u(2).

Then solving formally in (0, 1] and (1, 2) as well as requiring that the
solution is in C1, from the equation

Lu = −u′′ =

{
1, x ∈ (0, 1]

2, x ∈ (1, 2)

we obtain

u(x) =

{
−x2

2
+ 1.25x x ∈ (0, 1]

−x2 + 2.25x− 0.5, x ∈ (1, 2).

Clearly, this is not in C2. Is this a unique solution in some sense?
Even more irregular examples are possible, see Example 3.11.

In the spirit of Hilbert’s 20th problem, to guarantee the existence of
solutions, we can extend the class of functions to be studied. These less
than C2 regular solutions are called weak solutions (in contrast with
classical solutions that are C2 and satisfy the equation pointwise).

We work in the spirit of Sobolev spaces, test the equation with
smooth test functions and integrate by part to get rid of the second
derivatives, so that only u ∈ W 1,2(Ω) is needed in the weak definition.

Let u ∈ C2(Ω), aij ∈ C1(Ω), f ∈ C(Ω) and φ ∈ C∞
0 (Ω). Then

starting from Lu = f we can calculate∫
Ω

fφ dx =

∫
Ω

(
−

n∑
i,j=1

Di(aijDju(x)) +
n∑

i=1

bi(x)Diu+ cu
)
φdx

int by parts
=

∫
Ω

( n∑
i,j=1

aijDjuDiφ+
n∑

i=1

bi(x)Diuφ+ cuφ
)
dx.(3.13)
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On the other hand, if

0 =

∫
Ω

( n∑
i,j=1

aijDjuDiφ+
n∑

i=1

biDiuφ+ cuφ− fφ
)
dx

int by parts
=

∫
Ω

(
−

n∑
i,j=1

Di(aijDju) +
n∑

i=1

biDiu+ cu− f
)
φdx

for every φ ∈ C∞
0 (Ω), then by fundamental lemma in calc var Lemma

2.9, it holds for x ∈ Ω that

−
n∑

i,j=1

Di(aijDju) +
n∑

i=1

biDiu+ cuφ− f = 0.

Observe that the right hand side of (3.13) makes sense even with
weaker assumptions, for example,

aij, bi, c ∈ L∞(Ω) and f ∈ L2(Ω)

and

u ∈ W 1,2
loc (Ω).

Definition 3.6 (Weak solution, local). The function u ∈ W 1,2
loc (Ω) is a

weak solution to Lu = f if∫
Ω

( n∑
i,j=1

aijDjuDiφ+
n∑

i=1

biDiuφ+ cuφ
)
dx =

∫
Ω

fφ dx

for every φ ∈ C∞
0 (Ω).

Remark 3.7 (Warning). This definition is useful when studying local
properties such as local regularity of solutions. However, the solutions
are not uniquely identified without fixing boundary values.

Definition 3.8 (Weak solution to the boundary value problem). Let
g ∈ W 1,2(Ω). The function u ∈ W 1,2(Ω) is a weak solution to{

Lu = f in Ω

u = g on ∂Ω

if u− g ∈ W 1,2
0 (Ω) and∫

Ω

( n∑
i,j=1

aijDjuDiφ+
n∑

i=1

biDiuφ+ cuφ
)
dx =

∫
Ω

fφ dx

for every φ ∈ C∞
0 (Ω).
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Remark 3.9. In the literature, the sums are sometimes dropped for
brevity ∫

Ω

(aijDjuDiφ+ biDiuφ+ cuφ) dx =

∫
Ω

fφ dx.

Example 3.10. Let us check that

u(x) =

{
−x2

2
+ 1.25x, x ∈ (0, 1]

−x2 + 2.25x− 0.5, x ∈ (1, 2).

is a weak solution to Example 3.5. First task is to show that u ∈
W 1,2(Ω) and u ∈ W 1,2

0 (Ω), which is left as an exercise.
Then, let ε > 0, φ ∈ C∞

0 ((0, 2))) and write∫
(0,2)

fφ dx
DOM←

∫
(0,1−ε)∪(1+ε,2)

fφ dx
class. sol x ̸=1

= −
∫
(0,1−ε)∪(1+ε,2)

(au′)′φdx

=

∫
(0,1−ε)∪(1+ε,2)

(au′)φ′ dx− a(1− ε)u′(1− ε) + 0− 0 + a(1 + ε)u′(1 + ε)

DOM, cancellation→
∫
(0,2)

(au′)φ′ dx

as ε → 0. Above the use of DOM can be justified, and at the last step
cancellation

−a(1− ε)u′(1− ε) + a(1 + ε)u′(1 + ε)→ 0

is important.
Since here u ∈ C1, a ∈ C no confusion arises even if we immediately

write∫
(0,2)

fφ dx = −
∫
(0,1)∪(1,2)

(au′)′φdx

=

∫
(0,2)

au′φ′ dx

− (a(1)u′(1)φ(1)− a(0)u′(0)φ(0))− (a(2)u′(2)φ(2)− a(1)u′(1)φ(1))

=

∫
(0,2)

au′φ′ dx,

as we did with the weak derivatives.
PUNCHLINE: The solution above is not in C2 so it is not a classical
solution but it is a weak solution.

Look next at the example Ω = B(0, 1) ⊂ Rn, n > 1. The first task,
if no boundary conditions are considered, is to show that u ∈ W 1,2

loc (Ω).
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Suppose then that there would only be a singularity at the origin and
everything is smooth elsewhere. We get by Gauss’ theorem that∫
B(0,1)\B(0,ε)

fφ dx
class., x ̸=0

= −
∫
B(0,1)\B(0,ε)

div(ADu)φdx

=

∫
∂
(
(B(0,1)\B(0,ε)

) φADu · ν dS − ∫
B(0,1)\B(0,ε)

ADu ·Dφdx

=

∫
∂B(0,ε)

φADu · ν dS −
∫
B(0,1)\B(0,ε)

ADu ·Dφdx,

where φ ∈ C∞
0 (B(0, 1)). Then it remains to verify the following con-

vergences ∫
∂B(0,ε)

φADu · ν dS → 0,∫
B(0,1)\B(0,ε)

ADu ·Dφdx→
∫
B(0,1)

ADu ·Dφdx∫
B(0,1)\B(0,ε)

fφ dx→
∫
B(0,1)

fφ dx

as ε → 0 in order to show that u is a weak solution. However, in
Example 3.12 below we follow a slightly different strategy

Example 3.11. x ∈ (0, 2) = Ω, f = 1, b = 0 = c,

a(x) =

{
1, x ∈ (0, 1]

2, x ∈ (1, 2)

Consider the problem{
Lu = f, x ∈ Ω

u(0) = 0 = u(2).

Then solving formally in (0, 1] and (1, 2) as well as requiring suitable
conditions in the middle , we obtain

u(x) =

{
−x2

2
+ 5

6
x x ∈ (0, 1]

−x2

4
+ 5

12
x+ 1

6
, x ∈ (1, 2).

Ex: Show that this is a weak solution to the above problem.
PUNCHLINE: The above solution is not in C2 or even C1 so the
weak solution does not need to have classical first derivatives. This also
highlights that the regularity of the coefficients affects the regularity of
the solution.



PDE 2 55

Example 3.12. The next example is from Serrin (Pathological solu-
tions of elliptic differential equations, 1964), which he gives for any n
but here for simplicity n = 2. Let α ∈ (0, 1), and

A =

(
a11 a12
a21 a22

)
=

 x2
1+α2x2

2

|x|2 (1− α2)x1x2

|x|2

(1− α2)x1x2

|x|2
α2x2

1+x2
2

|x|2

 .

Then coefficients are always bounded and

α2|ξ|2 ≤
2∑

i,j=1

aij(x)ξiξj ≤ |ξ|2,

(ex) and

u : B(0, 1)→ R, u(x) = |x|α−1x1

with x = (x1, x2) is a weak solution i.e.∫
B(0,1)

A(x)Du(x) ·Dφ(x) dx =

∫
B(0,1)

n∑
i,j=1

aijDjuDiφdx = 0

for all φ ∈ C∞
0 (Ω).

To see this, first show that u ∈ W 1,2(B(0, 1)) (ex). Then show that
u is a classical solution (ex) to

−
n∑

i,j=1

Di(aijDju) = 0 in B(0, 1) \ {0},

and thus ∫
B(0,1)

n∑
i,j=1

aijDjuDiφdx = 0

for every φ ∈ C∞
0 (B(0, 1) \ {0}). Then define a cut off function η ∈

C∞
0 (B(0, 2r)) such that

0 ≤ η ≤ 1, η = 1 in B(0, r), |Dη| ≤ 2

r
.

Let φ ∈ C∞
0 (B(0, 1)) and observe that (1 − η)φ ∈ C∞

0 (B(0, 1) \ {0}).
Thus

0 =

∫
B(0,1)

n∑
i,j=1

aijDjuDi((1− η)φ) dx (3.14)

=

∫
B(0,1)

n∑
i,j=1

(1− η)aijDjuDiφdx−
∫
B(0,1)

n∑
i,j=1

φaijDjuDiη dx.
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We will show that the the first term on the RHS converges to∫
B(0,1)

∑n
i,j=1 aijDjuDiφdx and the second converges to 0:

|
∫
B(0,1)

n∑
i,j=1

φaijDjuDiη dx|

≤ max
i,j
||aij||L∞(B(0,1)) ||φ||L∞(B(0,1))

n∑
i,j=1

∫
B(0,1)

|Dju||Diη| dx

def of η

≤ max
i,j
||aij||L∞(B(0,1)) ||φ||L∞(B(0,1))

2

r

n∑
i,j=1

∫
B(0,2r)

|Dju| dx

Hölder

≤ C
2

r

n∑
i,j=1

(∫
B(0,2r)

|Dju|2 dx
)1/2(∫

B(0,2r)

1 dx
)1/2

≤ C

r

(∫
B(0,2r)

|Du|2 dx
)1/2

rn/2

≤ Cr
n−2
2

(∫
B(0,2r)

|Du|2 dx
)1/2

= C
(∫

B(0,2r)

|Du|2 dx
)1/2
→ 0

as r → 0. In the last step, we used∫
B(0,2r)

|Du|2 dx =

∫
B(0,1)

χB(0,2r)|Du|2 dx
DOM→ 0

since χB(0,2r)|Du|2 → 0 a.e. and |Du|2 gives an integrable upper bound.
Here χB(0,2r) is a characteristic function, which is 1 in B(0, 2r) and 0
elsewhere.

Next we aim at using DOM for the first term on the RHS (3.14) to
have ∫

B(0,1)

n∑
i,j=1

(1− η)aijDjuDiφdx→
∫
B(0,1)

n∑
i,j=1

aijDjuDiφdx

as r → 0. This is justified by the facts

lim
r→0

(1− η) = 1 for almost every x ∈ B(0, 1)

and

|(1− η)aijDjuDiφ| ≤ max
i,j
||aij||L∞(B(0,1)) |||Dφ|||L∞(B(0,1)) |Du| ∈ L

1.

PUNCHLINE: The previous example shows that a weak solution with
just bounded coefficients is not better than Hölder continuous and to
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prove higher regularity for solutions, we need more assumptions on the
coefficients later.

Example 3.13. A modification of Serrin’s example also shows that
W 1,2

loc (Ω) is an essential assumption in the definition. Indeed, otherwise
we might lose uniqueness, local boundedness of solutions and maximum
principles which all are essential and desirable features of the theory.

Consider n = 2, 0 < ε < 1, x = (x1, x2) and u : B(0, 1)→ R

u(x) = x1|x|−1−ε.

This is a classical solution to

−
n∑

i,j=1

Di(aijDju) = 0 in B(0, 1) \ {0}

with

A =

(
a11 a12
a21 a22

)
=

 α2x2
1+x2

2

|x|2 (α2 − 1)x1x2

|x|2

(α2 − 1)x1x2

|x|2
x2
1+α2x2

2

|x|2

 ,

α =
1

ε
.

The coefficient are again bounded, and uniformly elliptic with the
constants λ = 1 and Λ = α2 (ex). It holds that (ex)

u ∈ W 1,p(B(0, 1)) if p <
2

1 + ε
.

Observe that p < 2 when 0 < ε < 1 and that

u /∈ W 1,2(B(0, 1)).

In a similar way as in the previous example we see that∫
B(0,1)

n∑
i,j=1

aijDjuDiφdx = 0 (3.15)

for every φ ∈ C∞
0 (B(0, 1)).

However, without details we state that u is not locally bounded and
does not have the standard maximum principle that we will encounter
later. Nor is there uniqueness with the fixed boundary values: indeed
solve v ∈ W 1,2(B(0, 1)) with the boundary values u on ∂B(0, 1) . Then
u− v = 0 on ∂Ω, and u− v solves (3.15), but u− v ̸≡ 0.

PUNCHLINE: Without the assumption u ∈ W 1,2 in the definition
of the weak solution, we might lose uniqueness, local boundedness of
solutions and maximum principles which all are essential and desirable
features of the theory that we will establish later.
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3.3. Existence: Hilbert space approach. For simplicity, let bi = 0
and that we look for solutions with zero boundary values i.e.

u ∈ W 1,2
0 (Ω).

The Riesz representation theorem can be used to prove existence for
weak solutions to

−
n∑

i,j=1

Di(aijDju) + cu = f

To this end, we define

⟨u, v⟩ :=
∫
Ω

( n∑
i,j=1

aijDjuDiv + cuv
)
dx.

and will show that this is an inner product in W 1,2
0 (Ω).

Lemma 3.14. There is c0 ≤ 0 such that if c ≥ c0, then ⟨·, ·⟩ is an
inner product in W 1,2

0 (Ω).

Proof. We intend to show that ⟨u, u⟩ = 0 implies u = 0 a.e. The other
properties of inner product are easier (ex).

If c ≥ c0 ≥ 0, then the proof is immediate, but we can improve the
bound for c0:

⟨u, u⟩ =
∫
Ω

( n∑
i,j=1

aijDjuDiu+ cu2
)
dx

ellipticity

≥
∫
Ω

λ|Du|2 + c0u
2 dx

Sob.-Poincaré, Thm 2.53

≥
∫
Ω

λ

2
|Du|2 +

( λ
µ2

+ c0
)
u2 dx

≥ α ||u||2W 1,2(Ω) ,

where α = min{λ/2, (c0 + λ/(2µ))}, and µ originates from
∫
Ω
u2 dx ≤

µ
∫
Ω
|Du|2 dx, µ = c diam(Ω)2. Furthermore, we require c0+λ/(2µ) > 0

which gives the condition for c0. □

Remark 3.15. If we set

|||u||| :=
√
⟨u, u⟩,
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then by the above proof |||u||| ≥ c ||u||W 1,2
0 (Ω). On the other hand

|||u|||2 =
∫
Ω

( n∑
i,j=1

aijDjuDiu+ cu2
)
dx

elliptic

≤ Λ

∫
Ω

|Du|2 dx+ ||c||L∞(Ω)

∫
Ω

u2 dx

≤ C ||u||2W 1,2
0 (Ω) .

Thus the new norm |||·||| is equivalent to ||·||W 1,2
0 (Ω).

Lemma 3.16. Let Ŵ 1,2
0 (Ω) be W 1,2

0 (Ω) with the new inner product
⟨·, ·⟩. Then

F (v) =

∫
Ω

fv dx

is a bounded linear functional in Ŵ 1,2
0 (Ω).

Proof.

|F (v)| =
∣∣∣∣∫

Ω

fv dx

∣∣∣∣
Hölder

≤
(∫

Ω

f 2 dx
)1/2(∫

Ω

v2 dx
)1/2

≤ ||f ||L2(Ω) ||v||W 1,2
0 (Ω)

≤ C ||f ||L2(Ω) |||v|||,
where at the last step, we used the equivalence of the norms. □

Theorem 3.17. There is a constant c0 ≤ 0 such that if c ≥ c0 then
Lu = f has a unique weak solution u ∈ W 1,2

0 (Ω) for every f ∈ L2(Ω).

Proof. By the previous lemma

F (v) =

∫
Ω

fv dx

is a bounded linear functional in Ŵ 1,2
0 (Ω). Moreover, Ŵ 1,2(Ω) is a

Banach space since the norms ||·||W 1,2(Ω) and |||·||| are equivalent. By
Riesz representation theorem for Hilbert spaces, there exists a unique
u ∈ Ŵ 1,2

0 (Ω) such that

F (v) = ⟨u, v⟩

=

∫
Ω

n∑
i,j=1

aijDjuDiv + cuv dx
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for every v ∈ Ŵ 1,2
0 (Ω). By the equivalence of norms we have shown

that there is u ∈ W 1,2
0 (Ω) such that∫

Ω

fφ dx =

∫
Ω

n∑
i,j=1

aijDjuDiφ+ cuφ dx

for every φ ∈ C∞
0 (Ω) ⊂ W 1,2

0 (Ω). The test function spaces C∞
0 (Ω) and

W 1,2
0 (Ω) are actually interchangeable as shown later in Lemma 3.29 so

also uniqueness holds but we discuss more about this later. □

Example 3.18. Let f ∈ L2(Ω). Then the Poisson problem{
−∆u = f in Ω

u = 0 on ∂Ω

has a unique weak solution.

Example 3.19. Consider Ω = (0, 2), c = 0 = b, f = 1 and

a(x) =

{
x x ∈ (0, 1]

1 x ∈ (1, 2)

and a problem {
Lu = f, x ∈ Ω

u(0) = 0 = u(2).

Observe that this is not uniformly elliptic.
Then by solving in (0, 1) and (1, 2) respectively the equation

1 = f = Lu = −(a(x)u′(x))′

we obtain

u(x) =

{
−x+ c1 ln(x) + c2, x ∈ (0, 1]

−1
2
x2 + c3x+ c4, x ∈ (1, 2)

One might then suggest

u(x) =

{
−x, x ∈ (0, 1]

−1
2
x2 + 2.5x− 3, x ∈ (1, 2)

as a weak solution by using the boundary conditions and requiring con-
tinuity at x = 1. However, this is not a weak solution (ex).
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Example 3.20. Also it is clear that if we consider for example the
coefficient

a(x) =

{
1, x ∈ (0, 1]

0, x ∈ (1, 2)

we lose the uniqueness because now we do not have much info about
the second derivative in the interval (1, 2).

PUNCHLINE: Uniform ellipticity is essential for the existence and
uniqueness.

Remark 3.21. • Let g ∈ W 1,2(Ω) and consider the problem{
Lu = f in Ω

u = g on ∂Ω.

Then the problem{
Lv = f − Lg in Ω

v = 0 on ∂Ω.

has a solution (Lg defines a bounded linear functional in the
Sobolev space, and our proof extends to this setting as such).
For example, for L = −∆ we have∫

Ω

Dv ·Dφdx =

∫
Ω

fφ dx−
∫
Ω

Dg ·Dφdx.

Thus u = v + g is a solution to the first problem.
• Also observe that no regularity assumptions on ∂Ω is needed.
• If we included +

∑n
i=1 biDiu to our operator, then L would not

define an inner product. In this case, finding the element u as
above is still based on Riesz representation theorem but requires
more work. This is called Lax-Milgram theorem.

Example 3.22. Consider{
−u′′(x)− π2u(x) = 1, x ∈ (0, 1)

u(0) = 0 = u(1)

does not have a solution implying, that the condition on c is necessary.
Indeed, let v(x) = sin(πx), then

B[u, v] =

∫ 1

0

u′v′ − π2uv dx

int by parts
=

∫ 1

0

−uv′′ − π2uv dx



62 PDE 2

=

∫ 1

0

uπ2 sin(πx)− π2u sin(πx) dx

= 0 ̸=
∫ 1

0

1 · sin(πx) dx

= −(cos(π1)− cos(0))/π = −(−1− 1)/π = 2/π,

i.e. we have found a test function v ∈ W 1,2
0 ((0, 1)) for which the weak

definition does not hold no matter what u is. Later we show in Lemma
3.29 that the class of test functions can be extended from C∞

0 (Ω) to
W 1,2

0 (Ω), and thus there is no weak solution to the above problem.
Looking at the proof of existence result, it fails because B[u, v] is no

longer positive definite i.e. there exists u ∈ W 1,2
0 such that B[u, u] < 0.

In particular, B[u, v] no longer gives an inner product.
On the hand, the homogenous problem{

−u′′(x)− π2u(x) = 0, x ∈ (0, 1)

u(0) = 0 = u(1)

has infinitely many solutions

u(x) = a sin(πx), a ∈ R.

PUNCHLINE: Lower pound on c is necessary.

3.4. Existence: variational method. The existence can be shown
by studying the corresponding variational integral. The variational
integral related to PDE

−
n∑

i,j=1

Di(aijDju) + cu = f

is

I(v) =
1

2

∫
Ω

(
n∑

i,j=1

aijDjvDiv + cv2) dx−
∫
Ω

fv dx

The PDE −
∑n

i,j=1Di(aijDju) + cu = f is called the Euler-Lagrange
equation of this variational integral.

Example 3.23. The variational integral corresponding to the Poisson
equation −∆u = f is

1

2

∫
Ω

|Dv|2 dx−
∫
Ω

fv dx.



PDE 2 63

Definition 3.24. A function u ∈ W 1,2
0 (Ω) is a minimizer to the vari-

ational integral if

I(u) ≤ I(v)

for every v ∈ W 1,2
0 (Ω).

Definition 3.25. Let g ∈ W 1,2(Ω). A function u ∈ W 1,2(Ω) with
u−g ∈ W 1,2

0 (Ω) is a minimizer to the variational integral with boundary
values if

I(u) ≤ I(v)

for every v ∈ W 1,2(Ω) such that v − g ∈ W 1,2
0 (Ω).

Theorem 3.26 (Dirichlet principle). If u ∈ W 1,2
0 (Ω) is a minimizer

to the variational integral I(u), then it is a weak solution to the corre-
sponding Euler-Lagrange equation.

Proof. Let φ ∈ C∞
0 (Ω) and ε > 0. Now

I(u)
u+ εφ ∈ W 1,2

0 (Ω)

≤ I(u+ εφ)

=
1

2

∫
Ω

n∑
i,j=1

aijDj(u+ εφ)Di(u+ εφ) + c(u+ εφ)2 dx−
∫
Ω

f(u+ εφ) dx

=: i(ε).

We utilize the fact that if u is a minimizer, then i(ε) has a minimum
at ε = 0 so that

i′(0) = 0.

Then

i(ε) =
1

2

∫
Ω

n∑
i,j=1

aij(DjuDiu+ εDjuDiφ+ εDjφDiu+ ε2DjφDiφ)

+
1

2

∫
Ω

c(u2 + 2εuφ+ ε2φ2) dx−
∫
Ω

f(u+ εφ) dx.

and

i′(ε) =
1

2

∫
Ω

n∑
i,j=1

aij(DjuDiφ+DjφDiu+ 2εDjφDiφ) + c(2uφ+ 2εφ2) dx

−
∫
Ω

fφ dx.
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From this

i′(0) =
1

2

∫
Ω

n∑
i,j=1

aij(DjuDiφ+DjφDiu) + c2uφ dx−
∫
Ω

fφ dx

aij = aji
=

∫
Ω

n∑
i,j=1

aijDjuDiφ+ cuφ dx−
∫
Ω

fφ dx = 0. □

Lemma 3.27. Let f ∈ L2(Ω). There is a constant c0 such that the
variational integral I(v) is bounded from below in W 1,2

0 (Ω) if c ≥ c0.
Further, we have the estimate∫

Ω

|Dv|2 dx+
∫
Ω

v2 dx ≤ c1 + c2I(v),

where c1, c2 > 0 are independent of v.

Proof. By Young’s inequality
∫
Ω
|
√
εfv/

√
ε| dx ≤ ε

2

∫
Ω
v2 dx+ 1

2ε

∫
Ω
f 2 dx,

and thus

I(v)
ell

≥
∫
Ω

λ

2
|Dv|2 + c0

2
v2 dx−

∫
Ω

|f ||v| dx

Young

≥
∫
Ω

λ

2
|Dv|2 + c0

2
v2 dx− ε

2

∫
Ω

v2 dx− 1

2ε

∫
Ω

f 2 dx

Poincaré,Thm 2.53

≥ λ

4

∫
Ω

|Dv|2 dx+ 1

2

( λ
2µ

+ c0 − ε
) ∫

Ω

v2 dx− 1

2ε

∫
Ω

f 2 dx

where we choose c0 > −λ/(2µ) and ε such that λ
2µ

+ c0− ε ≥ 0, so that

inequality holds for every v ∈ W 1,2
0 (Ω). Recall that µ is the constant

in Poincaré’s inequality.
The estimate in the claim is also build in the above proof. □

Next we show existence of a minimizer. As shown above, minimizer
is also a solution to the Euler-Lagrange equation. The following proof
does not use Hilbert space structure (unlike the first proof) and works
in the context of nonlinear equations as well.

Theorem 3.28. There is a constant c0 such that if c ≥ c0, then for any
f ∈ L2(Ω), the variational integral I(v) has a minimizer u ∈ W 1,2

0 (Ω).

Proof. By the previous lemma I(v) is bounded from below and thus

inf
v∈W 1,2

0 (Ω)
I(v)

is a finite number. By the definition of inf there exists a minimizing
sequence uk ∈ W 1,2

0 (Ω) such that

I(uk)→ inf
v∈W 1,2

0 (Ω)
I(v)
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as k →∞. Since the finite limit exists, we also have

I(uk) ≤M

for some M <∞. By this and the estimate in the previous lemma, we
have ∫

Ω

|uk|2 dx+
∫
Ω

|Duk|2 dx ≤ c1 + c2M.

Since uk and Duk are bounded in L2(Ω), there is a subsequence, still
denoted by uk such that

uk → u weakly in L2(Ω),

Duk → Du weakly in L2(Ω)n.

Since the space W 1,2
0 (Ω) is closed under weak convergence so that u ∈

W 1,2
0 (Ω).
Next we show

I(u) ≤ lim inf
k

I(uk).

To establish this, observe that a similar argument as in Lemma 3.27
implies ∫

Ω

n∑
i,j=1

aijDj(uk − u)Di(uk − u) + c(uk − u)2 dx

ell

≥
∫
Ω

λ|D(uk − u)|2 + c(uk − u)2 dx ≥ 0.

from which it follows that∫
Ω

n∑
i,j=1

aijDjukDiuk + cu2k dx

≥ 2

∫
Ω

n∑
i,j=1

aijDjukDiu+ cuku dx

−
∫
Ω

n∑
i,j=1

aijDjuDiu+ cu2 dx.
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Using this, we get

lim inf
k

∫
Ω

n∑
i,j=1

aijDjukDiuk + c(uk)
2 dx

≥ 2 lim inf
k

∫
Ω

n∑
i,j=1

aijDjukDiu+ cuku dx

−
∫
Ω

n∑
i,j=1

aijDjuDiu+ c(u)2 dx

=

∫
Ω

n∑
i,j=1

aijDjuDiu+ c(u)2 dx,

since Djuk → Dju weakly in L2(Ω). Combining this to the fact that
weak convergence implies

lim
k

∫
Ω

fuk dx =

∫
Ω

fu dx.

we obtain I(u) ≤ lim infk I(uk).
Since we originally chose uk so that limk I(uk) = infv∈W 1,2

0 (Ω) I(v), we

finally obtain

I(u) ≤ lim inf
k

I(uk)

= lim
k
I(uk)

= inf
v∈W 1,2

0 (Ω)
I(v).

Thus u ∈ W 1,2
0 (Ω) is a minimizer to the variational integral. □

3.5. Uniqueness and comparison principle. In this section we con-
sider

Lu = −
n∑

i,j=1

Di(aij(x)Dju(x)) + c(x)u(x) = f.

We start by showing that we can extend the class C∞
0 (Ω) of test

functions to W 1,2
0 (Ω).

Lemma 3.29. If u ∈ W 1,2
0 (Ω) is a weak solution to Lu = f , then∫

Ω

n∑
i,j=1

aijDjuDiv + cuv dx =

∫
Ω

fv dx

for every v ∈ W 1,2
0 (Ω).
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Proof. Let v ∈ W 1,2
0 (Ω). By definition of W 1,2

0 (Ω), we may take a
sequence φk ∈ C∞

0 (Ω) such that

φk → v in W 1,2(Ω).

By using this, (3.12), and Hölder’s inequality, we obtain∣∣∣ ∫
Ω

n∑
i,j=1

(
aijDjuDiv + cuv − fv

)
dx
∣∣∣

=
∣∣∣ ∫

Ω

n∑
i,j=1

(
aijDjuDi(v − φk) + cu(v − φk)− f(v − φk)

)
dx

+

∫
Ω

n∑
i,j=1

aijDjuDiφk + cuφk − fφk dx
∣∣∣

≤
n∑

i,j=1

||aij||L∞(Ω)

∫
Ω

|DjuDi(v − φk)| dx

+

∫
Ω

|cu(v − φk)|+ |f(v − φk)| dx+ 0

≤
n∑

i,j=1

||aij||L∞(Ω)

(∫
Ω

|Dju|2 dx
)1/2(∫

Ω

|Di(v − φk)|2 dx
)1/2

+ ||c||L∞(Ω)

(∫
Ω

u2 dx
)1/2(∫

Ω

|v − φk|2 dx
)1/2

+
(∫

Ω

f 2 dx
)1/2(∫

Ω

|v − φk|2 dx
)1/2

→ 0

as k →∞. □

Theorem 3.30 (Uniqueness). Let u1, u2 ∈ W 1,2
0 (Ω) be two weak so-

lutions. There is c0 such that if c ≥ c0 it holds almost everywhere
that

u1 = u2.

Proof. By the previous lemma,∫
Ω

n∑
i,j=1

aijDju1Div + cu1v dx =

∫
Ω

fv dx

∫
Ω

n∑
i,j=1

aijDju2Div + cu2v dx =

∫
Ω

fv dx
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for every v ∈ W 1,2
0 (Ω). By subtracting the equations∫

Ω

n∑
i,j=1

aijDj(u1 − u2)Div + c(u1 − u2)v dx = 0.

Now we choose v = (u1 − u2) ∈ W 1,2
0 (Ω) and estimate

0 =

∫
Ω

n∑
i,j=1

aijDj(u1 − u2)Di(u1 − u2) + c(u1 − u2)2 dx

≥
∫
Ω

λ|Di(u1 − u2)|2 + c(u1 − u2)2 dx.

Then ∫
Ω

c|u1 − u2|2 dx ≥ −
λ

2µ

∫
Ω

|u1 − u2|2 dx

with the choice c ≥ −λ/(2µ). Combining the facts and recalling
Poincaré’s inequality

∫
Ω
v2 dx ≤ µ

∫
Ω
|Dv|2 dx we have

0 ≥
∫
Ω

λ

2
|Di(u1 − u2)|2 +

( λ
2µ
− λ

2µ

)
(u1 − u2)2 dx

=
λ

2

∫
Ω

|Di(u1 − u2)|2 dx.

Using Poincaré’s inequality, we see that u1 = u2 a.e. □

Example 3.31. The uniform ellipticity was utilized again: Choose
Ω = (0, 2), b = 0 = c,

f(x) = a(x) =

{
1, x ∈ (0, 1]

0, x ∈ [1, 2),

and consider the problem{
Lu = f, in (0, 2),

u(0) = 0 = u(2).

Then

u1(x) =

{
−0.5x2 + x, x ∈ (0, 1]

−x2 + 2.5x− 1, x ∈ [1, 2)

and

u2(x) =

{
−0.5x2 + x, x ∈ (0, 1]

1.5− x, x ∈ [1, 2)

are weak solutions to Lu = f . (Ex)
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Theorem 3.32 (Comparison principle). Let u,w ∈ W 1,2(Ω) be weak
solutions and (u−w)+ ∈ W 1,2

0 (Ω). Then there is c0 such that if c ≥ c0
it holds that

u ≤ w in Ω.

Proof. The idea is the same as in the proof of the uniqueness. First∫
Ω

n∑
i,j=1

aijDjuDiv + cuv dx =

∫
Ω

fv dx

∫
Ω

n∑
i,j=1

aijDjwDiv + cwv dx =

∫
Ω

fv dx

for every v ∈ W 1,2
0 (Ω). By subtracting the equations∫

Ω

n∑
i,j=1

aijDj(u− w)Div + c(u− w)v dx = 0.

Now we choose v = (u− w)+ ∈ W 1,2
0 (Ω) and estimate

0 =

∫
Ω

n∑
i,j=1

aijDj(u− w)Di(u− w)+ + c(u− w)2+ dx

≥
∫
Ω

λ|Di(u− w)+|2 + c(u− w)2+ dx.

Since ∫
Ω

c(u− w)2+ dx ≥ −
λ

2µ

∫
Ω

(u− w)2+ dx

with choice c ≥ −λ/(2µ). Combining the facts and recalling Poincaré’s
inequality

∫
Ω
v2 dx ≤ µ

∫
Ω
|Dv|2 dx we have

0 ≥
∫
Ω

λ

2
|Di(u− w)+|2 +

( λ
2µ
− λ

2µ

)
(u− w)2+ dx

=
λ

2

∫
Ω

|Di(u− w)+|2 dx.

Again using Poincaré’s inequality, we see that (u− w)+ = 0 a.e., that
is u ≤ w a.e. □

PUNCHLINE: The same technique that gave us uniqueness also gives
us the comparison principle. On the other hand, comparison implies
uniqueness for solutions.
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Remark 3.33. By analyzing the above proof, we see that also the fol-
lowing holds: Let u,w ∈ W 1,2(Ω) and u and w be sub- and supersolu-
tions respectively ie.

∫
Ω

n∑
i,j=1

aijDjuDiv + cuv dx ≤
∫
Ω

fv dx

∫
Ω

n∑
i,j=1

aijDjwDiv + cwv dx ≥
∫
Ω

fv dx

for every v ≥ 0, v ∈ W 1,2
0 (Ω), and (u− w)+ ∈ W 1,2

0 (Ω). Then

u ≤ w in Ω.

PUNCHLINE: For the comparison principle (but not for uniqueness
unless both are solutions), it is enough to have sub- and supersolution
in the correct order.

3.6. Regularity.

3.6.1. Local L2-regularity. In the previous sections, we relaxed the con-
cept of a solution and observed that weak solutions are not necessarily
C2. Next we study what is the natural regularity class and which
conditions are needed to have a better regularity.

First we motivate our approach by a formal calculation. Let f ∈
L2(Ω) and u be a solution with zero bdr values to a Poisson equation

−∆u = f
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in Ω. Then ∫
Ω

f 2 dx =

∫
Ω

(∆u)2 dx

=

∫
Ω

n∑
i=1

∂2u

∂x2i

n∑
j=1

∂2u

∂x2j
dx

=
n∑

i,j=1

∫
Ω

∂2u

∂x2i

∂2u

∂x2j
dx

int by parts
= −

n∑
i,j=1

∫
Ω

∂3u

∂x2i∂xj

∂u

∂xj
dx

int by parts
=

n∑
i,j=1

∫
Ω

∂2u

∂xi∂xj

∂2u

∂xi∂xj
dx

=

∫
Ω

∣∣D2u
∣∣2 dx,

where we denoted

D2u =


∂2u
∂x2

1
. . . ∂2u

∂x1∂xn

∂2u
∂x2∂x1

. . . ∂2u
∂x2∂xn

...
. . .

...
∂2u

∂xn∂x1
. . . ∂2u

∂x2
n


and |D2u|2 =

∑n
i,j=1

(
∂2u

∂xi∂xj

)2
.

1. guess: The L2 norm of second derivatives is estimated in terms of
L2-norm of f .

Then let us differentiate the Poisson equation

∂f

∂xk
= − ∂

∂xk
∆u = −∆ ∂u

∂xk
.

Denote f := ∂f
∂xk

and u := ∂u
∂xk

ie.

−∆u = f.

Now we may apply the previous calculation to have
2. guess: L2-norm of the third derivatives of u can be estimated in
terms of L2-norm of the first derivatives of f .
3. guess: A solution u has two more derivatives than f and L2-norm
of the kth derivatives of u can be estimated in terms of L2-norm of the
k − 2 derivatives of f .
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Next we make these formal calculations rigorous for

Lu = −
n∑

i,j=1

Di(aijDju) +
n∑

i=1

biDiu+ cu.

with the uniform ellipticity condition, and open, bounded Ω.
Idea: We establish this by roughly speaking replacing derivatives of

the formal calculation by difference quotients, and carefully deriving
estimates for these.

Theorem 3.34 (local L2-regularity). Let

aij ∈ C1(Ω), bi ∈ L∞(Ω), c ∈ L∞(Ω)

and

f ∈ L2(Ω).

Further, let u ∈ W 1,2(Ω) be a weak solution to Lu = f . Then

u ∈ W 2,2
loc (Ω)

and for any Ω′ ⋐ Ω

||u||W 2,2(Ω′) ≤ C
(
||f ||L2(Ω) + ||Du||L2(Ω) + ||u||L2(Ω)

)
,

where C may depend on Ω′, Ω and aij, bi, c, but not on u.

Remark 3.35. • Observe that C is uniform over all the bound-
ary values, since we didn’t assume zero bdr values this time.
• It follows from the theorem that

Lu = fa.e.,

because if u ∈ W 2,2
loc (Ω) then∫

Ω

( n∑
i,j=1

aijDjuDiφ+
n∑

i=1

biDiuφ+ cuφ− fφ
)
dx

weak deriv.
= −

∫
Ω

( n∑
i,j=1

Di(aijDju) +
n∑

i=1

biDiu+ cu− f
)
φdx

holds for every φ ∈ C∞
0 (Ω). Then the fundamental lemma in

the calculus of variations, Lemma 2.9, implies the claim. Such
solutions are sometimes called strong solutions.
• Our earlier examples show that some regularity assumption on
aij is needed.
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Proof of Theorem 3.34. Let Ω′ ⋐ Ω′′ ⋐ Ω and choose a test function
η ∈ C∞

0 (Ω), 0 ≤ η ≤ 1 such that

η(x) =

{
1 x ∈ Ω′

0 x ∈ Ω \ Ω′′

Since u is a weak solution, for every v ∈ W 1,2
0 (Ω)

∫
Ω

n∑
i,j=1

aijDjuDiv dx =

∫
Ω

fv dx

where f = f −
∑n

i=1 biDiu− cu. We choose a test function, for h > 0
small enough

v = −D−h
k (η2Dh

ku)

where

Dh
ku(x) =

u(x+ hek)− u(x)
h

is the difference quotient introduced in Section 2.8.
Let

A := −
∫
Ω

n∑
i,j=1

aijDjuDi

(
D−h

k (η2Dh
ku
))
dx

and

B := −
∫
Ω

fD−h
k (η2Dh

ku) dx.

We first estimate A using DiD
−h
k (η2Dh

ku) = D−h
k Di(η

2Dh
ku) at the

first step, as well as the standard rules of calculus
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A = −
∫
Ω

n∑
i,j=1

aijDjuDiD
−h
k (η2Dh

ku) dx

int by parts for Dh
k=

∫
Ω

n∑
i,j=1

Dh
k

(
aijDju

)
Di(η

2Dh
ku) dx

=

∫
Ω

n∑
i,j=1

(
Dh

kaijDju+ aijD
h
kDju

)(
2ηDiηD

h
ku+ η2Dh

kDiu) dx

=

∫
Ω

n∑
i,j=1

(
Dh

kaijDju(2ηDiηD
h
ku) +Dh

kaijDju(η
2Dh

kDiu) + aijD
h
kDju(2ηDiηD

h
ku)
)
dx

+

∫
Ω

n∑
i,j=1

aijD
h
kDju(η

2Dh
kDiu) dx

= A1 + A2.

Then since |Dη|, |aij|,
∣∣Dh

kaij
∣∣ ≤ C and η2 ≤ Cη , we have

|A1| ≤ C

∫
Ω

η
(
|Du|

∣∣Dh
ku
∣∣+ |Du|∣∣Dh

kDu
∣∣+ ∣∣Dh

kDu
∣∣∣∣Dh

ku
∣∣) dx

Young

≤ ε

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx+ C(ε)

∫
Ω′′

(
|Du|2 +

∣∣Dh
ku
∣∣2) dx

≤ ε

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx+ C(ε)

∫
Ω

|Du|2 dx

where at the last step we used Theorem 2.40:
∫
Ω′′

∣∣Dh
ku
∣∣2 dx ≤ ∫

Ω
|Du|2 dx.

By uniform ellipticity

A2 =

∫
Ω

n∑
i,j=1

aijD
h
kDju(η

2Dh
kDiu) dx

≥ λ

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx.
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It remains to estimate B. We calculate

|B| =
∣∣∣∣∫

Ω

fv dx

∣∣∣∣
=

∣∣∣∣∫
Ω

fD−h
k (η2Dh

ku) dx

∣∣∣∣
=

∣∣∣∣∣
∫
Ω

(f −
n∑

i=1

biDiu− cu)D−h
k (η2Dh

ku) dx

∣∣∣∣∣
Young

≤ C(ε)

∫
Ω

(
|f |2 + |Du|2 + |u|2

)
dx

+ ε

∫
Ω

∣∣D−h
k (η2Dh

ku)
∣∣2 dx.

Next we estimate the last integral again by Theorem 2.40∫
Ω

∣∣D−h
k

(
η2Dh

ku
)∣∣2 dx ≤ ∫

Ω

∣∣D(η2Dh
ku
)∣∣2 dx

≤
∫
Ω

∣∣2ηDηDh
ku+ η2DDh

ku
∣∣2 dx

≤
∫
Ω

∣∣2ηDηDh
ku+ η2Dh

kDu
∣∣2 dx

|η||Dη| ≤ C, η4 ≤ Cη2

≤ C

∫
Ω

η2
∣∣Dh

ku
∣∣2 dx+ C

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx

Thm 2.40

≤ C

∫
Ω

|Du|2 dx+ C

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx.

Thus

|B| ≤ C(ε)

∫
Ω

(
|f |2 + |Du|2 + |u|2

)
dx+ ε

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx.

Combining the estimates with the fact

A2 − |A1| ≤ |A| = |B|

we have

λ

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx− ε∫

Ω

η2
∣∣Dh

kDu
∣∣2 dx− C(ε)∫

Ω

|Du|2 dx

≤ C(ε)

∫
Ω

(
|f |2 + |Du|2 + |u|2

)
dx+ ε

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx
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ie.

λ

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx− 2ε

∫
Ω

η2
∣∣Dh

kDu
∣∣2 dx

≤ C(ε)

∫
Ω

(
|f |2 + |Du|2 + |u|2

)
dx+ C(ε)

∫
Ω

|Du|2 dx.

Choosing ε = λ/4 and recalling η = 1 in Ω′, we have

λ

2

∫
Ω′
η2
∣∣Dh

kDu
∣∣2 dx ≤ C

∫
Ω

(
|f |2 + |Du|2 + |u|2

)
dx.

This implies by Theorem 2.41 that Diu ∈ W 1,2
loc (Ω) and thus u ∈

W 2,2
loc (Ω). □

We can also obtain
∫
Ω
|u|2 dx instead of

∫
Ω
|Du|2 dx on the right hand

side of the estimate in the previous theorem.

Lemma 3.36 (Caccioppoli’s ie). Let u, aij, bi, c and f be as in the
previous theorem. Then∫

Ω′
|Du|2 dx ≤ C

∫
Ω

(
|u|2 + f 2) dx

for Ω′ ⋐ Ω.

Proof. Choose a test function v = η2u, where η is the same cut-off
function as in the proof of the previous theorem so that∫

Ω

n∑
i,j=1

aijDjuDi(η
2u) +

n∑
i=1

biDiu(η
2u) + cu(η2u) dx

=

∫
Ω

n∑
i,j=1

aijDju(2ηDiηu+ η2Diu) +
n∑

i=1

biDiu(η
2u) + cu(η2u) dx

=

∫
Ω

n∑
i,j=1

η2aijDjuDiu dx

+

∫
Ω

n∑
i,j=1

2aijuηDjuDiη +
n∑

i=1

biDiu(η
2u) + cu(η2u) dx

= A1 + A2.

By the uniform ellipticity

A1 ≥ λ

∫
Ω

η2|Du|2 dx
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Recalling that |aij|, η, |Dη| ≤ C and using Young’s inequality yields

|A2| ≤ ε

∫
Ω

η2|Du|2 dx+ C

∫
Ω

u2 dx.

Finally, again by Young’s inequality∣∣∣∣∫
Ω

fη2u dx

∣∣∣∣ ≤ C

∫
Ω

f 2 dx+ C

∫
Ω

u2 dx.

Combining the above estimates with the PDE itself we have

λ

∫
Ω

η2|Du|2 dx ≤ ε

∫
Ω

η2|Du|2 dx+ C

∫
Ω

u2 + f 2 dx.

By choosing ε = λ/2 we can ”absorb” the first integral on the RHS
into the left, and the proof is complete. □

By adjusting the proof of Theorem 3.34 slightly to obtain some do-
main Ω̃, Ω′′ ⋐ Ω̃ ⋐ Ω on the right in the estimate, we could com-
bine Theorem 3.34 with Caccioppoli’s inequality and have the following
corollary.

Corollary 3.37. Let

aij ∈ C1(Ω), bi ∈ L∞(Ω), c ∈ L∞(Ω)

and

f ∈ L2(Ω).

Further, let u ∈ W 1,2(Ω) be a weak solution to Lu = f . Then

u ∈ W 2,2
loc (Ω)

and for any Ω′ ⋐ Ω

||u||W 2,2(Ω′) ≤ C
(
||f ||L2(Ω) + ||u||L2(Ω)

)
,

where C may depend on Ω′, Ω and aij, bi, c, but not on u.

By a similar argument as above combined with the induction, we
could prove the following higher regularity result if the coefficient and
data are smooth enough. For details, see Evans: PDE p. 316. Consider
∆u = f , and suppose then that f ∈ W 1,2(Ω). By the above u ∈
W 2,2

loc (Ω), and thus by the weak definition∫
Du ·D ∂φ

∂xi
dx =

∫
f
∂φ

∂xi
dx.

so that

−
∫
D
∂u

∂xi
·Dφdx = −

∫
∂f

∂xi
φdx.
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Thus ∂u
∂xi

is a weak solution with the RHS ∂f
∂xi
∈ L2. Thus u ∈ W 3,2

loc (Ω).
Iterating further, and using a generalized Sobolev imbedding gives that
u is smooth.
PUNCHLINE: The solution u has roughly speaking 2 derivatives
more than f .

Theorem 3.38 (Local smoothness). Let

aij, bi, c ∈ C∞(Ω)

and

f ∈ C∞(Ω).

Further, let u ∈ W 1,2(Ω) be a weak solution to Lu = f . Then

u ∈ C∞(Ω).

3.6.2. Global L2-regularity. Also a global regularity result holds.

Definition 3.39. We denote ∂Ω ∈ Ck(Ω), if for each point x0 ∈ ∂Ω
there is a r > 0 and a Ck-function

γ : Rn−1 → R

such that upon relabeling and reorienting the coordinate axes if neces-
sary it holds that

Ω ∩B(x0, r) = {x ∈ B(x0; r) : xn > γ(x1, . . . , xn−1)}.

We also denote for bounded Ω

C1(Ω) = {u ∈ C1(Ω) : Dαu, |α| ≤ 1, is uniformly continuous in Ω}.

Theorem 3.40 (Global regularity). Let

aij ∈ C1(Ω), bi ∈ L∞(Ω), c ∈ L∞(Ω)

and

f ∈ L2(Ω).

Further, assume that ∂Ω ∈ C2(Ω), let g ∈ W 2,2(Ω) and u ∈ W 1,2(Ω)
be a weak solution to{

Lu = f in Ω,

u− g ∈ W 1,2
0 (Ω).

Then

u ∈ W 2,2(Ω)
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and

||u||W 2,2(Ω) ≤ C
(
||f ||L2(Ω) + ||u||L2(Ω) + ||g||W 2,2(Ω)

)
,

where C may depend on Ω and aij, bi, c, but not on u.

Remark 3.41 (Warning). One might be tempted to think that all kind
of properties of the boundary value function are inherited by the solution
as long as the boundary has the same regularity. This is false however!

Let α ∈ (1
2
, 1) and

Ω = {z ∈ C : |z| > 0, Arg z ∈ (− π

2α
,
π

2α
)}.

Denote z = x+ iy = reiθ with θ ∈ (−π, π]. Since

log z = iθ + log r

zα := eα log(z) = eα log reiαθ = rα(cos(αθ) + i sin(αθ)).

We take for granted that zα is an analytic function in Ω, and thus
its real part

u(x, y) := Re zα = rα cos(αθ)

is a harmonic function. Then for x > 0 it holds that

u(x, 0) = |x|α

even if

u ≡ 0 on ∂Ω.

A harmonic function is actually locally but not necessarily globally Lip-
schitz.

The similar phenomenon happens even if the boundary is smooth.
Indeed, consider the upper half plane and{

∆u = 0 (x, y) ∈ R2
+

u(x, 0) = g(x),
(3.16)

where g(x) = |x| close to 0 and continued in a suitable bounded and
smooth fashion to the whole of R. Then y 7→ u(0, y) is only Hölder
continuous close to y = 0.
Similarly, if g ∈ C2(R) in (3.16) it does not always follow that u ∈

C2(R2

+).
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3.6.3. Local Lp-regularity.

Example 3.42 (Calderón-Zygmund type inequality). First consider a
classical approach to the problem

∆u = f

where f ∈ Lp, 2 ≤ p <∞. A solution u is of the form (we say nothing
about a domain or uniqueness as this is just the idea on general level)

u(x) = C

∫
f(y)

|x− y|n−2 dy.

One of the questions in the regularity theory of PDEs is, does u have
the second derivatives in Lp i.e.

∂2u

∂xi∂xj
∈ Lp?

If we formally differentiate u, we get

∂2u

∂xi∂xj
= C

∫
Rn

f(y)
∂2

∂xi∂xj

1

|x− y|n−2︸ ︷︷ ︸
| · |≤C/|x−y|n

dy.

It follows that
∫
f(y) ∂2

∂xi∂xj

1
|x−y|n−2 dy defines (the precise definitions are

beyond our scope here) a singular integral Tf(x). A typical theorem in
the theory of singular integrals says

||Tf ||p ≤ C ||f ||p

and thus we can deduce that ∂2u
∂xi∂xj

∈ Lp. Working further, we get

that u ∈ W 2,p. This was established by Calderón and Zygmund (1952,
Acta Math.) and thus the above inequality is often called the Calderón-
Zygmund inequality.

Theorem 3.43 (Local Lp-regularity). Let 1 < p <∞ and

f ∈ Lp(Ω).

Further, let u ∈ W 1,2(Ω) be a weak solution to ∆u = f . Then

u ∈ W 2,p
loc (Ω)

and for any Ω′ ⋐ Ω

||u||W 2,p(Ω′) ≤ C
(
||f ||Lp(Ω) + ||u||Lp(Ω)

)
,

where C may depend on p, n,Ω′, and Ω but not on u.
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3.6.4. Cα regularity using De Giorgi’s method. For expository reasons
we only consider the Laplacian. Nonetheless, the method also applies
to the uniformly elliptic equation with bounded measurable coefficients.
Recall that Example 3.12 shows that this is the best we can hope for
under such weak assumptions on the coefficients.

Lemma 3.44 (Caccioppoli’s inequality). Let u ∈ W 1,2
loc (Ω) be a weak

solution to ∆u = 0 in Ω. Then there exists a constant c = c(n) such
that ∫

B(x0,R)

η2|D(u− k)+|2 dx ≤
( C

R− r

)2 ∫
B(x0,R)

|(u− k)+|2 dx,

where k ∈ R, 0 < r < R <∞ s.t. B(x0, R) ⊂ Ω and u+ = max(u, 0).

Proof. Let η ∈ C∞
0 (B(x0, R)) cut-off function s.t.

0 ≤ η ≤ 1, η = 1 in B(x0, r), |Dη| ≤ C

R− r

and a test function

φ = (u− k)+η2 ∈ W 1,2
0 (B(x0, R)).

Since Dφ = D(u − k)+η2 + (u − k)+2ηDη we obtain using weak for-
mulation∫

Ω

Du ·D(u− k)+η2 dx = −2
∫
Ω

Du · (u− k)+ηDη dx. (3.17)

Recall

D(u− k)+ =

{
Du a.e. {u > k}
0 a.e. {u ≤ k}.

(3.18)

Thus a.e.

|D(u− k)+|2 = Du ·D(u− k)+
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and combining this with (3.17), we get∫
B(x0,R)

|D(u− k)+|2η2 dx

=

∫
B(x0,R)

Du ·D(u− k)+η2 dx

≤ 2

∫
B(x0,R)

|Du|(u− k)+η|Dη| dx

(3.18)
= 2

∫
B(x0,R)

|D(u− k)+|(u− k)+η|Dη| dx

Young

≤ ε

∫
B(x0,R)

|D(u− k)+|2η2 dx+ C(ε)

∫
B(x0,R)

(u− k)+|Dη| dx.

From this the result follows by absorbing the first term on the RHS
into the left, and recalling the definition of η. □

Theorem 3.45 (ess sup-estimate). Let u ∈ W 1,2
loc (Ω) be a weak solution

to ∆u = 0 in Ω. Then there exists c = c(n) such that

ess sup
B(x0,

r
2
)

u ≤ k0 + C
(∫

B(x0,r)

|(u− k0)+|2 dx
)1/2

where k0 ∈ R and B(x0, r) ⊂ Ω.

Proof. Let 0 < r/2 < ρ < r and η ∈ C∞
0 (B(x0, r))

0 ≤ η ≤ 1, η = 1 in B(x0, ρ), |Dη| ≤ C

r − ρ
,

and use test function v = (u−k)+η. The proof will be based on the use
of Sobolev-Poincare, Caccioppoli and iteration. To be more precise,∫

B(x0,r)

|Dv|2 dx ≤
∫
B(x0,r)

|D((u− k)+η)|2 dx

≤
∫
B(x0,r)

|D(u− k)+η + (u− k)+Dη|2 dx

≤ c

∫
B(x0,r)

|D(u− k)+η|2 + |(u− k)+Dη|2 dx

Cacc, def. of η

≤ C

(r − ρ)2

∫
B(x0,r)

|(u− k)+|2 dx.

(3.19)
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Further,(∫
B(x0,ρ)

|(u− k)+|2
∗
dx
)2/2∗

≤ C
(∫

B(x0,r)

v2
∗
dx
)2/2∗

v ∈ W 1,2
0 (B(x0, r)), Sobo ie

≤ Cr2
∫
B(x0,r)

|Dv|2 dx.
(3.20)

Combining (3.20) and (3.19), we get(∫
B(x0,ρ)

|(u− k)+|2
∗
dx
)2/2∗

≤ Cr2

(r − ρ)2

∫
B(x0,r)

|(u− k)+|2 dx.
(3.21)

Define

A(k, ρ) = B(x0, ρ) ∩ {x ∈ Ω : u(x) > k}

and observe∫
B(x0,ρ)

|(u− k)+|2 dx

=
1

|B(x0, ρ)|

∫
A(k,ρ)

|(u− k)+|2 dx

Hölder

≤ 1

|B(x0, ρ)|

(∫
A(k,ρ)

|(u− k)+|2
∗
dx
)2/2∗

|A(k, ρ)|1−
2
2∗

=
( 1

|B(x0, ρ)|

∫
A(k,ρ)

|(u− k)+|2
∗
dx
)2/2∗( |A(k, ρ)|

|B(x0, ρ)|

)1− 2
2∗

≤
(∫

B(x0,ρ)

|(u− k)+|2
∗
dx
)2/2∗( |A(k, ρ)|

|B(x0, ρ)|

)1− 2
2∗

(3.21)

≤ Cr2

(r − ρ)2

∫
B(x0,r)

|(u− k)+|2 dx
( |A(k, ρ)|
|B(x0, ρ)|

)1− 2
2∗
.

(3.22)

If h < k, then

(k − h)2|A(k, ρ)| =
∫
A(k,ρ)

(k − h)2 dx

u > k in A(k, ρ)

≤
∫
A(k,ρ)

(u− h)2 dx

h < k

≤
∫
A(h,ρ)

(u− h)2 dx

≤
∫
B(x0,ρ)

(u− h)2 dx.
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By this, denoting

u(h, ρ) :=
(∫

B(x0,ρ)

|(u− h)+|2 dx
)1/2

, (3.23)

we get

|A(k, ρ)| ≤ 1

(k − h)2

∫
B(x0,ρ)

(u− h)2 dx =
|B(x0, ρ)|
(k − h)2

u(h, ρ)2. (3.24)

Using this with (3.22), we get

u(k, ρ)2
(3.22)

≤ C
( r

r − ρ

)2
u(k, r)2

( |A(k, ρ)|
|B(x0, ρ)|

)1− 2
2∗

(3.24)

≤ C
( r

r − ρ

)2
u(k, r)2

(u(h, ρ)
k − h

)2(1− 2
2∗ )

.

(3.25)

This implies

u(k, ρ)
u(k, r) ≤ u(h, r)

≤ C
r

r − ρ
u(h, r)1+1− 2

2∗ (k − h)−(1− 2
2∗ )

= C
r

r − ρ
u(h, r)1+θ(k − h)−θ,

(3.26)

where θ := 1− 2
2∗
.

Auxiliary claim: For k ∈ R it holds that

u(k0 + d, r/2) = 0

where dθ := C2(1+θ)2/θ+1u(k0, r)
θ and c, θ are as above.

Proof of the auxiliary claim: Let

kj = k0 + d(1− 2−j)

ρj = r/2 + 2−j−1r, j = 0, 1, 2, . . .

so that ρ0 = r, ρj ↘ r/2 and kj ↗ k+ d as j →∞. Then we show by
induction that

u(kj, ρj) ≤ 2−µju(k0, r), j = 0, 1, 2, . . . (3.27)

where µ = (1 + θ)/θ.
Indeed j = 0 immediately follows since ρ0 = r.
Assume then that the claim holds for some j, and observe that

ρj − ρj+1 = (2−j−1 − 2−j−2)r = 2−j−2r,

kj+1 − kj = (−2−j−1 + 2−j)d = 2−j−1d,

ρj ≤ r.
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Using these with (3.26), we have

u(kj+1, ρj+1) ≤
Cρj

ρj − ρj+1

(kj+1 − kj)−θu(kj, ρj+1)
1+θ

≤ Cr

2−j−2r
(2−j−1d)−θ2−µj(1+θ)u(k0, r)

1+θ,

where we used induction assumption to estimate u(kj, ρj+1). Then
recalling the shorthand notations , we get

u(kj+1, ρj+1) ≤ C2

j+2+θ(j+1)−
(θ + 1)2

θ︸ ︷︷ ︸
µ(1+θ)

j

(C2
(θ+1)2

θ
+1u(k0, r)

θ)−1︸ ︷︷ ︸
d−θ

u(k0, r)
1+θ

= 21+(1+θ)(j+1)− (θ+1)2

θ
j− (θ+1)2

θ
−1u(k0, r)

= 2

(θ+1)(j+1) (1− θ + 1

θ
)︸ ︷︷ ︸

− 1
θ u(k0, r)

= 2−µ(j+1)u(k0, r),

and thus the induction is complete. Further, this implies

lim
j→∞

u(kj, ρj) = 0

and

0 ≤ u(k0 + d,
r

2
)
kj ≤ k0 + d

=
(∫

B(x0,
r
2
)

|(u− kj)+|2 dx
) 1

2

r
2
≤ ρj

≤
(B(x0, ρj)

B(x0,
r
2
)

∫
B(x0,ρj)

|(u− kj)+|2 dx
) 1

2 ≤ Cu(kj, ρj)→ 0.

It follows that

u(k0 + d,
r

2
) = 0,

and this ends the proof of the auxiliary claim.
By using the auxiliary claim, we now finish the proof of the essup-

estimate. Indeed,

0 = u(k0 + d,
r

2
) =

(∫
B(x0,

r
2
)

|(u− (k0 + d))+|2 dx
) 1

2
,

where dθ = C2(1+θ)2/θ+1u(k0, r)
θ. Thus a.e. in B(x0,

r
2
) it holds that

u ≤ k0 + d = k0 + C
(∫

B(x0,r)

|(u− k0)+|2 dx
) 1

2
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from which the claim

ess sup
B(x0,

r
2
)

u ≤ k0 + C
(∫

B(x0,r)

|(u− k0)+|2 dx
) 1

2

follows. □

Corollary 3.46. Let u be a weak solution to ∆u = 0 in Ω. Then there
exists C = C(n) such that

ess sup
B(x0,

r
2
)

|u| ≤ c
(∫

B(x0,r)

|u|2 dx
) 1

2

for all B(x0,
r
2
) ⊂ Ω.

Proof. Choose k0 = 0 in the previous result and observe that

ess sup
B(x0,

r
2
)

u ≤ C
(∫

B(x0,r)

|u+|2 dx
) 1

2
.

Since −u is also a solution, we obtain

− ess inf
B(x0,

r
2
)
u = ess sup

B(x0,
r
2
)

(−u) ≤ C
(∫

B(x0,r)

|(−u)+|2 dx
) 1

2
.

Combining the estimates

ess sup
B(x0,

r
2
)

|u| ≤ max{ess sup
B(x0,

r
2
)

u,− ess inf
B(x0,

r
2
)
u} ≤ C

(∫
B(x0,r)

|u|2 dx
) 1

2
. □

The above result implies that (unlike Sobolev functions in general)
are locally bounded.

Next lemma is needed in order to prove Hölder continuity for weak
solutions.

Lemma 3.47. [Measure decay] Let u be a weak solution to ∆u = 0 in
Ω, B(x0, 2r) ⋐ Ω ,

m(2r) = ess inf
B(x0,2r)

u, M(2r) = ess sup
B(x0,2r)

u,

and

|A(k0, r)| ≤ γ|B(x0, r)|, 0 < γ < 1,

where A(k0, r) = B(x0, r) ∩ {x ∈ Ω : u(x) > k0} and k0 = (m(2r) +
M(2r))/2. Then

lim
k↗M(2r)

|A(k, r)| = 0.

We postpone the proof and go to the proof of the Hölder continuity
immediately.
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Theorem 3.48 (Hölder-continuity). If u be a weak solution to ∆u = 0
in Ω, then u is locally Hölder-continuous (or has such a representative
to be more precise).

Proof. Let

k0 =
m(2r) +M(2r)

2

similarly to the previous lemma. Without loss of generality we may
assume that

|B(x0, r) ∩ {x ∈ Ω : u(x) > k0}| = |A(k0, r)| ≤
1

2
|B(x0, r)|, (3.28)

since otherwise if |A(k0, r)| > 1
2
|B(x0, r)| it holds that

|{x ∈ B(x0, r) : −u(x) ≤ −k0}| >
1

2
|B(x0, r)|

|{x ∈ B(x0, r) : −u(x) > −k0}| <
1

2
|B(x0, r)|

and the argument below works for −u and −k0 instead. Here we need
that both u and −u are solutions. Using the esssup-estimate with

kl =M(2r)− 2−(l+1)(M(2r)−m(2r))

we have

M(
r

2
) ≤ kl + C

(∫
B(x0,r)

|(u− kl)+|2︸ ︷︷ ︸
≤(M(2r)−kl)2

dx
) 1

2

≤ kl + C(M(2r)− kl)
( |A(kl, r)|
|B(x0, r)|

) 1
2

since the integrand can only be nonzero in the set A(kl, r). By Lemma
3.47, we may choose l large enough so that

C
( |A(kl, r)|
|B(x0, r)|

) 1
2
<

1

2
.

This fixes l. Combining the previous two estimates we obtain

M(
r

2
) ≤ kl +

1

2
(M(2r)− kl)

≤M(2r)− 2−(l+1)(M(2r)−m(2r))

+
1

2

(
M(2r)− (M(2r)− 2−(l+1)(M(2r)−m(2r)))

)
≤M(2r)− 2−(l+2)(2− 1)(M(2r)−m(2r)).
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From this we get

M(
r

2
)−m(

r

2
) ≤M(

r

2
)−m(2r)

≤ (1− 2−(l+2))(M(2r)−m(2r)).

Using the notation oscB(x0,2r) u :=M(2r)−m(2r) = ess supB(x0,2r) u−
ess infB(x0,2r) u and λ := (1− 2−(l+2)) < 1, the above reads as

oscB(x0,
r
2
) u ≤ λ oscB(x0,2r) u.

The Hölder continuity follows from this by a standard iteration. To be
more precise, choose j ∈ N such that

4j−1 ≤ R

r
< 4j.

Then

oscB(x0,
r
2
) u ≤ λj−1 oscB(x0,4j−1r) u

4j−1r≤R

≤ λj−1 oscB(x0,R) u

≤ λj−1 oscB(x0,R) u

≤ C
( r
R

)α
oscB(x0,R) u,

(3.29)

where we denoted α = − log λ/ log 4 ∈ (0, 1) and observed

R

r
< 4j ⇒ 4−jα ≤

(R
r

)−α

=
( r
R

)α
λj−1 = 4log4(λ

j−1) = 4(j−1) log(λ)/ log(4) = 4(1−j)α ≤ 4α
( r
R

)α
.

Let y ∈ Ω s.t. |x0 − y| ≤ 1
8
dist(x0, ∂Ω), R = dist(x0, ∂Ω), r = |x0 − y|

(actually only for a.e. point but then the below deduction can be used
to define the Hölder continuous representative). Then by the estimate
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(3.29)

|u(x0)− u(y)| ≤ oscB(x0,2r) u

≤ C
( 2r

3
8
R

)α
oscB(x0,

3
8
R) u

≤ C
(2|x0 − y|

3
8
R

)α
oscB(x0,

3
8
R) u

≤ C|x0 − y|αR−α2 ess sup
B(x0,

3
8
R)

|u|

esssup-est

≤ C|x0 − y|αR−α
(∫

B(0, 6
8
R)

|u|2 dx
) 1

2

≤ C|x0 − y|α.

□

It remains to prove the lemma used above.

Proof of Lemma 3.47. The proof is based on deriving an estimate con-
taining |A(h, r)| − |A(k, r)| by using Poincare’s and Caccioppoli’s in-
equalities. To this end, we let k > h > k0 and define an auxiliary
function

v(x) =


k − h, u(x) ≥ k,

u(x)− h, h < u(x) < k,

0, u(x) ≤ h.

It immediately follows

{x ∈ B(x0, r) : v(x) = 0} = |{x ∈ B(x0, r) : u(x) ≤ h}|
= |B(x0, r)| − |{x ∈ B(x0, r) : u(x) > h}|
= |B(x0, r)| − |A(h, r)|
k0 < h

≥ |B(x0, r)| − |A(k0, r)|
assump.

≥ (1− γ)|B(x0, r)|.

From this denoting vB(x0,r) :=
∫

B(x0,r)
v dx, we get

k − h− vB(x0,r) =

∫
B(x0,r)

(k − h− v) dx

≥ (1− γ)
∫
{x∈B(x0,r) : v(x)=0}

(k − h− v) dx

= (1− γ)(k − h).
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Integrating this over A(k, r) and using Poincare’s inequality, we obtain

(k − h)|A(k, r)| ≤ 1

1− γ

∫
A(k,r)

(k − h− vB(x0,r)) dx

v = k − h in A(k, r)
=

1

1− γ

∫
A(k,r)

(v − vB(x0,r)) dx

≤ 1

1− γ

∫
B(x0,r)

(v − vB(x0,r)) dx

Hölder

≤ 1

1− γ
|B(x0, r)|

(∫
B(x0,r)

∣∣v − vB(x0,r)

∣∣ n
n−1 dx

)n−1
n

Poinc.:Thm 2.55, p=1

≤ 1

1− γ
|B(x0, r)|cr

∫
B(x0,r)

|Dv| dx.

Then using the above estimate and by Hölder’s as well as Caccioppoli’s
inequalities

(k − h)|A(k, r)| ≤ 1

1− γ
Cr

∫
B(x0,r)

|Dv| dx

def. v

≤ 1

1− γ
Cr

∫
A(h,r)\A(k,r)

|Du| dx

Hölder

≤ 1

1− γ
Cr
(∫

A(h,r)

|Du|2 dx
)1/2

(|A(h, r)| − |A(k, r)|)
1
2

Cacc.

≤ C
(∫

A(h,2r)

|u− h|2 dx
)1/2

(|A(h, r)| − |A(k, r)|)
1
2 ,

(3.30)

where at the last step we observed that r/(2r − r) ≤ C. Next replace
k and h in the above inequality by kj and kj−1 where

kj =M(2r)− 2−(j+1)(M(2r)−m(2r)).

Then since

kj − kj−1 = (M(2r)−2−(j+1)(M(2r)−m(2r)))

−
(
M(2r)− 2−j(M(2r)−m(2r))

)
= 2−(j+1)(M(2r)−m(2r)),

we get by (3.30) that

2−(j+1)(M(2r)−m(2r))|A(kj, r)| = (kj − kj−1)|A(kj, r)|

≤ C
(∫

A(kj−1,2r)

|u− kj−1|2 dx
)1/2

(|A(kj−1, r)| − |A(kj, r)|)
1
2 .
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Then observing u−kj−1 ≤M(2r)−kj−1 =M(2r)−
(
M(2r)−2−j(M(2r)−

m(2r))
)
= 2−j(M(2r)−m(2r)) and using the above estimate, we obtain

2−(j+1)(M(2r)−m(2r))|A(kj, r)|

≤ C(M(2r)− kj−1)|A(kj−1, 2r)|
1
2 (|A(kj−1, r)| − |A(kj, r)|)

1
2

≤ C2−j(M(2r)−m(2r))|A(kj−1, 2r)|
1
2 (|A(kj−1, r)| − |A(kj, r)|)

1
2 .

Cancelling 2−j(M(2r)−m(2r)) on both sides and choosing l, l ≥ j, we
end up with

|A(kl, r)| ≤ |A(kj, r)| ≤ C|B(x0, 2r)|
1
2 (|A(kj−1, r)| − |A(kj, r)|)

1
2 .

Taking squares and summing over j, this gives by telescoping

l|A(kl, r)|2 =
l∑

j=1

|A(kl, r)|2

≤ C|B(x0, 2r)|
l∑

j=1

(|A(kj−1, r)| − |A(kj, r)|)

≤ C|B(x0, 2r)|(|A(k0, r)| − |A(kl, r)|) ≤ cC|B(x0, 2r)||B(x0, r)|.
Dividing by l, we finally get

lim
l→∞
|A(kl, r)| = 0. □

3.7. Weak and strong max principles. In this section we consider

Lu = −
n∑

i,j=1

Di(aij(x)Dju(x)) + c(x)u(x) = 0.

For the next theorem, we define

sup
∂Ω

u := inf{l ∈ R : (u− l)+ ∈ W 1,2
0 (Ω)}.

Theorem 3.49 (Weak max principle). Let u ∈ W 1,2(Ω) be a weak
solution to −

∑n
i,j=1Di(aij(x)Dju(x)) + c(x)u(x) = 0, with c ≥ 0.

Then

ess sup
Ω

u ≤ sup
∂Ω

u+.

Proof. Set M := sup∂Ω u+ ≥ 0. It holds that (u −M)+ ∈ W 1,2
0 (Ω).

To see this, choose decreasing sequence li → M so that (u − li)+ =
(u+− li)+ ∈ W 1,2

0 (Ω). Then since Ω is bounded, it follows that u− li →
u−M in W 1,2(Ω). It holds ,

(u− li)+ → (u−M)+ in W 1,2(Ω)
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and thus the claim (u−M)+ ∈ W 1,2
0 (Ω) follows.

We may use v = (u−M)+ as a test function in∫
Ω

n∑
i,j=1

aijDjuDiv + cuv dx = 0

∫
Ω

n∑
i,j=1

aijDjMDiv + cMv dx ≥ 0,

where M, c, v ≥ 0 was used. We subtract these to have

λ

∫
Ω

|D(u−M)+|2 + c(u−M)2+ dx ≤ 0.

From this it follows that u ≤M a.e. □

PUNCHLINE: Roughly speaking the max principle says that the
largest value is attained at the boundary or at least a solution cannot
obtain strict maximum inside the domain. This is tightly connected to
the comparison principles too: a comparison with a constant.

Remark 3.50 (Warning). If there is f on the right hand side, the form
of the max-principle changes (ex).

3.7.1. Strong maximum principle. Strong maximum principle for weak
solutions follows Harnack type arguments that we have not proven yet.
Nonetheless, we show that due to the classical theory this is something
to be expected anyway.

Recall

C1(Ω) = {u ∈ C1(Ω) : Dαu is uniformly continuous for all |α| ≤ 1}.

The argument does not rely on divergence form. For simplicity of
notation we consider

Lu = −
n∑

i,j=1

aijDiDju = 0.

By interior ball condition for Ω at x0 ∈ ∂Ω, we mean that there is a
ball B ⊂ Ω such that x0 ∈ ∂B.

Lemma 3.51 (Hopf). Let u ∈ C2(Ω) ∩ C1(Ω) satisfy Lu ≤ 0, and
suppose that there is x0 ∈ ∂Ω satisfying interior ball condition for B
and

u(x0) > u(x) for all x ∈ Ω.
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Then
∂u

∂ν
(x0) > 0

where ν is exterior unit normal for B at x0.

Proof. We may assume that B = B(0, r) and u(x0) ≥ 0. Set for γ > 0

v(x) = e−γ|x|2 − e−γr2 , x ∈ B(0, r).

Then

Djv = −2xjγe−γ|x|2

and

DiDjv = (−2δijγ + 4γ2xixj)e
−γ|x|2 .

Thus

Lv = −
n∑

i,j=1

aijDiDjv

= −
n∑

i,j=1

aij(−2δijγ + 4γ2xixj)e
−γ|x|2

ell

≤ (2γ
n∑

i=1

aii − 4γ2λ|x|2)e−γ|x|2 .

Thus for large enough γ, we have

Lv ≤ (2γ
n∑

i=1

aii − 4γ2λ|x|2)e−γ|x|2 ≤ 0, x ∈ B(0, r) \B(0,
r

2
).

By the assumption u(x0) > u(x) for all x ∈ Ω, for small enough ε > 0,
it holds that

u(x0) ≥ u(x) + εv(x)

on ∂B(0, r/2) ⊂ Ω. The same holds on ∂B(0, r) since there v = 0. We
have

L(u+ εv − u(x0)) = Lu+ εLv ≤ 0,

and therefore the weak maximum principle for classical solutions (ex.)
implies

u+ εv − u(x0) ≤ 0 in B(0, r) \B(0, r/2).

But

u(x0) + εv(x0)− u(x0) = 0



94 PDE 2

so that

∂(u+ εv − u(x0))
∂ν

(x0) ≥ 0.

This yields

∂u

∂ν
(x0) ≥ −ε

∂v

∂ν
(x0) = −ε

x0
r
Dv(x0) = −ε

x0
r
(−2x0γe−γ|x0|2) > 0. □

Remark 3.52. The nontrivial point on Hopf’s lemma is that the in-
equality ∂u

∂ν
(x0) > 0 is strict!

Theorem 3.53 (Strong max principle). Let u ∈ C2(Ω)∩C(Ω) satisfy
Lu ≤ 0,

and let Ω be a bounded, open and connected set. Then if u attains its
max at the interior of Ω, it follows that

u ≡ sup
Ω
u.

Proof. Let M := maxΩ u and

C = {x ∈ Ω : u(x) =M},
V = {x ∈ Ω : u(x) < M}.

Let us make a counter proposition that V is not empty. Take a point
y ∈ V with dist(y, C) < dist(y, ∂Ω), which exist since dist(C, V ) = 0
by continuity of u. Let

B = B(y, r) ⊂ V

be a largest possible ball in V centered at y. Then B touches C at
some point x0, and thus V satisfies interior ball condition at this point.
By Hopf’s lemma,

∂u

∂ν
(x0) > 0

but this is a contradiction since x0 is a max point for u implying
Du(x0) = 0. □

4. Linear parabolic equations

Next we study generalizations of the heat equation. We denote

ΩT = Ω× (0, T )

and

∂pΩT = (Ω× {0}) ∪ (∂Ω× [0, T ]).
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Definition 4.1 (parabolic Sobolev space). The Sobolev space

L2(0, T ;W 1,2(Ω)),

consists of all measurable(in ΩT ) functions u(x, t) such that u(x, t) be-
longs to W 1,2(Ω) for almost every 0 < t < T , (u(x, t) is measurable as
a mapping from (0, T ) to W 1,2(Ω), and the norm(∫ ∫

ΩT

(|u(x, t)|2 + |Du(x, t)|2) dx dt
)1/2

is finite. The definition of the space L2(0, T ;W 1,2
0 (Ω)) is analogous.

The notation above refers to Banach valued functions (0, T ) 7→
W 1,2(Ω) and thus refers to Bochner integration theory. However, we
do not pursue this analysis here.

Definition 4.2. The space

C(0, T ;L2(Ω))

consists of all measurable functions u : ΩT → R such that

||u||C(0,T ;L2(Ω)) := max
t∈[0,T ]

(∫
Ω

|u(x, t)|2 dx
)1/2

<∞

and for any ε > 0 and t1 ∈ [0, T ] there is δ > 0 such that if |t1 − t2| ≤ δ,
where t2 ∈ [0, T ], then(∫

Ω

|u(x, t1)− u(x, t2)|2 dx
)1/2
≤ ε.

Theorem 4.3. The space C∞(ΩT ) is dense in L2(0, T ;W 1,2(Ω)).

Proof. The space W 1,2(Ω) is separable (not proven here). The proof
consists of three steps. First, by separability, we can approximate any
function u ∈ L2(0, T ;W 1,2(Ω)), denoted by u(t) = u(x, t), with simple
functions. By modifying the simple functions in the set where the
norm is large compared to the norm of the original function, and using
Lebesgue’s dominated convergence theorem, we obtain a L2-convergent
sequence. Finally, we mollify the simple function.

Next we work out the details. Utilizing the separability of W 1,2(Ω),
we can choose a countable dense set

{ak}∞k=1 ⊂ u(0, T ).

We define for k = 1, . . . , n

Fn
k = {f ∈ W 1,2(Ω) : ||f − ak||W 1,2(Ω) = min

1≤i≤n
||f − ai||W 1,2(Ω)}
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and

Bn
k = u−1(Fn

k ), Dn
1 = Bn

1 , Dn
k = Bn

k \ (∪k−1
i=1B

n
i ) for k = 2, 3, . . . .

It follows from the measurability of u(t) that the sets Dn
k are measur-

able, and thus

un(t) =
n∑

k=1

akχDn
k
(t)

is a simple function. Because {ak}∞k=1 is a dense set, it follows that a.e.

un(t)→ u(t) in W 1,2(Ω) as n→∞.

In order to use Lebesgue’s dominated convergence theorem, we mod-
ify un whenever ||un(t)||W 1,2(Ω) is large compared to ||u(t)||W 1,2(Ω), and
define

vn(t) =

{
un(t), if ||un(t)||W 1,2(Ω) ≤ 2 ||u(t)||W 1,2(Ω) ,

0, if ||un(t)||W 1,2(Ω) > 2 ||u(t)||W 1,2(Ω) .

If ||u(t)||W 1,2(Ω) = 0, then vn(t) = 0 and if ||u(t)||W 1,2(Ω) > 0, then

vn(t) = un(t) for n large enough. We deduce

vn(t)→ u(t) in W 1,2(Ω), and ||vn(t)||W 1,2(Ω) ≤ 2 ||u(t)||W 1,2(Ω) .

Thus Lebesgue’s dominated convergence theorem implies∫ T

0

||vn(t)− u(t)||2W 1,2(Ω) dt→ 0, as n→∞.

Next we denote

D̂n
k = Dn

k \
{
t ∈ (0, T ) : ||un(t)||W 1,2(Ω) > 2 ||u(t)||W 1,2(Ω)

}
and get

vn(t) =
n∑

k=1

akχD̂n
k
(t).

We have shown earlier, using approximations that C∞(Ω) is dense in
W 1,2(Ω), and hence we can choose φk ∈ C∞(Ω) such that

||φk − ak||2W 1,2(Ω) <
ε

T
.

This implies∫ T

0

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

akχD̂n
k
(t)−

n∑
k=1

φkχD̂n
k
(t)

∣∣∣∣∣
∣∣∣∣∣
2

W 1,2(Ω)

dt < ε.
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Finally, we may mollify in t with a mollification parameter δn (this
follows from the approximation results applied in 1D) such that for
each k = 1, . . . , n∫ T

0

∣∣∣χD̂n
k
(t)− (χD̂n

k
)δn(t)

∣∣∣2 dt < ε

n ||φk||W 1,2(Ω)

.

Accomplishing this approximation for each k = 1, 2, . . . , n, we obtain
the desired smooth function

n∑
k=1

φk(χD̂n
k
)δn(t), (4.31)

which completes the proof. □

Lemma 4.4. Let u ∈ L2(ΩT ), extend u as zero to (−∞, 0) and (T,∞)
and set

uε(x, t) =

∫
R
u(x, t− s)ηε(s) ds

where ηε is a standard mollifier. Then

uε → u in L2(ΩT )

Proof. By repeating the argument in the previous proof (cf. (4.31)), we
can produce a smooth approximation g such that

( ∫
ΩT

|u− g|2 dy
)1/2

< δ/3.

We extend u by zero to (−∞, 0) and (T,∞), and denote by uε a stan-
dard mollification in the time direction. Similarly as for space mollifi-
cations

|uε(x, t)| =
∣∣∣∣∫ t+ε

t−ε

ηε(t− s)u(x, s) ds
∣∣∣∣

≤
∫ t+ε

t−ε

ηε(t− s)1/2ηε(t− s)1/2|u(x, s)| ds

Hölder

≤
(∫ t+ε

t−ε

ηε(t− s) ds
)1/2

︸ ︷︷ ︸
1

(∫ t+ε

t−ε

ηε(t− s)|u(x, s)|2 ds
)1/2

.
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and ∫
ΩT

|uε(x, t)|2 dx dt ≤
∫
ΩT

∫ t+ε

t−ε

ηε(t− s)|u(x, s)|2 ds dx dt

=

∫ T

0

∫
Ω

∫
R
ηε(t− s)|u(x, s)|2 ds dx dt

Fubini
=

∫
R

∫ T

0

∫
Ω

ηε(t− s)|u(x, s)|2 dx dt ds

=

∫
R

∫ T

0

ηε(t− s) dt
∫
Ω

|u(x, s)|2 dx ds

≤
∫
R

∫
Ω

|u(x, s)|2 dx ds

=

∫
ΩT

|u(x, s)|2 dx ds.

We deduce( ∫
ΩT

|u− uε|2 dx dt
)1/2

Minkowski

≤
( ∫

ΩT

|u− g|2 dx dt
)1/2

+
( ∫

ΩT

|g − gε|2 dx dt
)1/2

+
( ∫

ΩT

|gε − uε|2 dx dt
)1/2

≤ δ/3 +
( ∫

ΩT

|g − gε|2 dx dt
)1/2

+
( ∫

ΩT

|g − u|2 dx dt
)1/2

≤ δ/3 +
( ∫

ΩT

|g − gε|2 dx dt
)1/p

+ δ/3.

By adjusting the argument we used in with x-approximations, we see
that gε → g pointwise in Ω×(0, T ). Moreover, |g − gε|2 ≤ 4maxΩT

|g| ∈
L1(ΩT ) and thus by DOM, for all small enough ε( ∫

ΩT

|g − gε|2 dx dt
)1/2 ≤ δ/3. □

Theorem 4.5. Let u ∈ L2(ΩT ) and
∂u
∂t
∈ L2(ΩT ). Then there is such

a representative that

u ∈ C(0, T ;L2(Ω)).

Proof. By the previous lemma{
uε → u, in L2(ΩT )
∂uε

∂t
→ ∂u

∂t
, in L2(Ω× (h, T − h)),

(4.32)



PDE 2 99

where ε < h and the proof of the second statement again follows the
guidelines of the space approximations. By Fubini’s theorem for a.e. x
the function t 7→ u(x, t) in L2(0, T ) ⊂ L1(0, T ). Thus for a.e. x uε(x, t)
is a smooth function so that

uε(x, t1)− uε(x, t2) =
∫ t2

t1

∂uε
∂t

dt

and

||uε(x, t1)− uε(x, t2)||2L2(Ω) =

∣∣∣∣∣∣∣∣∫ t2

t1

∂uε
∂t

dt

∣∣∣∣∣∣∣∣2
L2(Ω)

.

We apply (4.32) to the RHS together with Fubini’s thm and state
without a proof (cf. approx section) that LHS converges for a.e. t1, t2.
Thus

||u(x, t1)− u(x, t2)||2L2(Ω) ≤ C(t1 − t2)
∫ t2

t1

∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣2 dx dt.

This also implies the continuity on the whole interval [0, T ]. □

We study initial-boundary value problem for given g : ΩT → R,
f : ΩT → R {

ut + Lu = f, x ∈ ΩT

u = g, x ∈ ∂pΩT .

Here

Lu(x, t) =−
n∑

i,j=1

Di(aij(x, t)Dju(x, t)) +
n∑

i=1

bi(x, t)Diu(x, t)

+ c(x, t)u(x, t).

Definition 4.6 (uniformly parabolic). The operator is uniformly par-
abolic if there are 0 < λ ≤ Λ <∞ such that

λ|ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ Λ|ξ|2.

Definition 4.7 (local weak solution). A functions u ∈ Cloc(0, T ;L
2
loc(Ω))∩

L2
loc(0, T ;W

1,2
loc (Ω)) is a weak solution to the above PDE if

−
∫
ΩT

uφt dx dt+

∫
ΩT

n∑
i,j=1

aijDjuDiφ+
n∑

i=1

biDiuφ+ cuφ dx dt

=

∫
ΩT

fφ dx dt
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for every φ ∈ C∞
0 (ΩT ).

Definition 4.8 (global weak solution). Let g ∈ C(0, T ;L2(Ω)) ∩
L2(0, T ;W 1,2(Ω)). A functions u ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω))
is a weak solution with boundary values g to the above PDE if

−
∫
ΩT

uφt dx dt+

∫
ΩT

n∑
i,j=1

aijDjuDiφ+
n∑

i=1

biDiuφ+ cuφ dx dt

=

∫
ΩT

fφ dx dt

for every φ ∈ C∞
0 (ΩT ), and

u− g ∈ L2(0, T ;W 1,2
0 (Ω))

as well as∫
Ω

u(x, 0)ϕ(x) dx =

∫
Ω

g(x, 0)ϕ(x) dx for every ϕ ∈ C∞
0 (Ω).

4.1. Existence: Galerkin method. Let f ∈ L2(ΩT ). For simplicity
we only consider the problem

ut = ∆u+ f, in ΩT

u = 0, on ∂Ω× [0, T ]

u(x, 0) = g(x), on Ω,

where g ∈ W 1,2
0 (Ω), but intend to use methods that also work in greater

generality. In the weak form,

−
∫
ΩT

u
∂φ

∂t
dx dt+

∫
ΩT

Du ·Dφdx dt =
∫
Ω

fφ dx dx (4.33)

for every φ ∈ C∞
0 (ΩT ).

Idea in Galerkin’s method is to take a basis ωi i = 1, 2, . . . in L2 and
W 1,2

0 (Ω) and approximate solution as

um(x, t) =
m∑
i=1

cmi (t)ωi(x).

Choosing the coefficients properly, we can show that this approximation
converges to a weak solution. Galerkin’s method has turned out to be
useful in numerical approximations to solutions of PDEs as well.

Step 1(basis): Let

ωi, i = 1, 2, . . .
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be orthogonal basis in W 1,2
0 (Ω) (wrt the standard inner product in

W 1,2
0 (Ω)), and orthonormal in L2(Ω) (with respect to inner prod of

L2).
Step 2 (approx solutions): Construct approximating solutions by

um(x, t) =
m∑
i=1

cmi (t)ωi(x).

where the coefficients satisfy∫
Ω

∂um
∂t

ωk dx = −
∫
Ω

Dum ·Dωk dx+

∫
Ω

fωk dx (4.34)

for k = 1, 2, . . . ,m. Then for LHS∫
Ω

∂um
∂t

ωk dx =

∫
Ω

m∑
i

∂cmi
∂t

ωiωk dx

orthonormality
=

∂cmk
∂t

and

−
∫
Ω

Dum ·Dωk dx = −
∫
Ω

cmk (t)Dωk ·Dωk dx = −cmk (t)/λk.

Altogether, we obtain ODE

∂cmk (t)

∂t
= −cmk (t)/λk + fk(t),

where fk(t) =
∫
Ω
f(x, t)ωk(x) dx. It follows that

cmk (t) = e−t/λk

(
ck +

∫ t

0

eτ/λkfk(τ) dτ
)

where ck are chosen so that

g(x) =
∞∑
k=1

ckωk(x)

which is possible since ωi, i = 1, 2, . . . forms a basis for W 1,2
0 (Ω).

Step 3 (uniform estimates for solutions): Multiplying (4.34)
by the coefficients and summing, we obtain∫

Ω

∂um
∂t

um dx = −
∫
Ω

Dum ·Dum dx+
∫
Ω

fum dx

i.e.

1

2

∂

∂t

∫
Ω

u2m dx = −
∫
Ω

|Dum|2 dx+
∫
Ω

fum dx.
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Further, by integrating over (0, τ), we obtain

1

2

∫
Ω

u2m(x, τ) dx−
1

2

∫
Ω

u2m(x, 0) dx

= −
∫
Ωτ

|Dum|2 dx dt+
∫
Ωτ

fum dx dt.

We further estimate by using Young’s and Sobolev-Poincaré’s inequal-
ities ∣∣∣∣∫

Ωτ

f(x, t)um dx dt

∣∣∣∣ ≤ C

∫
ΩT

f 2 dx dt+ ε/µ2

∫ T

0

∫
Ω

u2m dx dt

≤ C

∫
ΩT

f 2 dx dt+ ε

∫ T

0

∫
Ω

|Dum|2 dx dt

where µ is again the constant in Sobolev-Poincaré’s inequality. By
choosing ε > 0 small enough, we can absorb the gradient term and
obtain an important energy estimate

sup
t∈[0,T ]

1

2

∫
Ω

u2m(x, t) dx+

∫
ΩT

|Dum|2 dx dt

≤ C

∫
Ω

u2m(x, 0) dx+ C

∫
ΩT

f 2 dx dt.

(4.35)

Multiplying (4.34) by ∂
∂t
cmk (t) and summing over k, we obtain∫

Ω

∂um
∂t

∂um
∂t

dx = −
∫
Ω

Dum ·D
∂um
∂t

dx+

∫
Ω

f(x, t)
∂um
∂t

dx

and again integrating over (0, T ) and using Fubini, we have∫
ΩT

∣∣∣∣∂um∂t
∣∣∣∣2 dx dt = −1

2

∫
Ω

∫ T

0

∂

∂t
|Dum|2 dt dx+

∫
ΩT

f
∂um
∂t

dx dt.

Again by using Young’s inequality∫
ΩT

∣∣∣∣∂um∂t
∣∣∣∣2 dx dt+1

2
(

∫
Ω

|Dum(x, T )|2 −
∫
Ω

|Dum(x, 0)|2 dx)

≤ ε

∫
ΩT

∣∣∣∣∂um∂t
∣∣∣∣2 dx dt+ C

∫
ΩT

f 2 dx dt.

(4.36)
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Combining (4.35) and (4.36), we have∫
ΩT

|Dum|2+
∣∣∣∣∂um∂t

∣∣∣∣2 + |um|2 dx dt
≤ C

∫
Ω

|Dum(x, 0)|2 dx︸ ︷︷ ︸
→

∫
|Dg(x)|2 dx, as m→∞

+C

∫
ΩT

f 2 dx dt,
(4.37)

where the right hand side is independent of m . Altogether, we have∫
ΩT

|Dum|2+
∣∣∣∣∂um∂t

∣∣∣∣2 + |um|2 dx dt ≤ C (4.38)

where C is independent of m.
Step 4 (taking limits): Since the estimate (4.38) is uniform in m,

the sequence um is uniformly bounded in L2(0, T ;W 1,2(Ω)) and ∂um

∂t
in

L2(ΩT ). Thus, there exists a weak limit such that

u ∈ L2(0, T ;W 1,2
0 (Ω)),

∂u

∂t
∈ L2(ΩT ).

Further, by Thm 4.5, u ∈ C(0, T ;L2(Ω)).
Step 5 (weak solution): A priori, um satisfies the weak formula-

tion for basis functions, so it remains first to check that u is a weak
solution. To this end, let

h ∈ C∞
0 (Ω) and ψ ∈ C∞

0 ([0, T ]),

and choose a sequence

hj(x) :=

j∑
k=1

αkjωk(x)→ h in W 1,2(Ω) as j →∞.

We multiply (4.34) by ψ(t), integrate over (0, T ), and pass to the limit
m→∞ to have∫ T

0

∫
Ω

∂u

∂t
ωkψ dx dt = −

∫ T

0

∫
Ω

Du ·Dωkψ dx

+

∫ T

0

∫
Ω

fωkψ dx dt.



104 PDE 2

Then, we multiply this by αkj, and sum up to have∫ T

0

∫
Ω

∂u

∂t

j∑
k=1

αkjωkψ dx dt = −
∫ T

0

∫
Ω

Du ·D
j∑

k=1

αkjωkψ dx dt

+

∫ T

0

∫
Ω

f(x, t)

j∑
k=1

αkjωkψ dx dt.

Then passing to the limit with j, we end up with∫ T

0

∫
Ω

∂u(x, t)

∂t
h(x)ψ(t) dx dt = −

∫ T

0

∫
Ω

Du(x, t) ·Dh(x)ψ(t) dx dt

+

∫ T

0

∫
Ω

f(x, t)h(x)ψ(t) dx dt.

By modifying the proof of Thm 4.3, see in particular (4.31), we see that
by summing up the functions of the type h(x)ψ(t) we may approximate
functions in L2(0, T ;W 1,2

0 (Ω)). Thus, in particular,∫ T

0

∫
Ω

∂u

∂t
φ dx dt = −

∫ T

0

∫
Ω

Du ·Dφdx dt+
∫ T

0

∫
Ω

fφ dx dt

for all φ ∈ C∞
0 (ΩT ).

Step 5 (initial condition): It remains to check that the ini-
tial condition is satisfied. Similarly as above, denoting vj(x, t) :=∑j

k=1 βkj(t)ωk(x), j ≤ m, and for which vj(x, T ) = 0 we obtain∫ T

0

∫
Ω

∂um
∂t

vj dx dt = −
∫ T

0

∫
Ω

Dum ·Dvj(x) dx dt

+

∫ T

0

∫
Ω

f(x, t)vj(x) dx dt.

(4.39)

Integrating by parts wrt t,

−
∫
Ω

um(x, 0)vj(x, 0) dx−
∫ T

0

∫
Ω

um
∂vj
∂t

dx dt

= −
∫ T

0

∫
Ω

Dum ·Dvj dx dt+
∫ T

0

∫
Ω

fvj dx dt.

Then we pass to the limit m → ∞, and then with j → ∞, where
we may choose βkj so that vj(x, 0) → ϕ(x) ∈ C∞

0 (Ω) in L2(Ω) and vj
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converges to a suitable test function v. This produces∫
Ω

g(x)ϕ(x) dx−
∫ T

0

∫
Ω

u
∂v

∂t
dx dt

= −
∫ T

0

∫
Ω

Du ·Dv dx dt+
∫ T

0

∫
Ω

fv dx dt.

(4.40)

On the other hand, passing first to the limitm→∞ and then j →∞
in (4.39), as well as integrating by parts wrt t after that, we get

−
∫
Ω

u(x, 0)ϕ(x) dx−
∫ T

0

∫
Ω

u
∂v

∂t
dx dt

= −
∫ T

0

∫
Ω

Du ·Dv dx dt+
∫ T

0

∫
Ω

fv dx dt.

(4.41)

Comparing (4.40) and (4.41), we see that u satisfies the initial condi-
tion.

We have proven the following.

Theorem 4.9. Let g ∈ W 1,2
0 (Ω) and f ∈ L2(ΩT ). There exists a weak

solution to the problem
ut = ∆u+ f, in ΩT

u = 0, on ∂Ω× [0, T ]

u(x, 0) = g(x), on Ω.

Remark 4.10. The condition g ∈ W 1,2
0 (Ω) can be relaxed as well as

the operator with

aij, bi, c ∈ L∞(ΩT ), f ∈ L2(ΩT )

is ok, see Evans p. 356. The method remains essentially the same.
Method also generalizes for more general bdr conditions g ∈ C(0, T ;L2(Ω))∩

L2(0, T ;W 1,2(Ω)).

4.2. Standard time mollification. Now ∂u
∂t

exists but in more gen-
eral situation (for example ut = div(A(x, t,Du)) for a suitable nonlin-
ear operator), u does not necessarily have time derivative. Nonetheless,
it is often useful to have u in the test function, and thus we would have
∂u
∂t

in the weak formulation, which does not necessarily exist as a func-
tion. This problem is treated by time mollification.

Let ϕ ∈ C∞
0 (ΩT ). Our goal is to show

−
∫ T

0

∫
Ω

uε
∂ϕ

∂t
dz +

∫ T

0

∫
Ω

(Du)ε ·Dϕdz = 0, (4.42)

where ε in uε and (Du)ε denote the mollification with respect to t.
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Let sptϕ(x, ·) ⊂ (ε, T − ε). We can use Lebesgue’s dominated con-
vergence theorem to see that D

∫
=
∫
D in this case. Further, by

Fubini’s theorem and by taking into account the support of ϕ(x, ·), we
see that ∫ T

0

∫
Ω

Du(x, t) ·Dϕε dz

=

∫ T

0

∫
Ω

Du(x, t) ·D
∫
R
ϕ(x, s)ηε(t− s) ds dz

=

∫
R

∫
Ω

∫ T

0

Du(x, t) ·Dϕ(x, s)ηε(t− s) dt dx ds

=

∫
R

∫
Ω

∫ T

0

Du(x, t) ηε(t− s) dt ·Dϕ(x, s) dx ds.
(4.43)

Since ηε is an even function, we have∫ T

0

Du(x, t) ηε(t− s) dt =
∫ T

0

Du(x, t) ηε(s− t) dt = (Du(x, s))ε,

(4.44)
where we can restrict ε ≤ s ≤ T − ε. This is due to assumption
spt(ϕ(x, ·)) ⊂ (ε, T − ε). By subtracting (4.44) into (4.43), we obtain∫ T

0

∫
Ω

Du(x, t) ·Dϕε(x, t) dz

=

∫ T−ε

ε

∫
Ω

(Du(x, s))ε ·Dϕ(x, s) dx ds.
(4.45)

Similarly∫ T

0

∫
Ω

u(x, t)
∂ϕε

∂t
dx dt

=

∫ T

0

∫
Ω

∫
R
u(x, t)

∂

∂s
ϕ(x, s)ηε(t− s) ds dx dt

=

∫ T−ε

ε

∫
Ω

∫ T

0

u(x, t)ηε(t− s) dt
∂

∂s
ϕ(x, s) dx ds

=

∫ T−ε

ε

∫
Ω

uε(x, s)
∂

∂s
ϕ(x, s) dx ds.

(4.46)

The definition of a weak solution combined with (4.45) and (4.46) imply
(4.42).
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4.3. Steklov averages. Another alternative is to use Steklov aver-
ages. Let u ∈ L1(ΩT ). Then the Steklov average is defined as

uh =
1

h

∫ t+h

t

u(x, τ) dτ, t ∈ (0, T − h).

Weak formulation can also be written (ex) for 0 < t1 < t2 < T as∫
Ω

u(x, t2)φ(x, t2) dx−
∫
Ω

u(x, t1)φ(x, t1) dx

−
∫
Ω×(t1,t2)

uφt dx dt+

∫
Ω×(t1,t2)

Du ·Dφdx dt = 0.

Then choose φ(s, x) ∈ C∞
0 (ΩT ) independent of t (this is not compactly

supported in t as it is constant in t, but it does not matter). Since φ
is compactly supported in s, we can choose t1 = s, t2 = s+ h for small
enough h. Then divide by h, and observe that φt = 0 so that

0 =
1

h

∫
Ω

(u(x, s+ h)− u(x, s))φ(x, s) dx

+
1

h

∫
Ω

∫ s+h

s

Du(x, t) dt ·Dφ(x, s) dx

=

∫
Ω

∂uh(x, s)

∂s
φ(x, s) dx+

∫
Ω

(
Du)h(x, s) ·Dφ(x, s) dx.

Integrate wrt s over (0, T ) to obtain

0 =

∫
ΩT

∂uh(x, s)

∂s
φ(x, s) dx ds+

∫
ΩT

(Du)h(x, s) ·Dφ(x, s) dx ds

= −
∫
ΩT

uh
∂φ

∂s
dx ds+

∫
ΩT

(Du)h ·Dφdx ds, (4.47)

for every φ ∈ C∞
0 (ΩT ).

4.4. Uniqueness. In this section, similarly in the elliptic case, we sim-
plify the treatment considering

Lu = −
n∑

i,j=1

Di(aijDju) + cu

with c ≥ c0, c0 ∈ R. In the proof below, we want avoid using the time
derivative of a solution and therefore use mollifications.
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Theorem 4.11. There is c0 such that if c ≥ c0, then the weak solution
to {

ut + Lu = 0, in ΩT

u = g on ∂pΩT .

with g ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)) is unique.

Proof. Let u and w be two weak solutions. Then similarly as in (4.42)

−
∫
ΩT

uε
∂vε

∂t
dx dt+

∫
ΩT

n∑
i,j=1

(aijDju)εDiv
ε + cu(vε)ε dx dt = 0

where spt v ⊂ ΩT , and ε is small enough, and a similar equation for w.
Then by subtracting the equations, we have

−
∫
ΩT

(u− w)ε
∂vε

∂t
dx dt+

∫
ΩT

n∑
i,j=1

(aij(Dj(u− w))εDi(v
ε)ε)

+ c(u− w)(vε)ε dx dt = 0.

(4.48)

We choose

vε(x, t) = (χh
0,T (t))ε(u− w)ε

with

χh
0,T =



0 t ≤ h,

(t− h)/h h < t ≤ 2h,

1, 2h < t ≤ T − 2h,

(−t+ T − h)/h, T − 2h < t ≤ T − h,
0, T − h < t.

Moreover, by density we can extend the class of test functions so that
(vε)ε is admissible (ex). We estimate∫

ΩT

(u− w)ε
∂vε

∂t
dx dt

=

∫
ΩT

(u− w)ε
∂(χh)ε(u− w)ε

∂t
dx dt

=

∫
ΩT

(u− w)ε
∂(χh)ε
∂t

(u− w)ε + (χh)ε
∂(u− w)ε

∂t
dx dt

=

∫
ΩT

(u− w)2ε
∂(χh)ε
∂t

dx dt+

∫
ΩT

(χh)ε
1

2

∂(u− w)2ε
∂t

dx dt
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Then we integrate by parts and pass to the limit

int by parts
=

∫
ΩT

(u− w)2ε
∂(χh)ε
∂t

dx dt− 1

2

∫
ΩT

∂(χh)ε
∂t

(u− w)2ε dx dt

=
1

2

∫
ΩT

∂(χh)ε
∂t

(u− w)2ε dx dt

ε → 0
=

1

2

∫
ΩT

∂χh

∂t
(u− w)2 dx dt

=
1

2h

∫ 2h

h

∫
Ω

(u− w)2 dx dt− 1

2h

∫ T−h

T−2h

∫
Ω

(u− w)2 dx dt

h → 0
= 0− 1

2

∫
Ω

(u(x, T )− w(x, T ))2 dx,

where at the last step we used continuity and the initial condition.
The other terms in (4.48) converge by similar approximation argu-

ments as before, and combining the above calculation together with
(4.48), we obtain by first letting ε→ 0 and then h→ 0

0 =
1

2

∫
Ω

(u(x, T )− w(x, T ))2 dx

+

∫
ΩT

n∑
i,j=1

aijDj(u− w)Di(u− w) + c(u− w)(u− w) dx dt

parab

≥ 1

2

∫
Ω

(u(x, T )− w(x, T ))2 dx

+

∫
ΩT

λ|Dj(u− w)|2 + c(u− w)2 dx dt

≥ 1

2

∫
Ω

(u(x, T )− w(x, T ))2 dx+
∫
ΩT

(λ
µ
+ c0

)
(u− w)2 dx dt

where we used Sobolev-Poincaré’s inequality with a constant µ. If
−γ := 1

2
(λ/µ + c0) > 0 then the result is immediate. Otherwise, let

us denote η(T ) :=
∫
Ω
(u(x, T )−w(x, T ))2 dx. Then the above estimate

reads as

γ

∫ T

0

η(t) dt ≥ η(T ).

We can repeat the argument for a.e. t ∈ (0, T ) instead of T , and have

γ
∫ t

0
η(s) ds ≥ η(t). But this is as in well-known Grönwall’s inequality

(proof is ex.) which now says η(t) = 0 a.e. completing the proof. □
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4.5. Cα regularity using Moser’s method. For simplicity we con-
centrate on ∂u

∂t
= ∆u+f , f ∈ L∞(ΩT ) but method immediately extends

to more general linear PDEs.

Definition 4.12 (supersolution). A function u ∈ L2
loc(0, T ;W

1,2
loc (Ω))

is a weak supersolution to ∂u
∂t

= ∆u+ f , if

−
∫
ΩT

u
∂φ

∂t
dx dt+

∫
ΩT

Du ·Dφdx dt ≥
∫
ΩT

fφ dx dt

for every φ ∈ C∞
0 (ΩT ), φ ≥ 0.

Definition 4.13 (subsolution). A function u ∈ L2
loc(0, T ;W

1,2
loc (Ω)) is

a weak subsolution to ∂u
∂t

= ∆u+ f , if

−
∫
ΩT

u
∂φ

∂t
dx dt+

∫
ΩT

Du ·Dφdx dt ≤
∫
ΩT

fφ dx dt

for every φ ∈ C∞
0 (ΩT ), φ ≥ 0.

Formally we can write for example for subsolution ∂u
∂t
−∆u ≤ f .

Rough plan:

We will describe details, notation etc. later, but look at rough ideas
to begin with.

We look at parabolic Harnack’s inequality. The elliptic Harnack’s
inequality for positive harmonic function in Ω reads as

ess sup
B

u ≤ C ess inf
B

u

where 2B ⊂ Ω (local estimate). In contrast with this, in parabolic
Harnack’s inequality the sets on RHS/LHS are not the same. Instead,
they take into account the flow of information from the past to the
future. Indeed, parabolic Harnack’s inequality for a positive solution
to the heat equation can be stated as

ess sup
Q−

u ≤ C ess inf
Q+

u

where Q− lies in the past compared to Q+, where the cylinder lie well
within the domain (again a local estimate) . There are counterexamples
(ex) showing that this so called waiting time is indispensable.

(1) (Easier part ) We intend to show that a positive subsolution is
bounded from above with explicit estimate

ess sup
Q

u ≤ C

∫
Q̃

u dx dt

where Q, Q̃ are parabolic cylinders .
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(2) (Harder part ) We partly show a lower bound for a positive
weak supersolution in a form∫

Q−
u dx dt ≤ C ess inf

Q̃+
u.

In this estimate, direction of time plays a crucial role.

Lemma 4.14 (Energy estimate). Let u ≥ 0 be a weak subsolution to
∂u
∂t
−∆u ≤ 0 in ΩT and γ ≥ 1. Then there exists C = C(γ) such that∫

ΩT

|Du|2uγ−1η2 dx dt+ ess sup
t∈(0,T )

∫
Ω

u1+γη2 dx dt

≤ C

∫
ΩT

u1+γ|Dη|2 dx dt+ C

∫
ΩT

u1+γη

∣∣∣∣∂η∂t
∣∣∣∣ dx dt

for every η ∈ C∞
0 (ΩT ), η ≥ 0.

Proof. Use (formal, details are ex.) test function φ = η2χh
0,tu

γ (now γ
is a power) in

−
∫
ΩT

u
∂φ

∂t
dx ds+

∫
ΩT

Du ·Dφdx ds ≤ 0.

First term can be estimated by integration by parts as∫
ΩT

u
∂φ

∂t
dx ds =

∫
ΩT

u
∂(η2χh

0,tu
γ)

∂t
dx ds

=

∫
ΩT

u(
∂η2χh

0,t

∂t
uγ + η2χh

0,tγu
γ−1∂u

∂t
) dx ds

=
1

1 + γ

∫
ΩT

∂η2χh
0,t

∂t
uγ+1 dx ds.

For the second term∫
ΩT

Du ·Dφdx ds

=

∫
ΩT

Du ·D(η2χh
0,tu

γ) dx ds

=

∫
ΩT

η2χh
0,tγ|Du|

2uγ−1 +Du · χh
0,tDη

2uγ dx ds

=

∫
ΩT

γη2χh
0,t|Du|

2uγ−1 + u(γ−1)/2Du · χh
0,t(Dη

2)u(γ+1)/2 dx ds.

Then use Young’s inequality to estimate the second term.
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Finally combine the estimates and absorb the gradient term into the
left, choose t suitably so that one of the terms is close to ess sup-term
(detailed calculation was presented during the lecture). □

Choosing γ = 2qk − 1, k = 0, 1, 2, . . . , q ≥ 1 gives the following
corollary. Also observe that as γ increases, the constants in the previous
lemma remain bounded. Thus we can choose the constant independent
of k below.

Corollary 4.15. Let u ≥ 0 be a subsolution in ΩT and q ≥ 1. Then
there exists C = C(q) such that∫

ΩT

∣∣∣Duqk∣∣∣2η2 dx dt+ ess sup
t∈(0,T )

∫
Ω

u2q
k

η2 dx dt

≤ C

∫
ΩT

u2q
k |Dη|2 dx dt+ C

∫
ΩT

u2q
k

η

∣∣∣∣∂η∂t
∣∣∣∣ dx dt

for every η ∈ C∞
0 (ΩT ), η ≥ 0.

Lemma 4.16 (Parabolic Sobolev’s inequality). Let u ∈ L2(0, T ;W 1,2
0 (Ω))

and q = 1 + 2/n. Then there exists C = C(n) such that∫
ΩT

|u|2q dx dt ≤ C
(
ess sup
t∈(0,T )

∫
Ω

|u|2 dx
)2/n ∫

ΩT

|Du|2 dx dt

Proof. By Hölder’s inequality for a.e. t ∈ (0, T )∫
Ω

|u|2q dx ≤
∫
Ω

|u|1−q+2q+(q−1) dx

≤
(∫

Ω

|u|(1+q)n/(n−1) dx
)(n−1)/n(∫

Ω

|u|(q−1)n dx
)1/n

≤
(∫

Ω

|u|(1+q)n/(n−1) dx
)(n−1)/n(∫

Ω

|u|2 dx
)1/n

Then using Sobolev’s inequality with 1∗ = n/(n− 1) and 1, we have(∫
Ω

|u|(1+q)n/(n−1) dx
)(n−1)/n

≤ C

∫
Ω

∣∣∣D(|u|(1+q))
∣∣∣1 dx

= C

∫
Ω

|u|q|Du| dx

Hölder

≤ C
(∫

Ω

|u|2q dx
)1/2(∫

Ω

|Du|2 dx
)1/2

.

Then we combine the estimates, integrate over (0, T ) and estimate by
ess sup to obtain the result. □
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For notational convenience we consider the domain around the origin.
This can be done without loss of generality.

QR = B(0, R)× (−R2, R2),

We assume that 2 < n and R ≤ 1.

Lemma 4.17. Let u ≥ 0 be a subsolution to ∂u
∂t
− ∆u ≤ f in Q2R .

Then there are C = C(n) such that

ess sup
QR/2

u ≤ C
(∫

QR

u2 dx dt
)1/2

+ C ||f ||L∞(QR) .

Proof. The proof consists of several steps:
Step 1 (simplification): Set w = u + (tmax − t) ||f ||L∞(QR), where
tmax is a suitable constant so that tmax − t ≥ 0, and observe that

−
∫
QR

w
∂φ

∂t
dx dt+

∫
QR

Dw ·Dφdx dt

= −
∫
QR

u
∂φ

∂t
dx dt+

∫
QR

Du ·Dφdx dt−
∫
QR

||f ||L∞(QR) φdx dt

≤
∫
QR

(f − ||f ||L∞(QR))φdx dt ≤ 0.

Thus we may concentrate on the homogenous equation ∂w
∂t
−∆w ≤ 0.

If the results holds for w

ess sup
QR/2

w ≤ C
(∫

QR

w2 dx dt
)1/2

this then implies

ess sup
QR/2

u ≤ C
(∫

QR

u2 dx dt
)1/2

+ C ||f ||L∞(QR) .

Step 2 (reverse Hölder): By step 1, let u ≥ 0 be a subsolution to
∂u
∂t
−∆u ≤ 0. Let ρ, σ be such that

R

2
≤ ρ < σ ≤ R

and choose a cut-off function η ∈ C∞
0 (Qσ), 0 ≤ η ≤ 1 such that η = 1

in Qρ and

|Dη|+
∣∣∣∣∂η∂t

∣∣∣∣ 12 ≤ C

σ − ρ
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By Corollary 4.15 (the same proofs give the estimates in Qσ instead of
ΩT ) choosing k = 0, we have∫

Qσ

|Du|2η2 dx dt+ ess sup
t∈(−σ2,σ2)

∫
B(0,σ)

u2η2 dx dt

≤ C

∫
Qσ

u2|Dη|2 dx dt+ C

∫
Qσ

u2η

∣∣∣∣∂η∂t
∣∣∣∣ dx dt

≤ C

(ρ− σ)2

∫
Qσ

u2 dx dt.

By using parabolic Sobolev’s inequality in Lemma 4.16 and then the
previous estimate, we deduce(∫

Qρ

u2q dx dt
)1/q

≤ C1/q ess sup
t

(∫
σB

(ηu)2 dx
)2/(nq)(∫

Qσ

|D(ηu)|2 dx dt
)1/q

≤ C1/q
(
ess sup

t

∫
σB

η2u2 dx+

∫
Qσ

|D(ηu)|2 dx dt
)(2/n+ 1)/q︸ ︷︷ ︸

1

≤ C1/q
(
ess sup

t

∫
σB

η2u2 dx+

∫
Qσ

|Dη|2u2 + η2|Du|2 dx dt
)

≤ C1/q

(σ − ρ)2

∫
Qσ

u2 dx dt.

Similarly(∫
Qρ

u2q
2

dx dt
)1/q2

parab Sobo

≤ C1/q2 ess sup
t

(∫
B(0,σ)

(ηuq)2 dx
)2/(nq2)(∫

Qσ

|D(ηuq)|2 dx dt
)1/q2

≤ C1/q2
(
ess sup

t

∫
B(0,σ)

η2u2q dx+

∫
Qσ

|D(ηuq)|2 dx dt
)(2/n+ 1)/q2︸ ︷︷ ︸

1/q

≤ C1/q2
(
ess sup

t

∫
B(0,σ)

η2u2q dx+

∫
Qσ

|Dη|2u2q + η2|Duq|2 dx dt
)1/q

Cor 4.15, k = 1

≤
( C1/q

(σ − ρ)2

∫
Qσ

u2q dx dt
)1/q

.
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This argument in general yields( 1

Rn+2

∫
Qρ

u2q
k+1

dx dt
)1/(2qk+1)

≤
( C1/q

Rn(ρ− σ)2

∫
Qσ

u2q
k

dx dt
)1/(2qk)

.

(4.49)

Step 3 (Moser’s iteration): Replace in (4.49) ρ by ρk+1 and σ by
ρk where

ρk =
R

2
(1 + 2−k), k = 0, 1, . . .

so that ρk − ρk+1 =
R
2
2−k(1− 1/2) = R2−k−2. Thus( 1

Rn+2

∫
Qρk+1

u2q
k+1

dx dt
)1/(2qk+1)

≤
(C1/q22(k+2)

Rn+2

∫
Qρk

u2q
k

dx dt
)1/(2qk)

.

We iterate this( 1

Rn+2

∫
Qρk+1

u2q
k+1

dx dt
)1/(2qk+1)

≤ C1/(2qk+1)2(k+2)/qk(
1

Rn+2

∫
Qρk

u2q
k

dx dt
)1/(2qk)

≤ C1/(2qk+1)2(k+2)/qkC1/(2qk)2((k−1)+2)/qk−1
( 1

Rn+2

∫
Qρk−1

u2q
k−1

dx dt
)1/(2qk−1)

≤ C1/(2qk+1)2(k+2)/qkC1/(2qk)2((k−1)+2)/qk−1
( 1

Rn+2

∫
Qρk−1

u2q
k−1

dx dt
)1/(2qk−1)

. . .

≤ Cγ′
2γ

∗
(∫

Qρ0

u2 dx dt
)1/2

,

where

γ′ =
∞∑
i=1

1

2qi
, γ∗ =

∞∑
i=0

2(i+ 2)

qi
.

Then let k → ∞ and observe that the LHS in the above estimate
converges (see Measure and integration 1) to ess supQR/2

u. □

Lemma 4.18 (Iteration lemma). Let G(s) be a bounded and nonneg-
ative function for s ∈ [R/2, R]

G(ρ) ≤ θG(σ) +
C0

(σ − ρ)α
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where θ < 1 and R/2 ≤ ρ < σ ≤ R. Then there is C = C(α, θ) such
that

G(ρ′) ≤ C
( C0

(σ′ − ρ′)α
)
,

where R/2 ≤ ρ′ < σ′ ≤ R.

Proof. Ex. □

Corollary 4.19. Let u ≥ 0 be a subsolution to ∂u
∂t
−∆u ≤ f in Q2R.

Then there is C = C(n, s) such that

ess sup
QR/2

u ≤ C
(∫

QR

us dx dt
)1/s

+ C ||f ||L∞(QR) .

for s > 0.

Proof. First, we may again without loss of generality restrict ourselves
to the homogenous case.
If s ≥ 2, then the result follows directly from the previous lemma and

Hölder’s inequality. Let then 0 < s < 2. Using the result of previous
lemma with σ, ρ instead of R/2, R, and ρi = ρ+ 2−i(σ − ρ) as well as
inspecting carefully the proof, we get( 1

σn

∫
Qρk+1

u1/(2q
k+1) dx dt

)1/(2qk+1)

≤
( C

σn(σ − ρ)2

∫
Qρk

u2q
k

dx dt
)1/(2qk)

≤
(

σ

σ − ρ

)1/qk ( C

σn+2

∫
Qρk

u2q
k

dx dt
)1/(2qk)

.

Iterating this, observing that
∑∞

i=0 1/q
i = 1/(1−1/q) = 1/((q−1)/q) =

q/(q − 1) = (1 + 2/n)/(2/n) = (n + 2)/2, and then using Young’s
inequality to the resulting inequality we have

ess sup
Qρ

u ≤ Cγ′
2γ

∗
(

σ

σ − ρ

)∑∞
i=0 1/q

i ( 1

σn+2

∫
Qσ

u2 dx dt
)1/2

≤ C

(
σ

σ − ρ

)(n+2)/2 ( 1

σn+2

∫
Qσ

u2 dx dt
)1/2

≤ C
( 1

(σ − ρ)n+2

∫
Qσ

(ess sup
Qρk

u)2−sus dx dt
)1/2

Young

≤ 1

2
ess sup

Qσ

u+ C
( 1

(σ − ρ)n+2

∫
Qσ

us dx dt
)1/s

,
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since (2−s)/2+s/2 = 1. Then use iteration Lemma 4.18 with ρ′ = R/2
and σ′ = R , we get

ess sup
QR/2

u ≤ C

(R−R/2)(n+2)/s

(∫
QR

us dx dt
)1/s

. □

Next we consider the second part.

Lemma 4.20. Let u ≥ δ > 0 be a weak supersolution to ∂u
∂t
−∆u ≥ 0.

Then w = u−1 is a weak subsolution.

Proof. First observe that u−1 ≤ δ−1 and |Du−1| = |u−2Du| ≤ δ−2|Du|
so that u−1 is in the right parabolic Sobolev space. We choose (for-
mally) a test function φ = ηu−2 with η ∈ C∞

0 (ΩT ), η ≥ 0, and calculate

0 ≤
∫
ΩT

−u∂φ
∂t

+Du ·Dφdx dt

=

∫
ΩT

−u∂(ηu
−2)

∂t
+Du ·D(ηu−2) dx dt

=

∫
ΩT

−u(∂η
∂t
u−2 − 2ηu−3∂u

∂t
) +Du · (u−2Dη − 2ηu−3Du) dx dt

=

∫
ΩT

−∂η
∂t
u−1 − 2η

∂u−1

∂t
−Du−1 ·Dη − 2ηu−3|Du|2 dx dt

≤
∫
ΩT

∂η

∂t
u−1 −Du−1 ·Dη dx dt

where at the last step we integrated by parts and dropped the negative
term. Thus

0 ≥
∫
ΩT

−∂η
∂t
u−1 +Du−1 ·Dη dx dt. □

Lemma 4.21. Let u ≥ δ > 0 be a weak supersolution to ∂u
∂t
−∆u ≥ 0.

Then there is C = C(n, s) such that(∫
QR

u−s dx dt
)−1/s

≤ C ess inf
QR/2

u.

for any s > 0.

Proof. By the previous lemma, u−1 is a subsolution. Then by Corollary
4.19, we have

ess sup
QR/2

u−1 ≤ C
(∫

QR

(u)−s dx dt
)1/s
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so that (∫
QR

u−s dx dt
)−1/s

≤ ess inf
QR/2

u.

□

We denote

Q̃ = B(0, R)× (−3R2, 3R2),

Q̃+ = B(0, R)× (R2, 3R2),

Q̃− = B(0, R)× (−3R2,−R2),

Q+ = B(0, R/2)× (2R2 − (R/2)2, 2R2 + (R/2)2),

Q− = B(0, R/2)× (−2R2 − (R/2)2,−2R2 + (R/2)2).

(4.50)

The proof of the following deep theorem can be found in Fabes and
Garofalo: Parabolic B.M.O and Harnack’s inequality.

Theorem 4.22. Let u ≥ δ > 0 be weak supersolution to ∂u
∂t
−∆u ≥ 0

in Q2R. Then there is s > 0 and C = C(n) such that(∫
Q̃−

us dx dt
)1/s
≤ C

(∫
Q̃+

u−s dx dt
)−1/s

.

Combining the previous two results i.e. Lemma 4.21 and Theorem
4.22, we immediately obtain weak Harnack’s inequality. One could
show (not done here) that this holds for 0 < s < (n + 2)/2 with
C = C(n, s) and in particular with s = 1.

Theorem 4.23. Let u ≥ δ > 0 be a weak supersolution to ∂u
∂t
−∆u ≥ 0

in Q2R. Then there is s > 0 and C = C(n) such that(∫
Q̃−

us dx dt
)1/s
≤ C ess inf

Q+
u.

Corollary 4.24. Let u ≥ δ > 0 be a weak supersolution to ∂u
∂t
−∆u ≥ f

in Q2R. Then there is s > 0 and C = C(n) such that(∫
Q̃−

us dx dt
)1/s
≤ C ess inf

Q+
u+ C ||f ||L∞(Q̃) .

Proof. Observe that u+(t−tmin) ||f ||L∞(Q̃) ≥ δ, where tmin is a constant

such that t − tmin ≥ 0, is a weak supersolution to ∂u
∂t
− ∆u ≥ 0 and

thus by the previous theorem(∫
Q̃−

(u+ (t− tmin) ||f ||L∞(Q̃))
s dx dt

)1/s
≤ C ess inf

Q+
(u+ (t− tmin) ||f ||L∞(Q̃)).
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This implies the result. □

Then by weak Harnack’s inequality (Corollary 4.24 ) and local bound-
edness estimate (Corollary 4.19), we get for a weak solution of ∂u

∂t
−

∆u = f that

ess sup
Q−

u ≤ C
(∫

Q̃−
us dx dt

)1/s
+ C ||f ||L∞(Q̃)

≤ C ess inf
Q+

u+ C2 ||f ||L∞(Q̃) .

This finally gives us parabolic Harnack’s inequality.

Theorem 4.25 (Harnack). Let u ≥ δ > 0 be a weak solution to ∂u
∂t
−

∆u = f in Q̃. Then there is C = C(n) such that

ess sup
Q−

u ≤ C ess inf
Q+

u+ C ||f ||L∞(Q̃) .

Remark 4.26. The assumption u ≥ δ > 0 is only technical: if u ≥ 0,
we may consider u + δ and since the constant in Harnack’s inequality
is independent of δ, we may let δ → 0.

Example 4.27. ”Elliptic” Harnack’s ie., where we have same cylinder
on both sides, does not hold in the parabolic case: the equation ∂u

∂t
−

uxx = 0 has a nonnegative solution in (−R,R)× (−R2, R2) (translated
fundamental solution)

u(x, t) =
1√

t+ 2R2
e
− (x+ξ)2

4(t+2R2)

where ξ is a constant. Let x ∈ (−R/2, R/2), x ̸= 0 and t ∈ (−R2, R2).
Then

u(0, t)

u(x, t)
= e

− ξ2−(x+ξ)2

4(t+2R2) = e
−−x2−2xξ

4(t+2R2) = e
x2+2xξ

4(t+2R2) → 0

as ξ signx→ −∞.

4.6. Hölder continuity. By iterating (weak) Harnack’s inequality we
may prove the local Hölder continuity of weak solutions.

Theorem 4.28. Let u be a positive weak solution to ∂u
∂t
− ∆u = 0.

Then there exists γ ∈ (0, 1) and a representative such that

|u(x, t)− u(y, s)| ≤ C(|x− y|+ |t− s|1/2)γ

locally.
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Proof. We take the weak Harnack for s = 1 for 1granted and using that
for a weak (super)solutions u− ess infQ̃ u and ess supQ̃ u− u, we have∫

Q̃

u dx− ess inf
Q̃

u ≤ C
(
ess inf

Q+
u− ess inf

Q̃
u
)

ess sup
Q̃

u−
∫
Q̃

u dx ≤ C
(
ess sup

Q̃

u− ess sup
Q+

u
)
.

Summing up yields

oscQ̃ u ≤ C
(
oscQ̃ u− oscQ+ u

)
,

where we denoted

oscQ̃ u := ess sup
Q̃

u− ess inf
Q̃

u.

Rearranging the terms, we have

oscQ+ u ≤
(
1− 1

C

)
oscQ̃ u.

Thus by setting θ := 1− 1/C ∈ (0, 1) we obtain

oscQ+ ≤ θ oscQ̃ u. (4.51)

The proof of (weak) Harnack would also work in the geometry

Q̃ := B(0, R)× (−R2, R2)

Q+ := B(0, R/2)× (R2/2− (R/2)2, R2/2 + (R/2)2).

Using this and denoting, with a slight abuse of notation,

Qk := B(0, R/2k)×
(
tk − (R/2k)2, tk + (R/2k)2

)
for a suitable tk we obtain oscQ1 u ≤ θ oscQ0 u. Repeating the argument,
we deduce

oscQk
u ≤ θk oscQ0 u.

Then fix ρ < R and k such that 2k < R/ρ ≤ 2k+1, k = 0, 1, 2, . . . so
that 2−kR > ρ ≥ 2−(k+1)R and

k ≤ log(R/ρ)/ log(2) ≤ k + 1

i.e.

log(R/(2ρ))/ log(2) ≤ k

1Or use (strong) Harnack to have
∫
Q− u dx ≤ C ess infQ+ u. Then applying this

to u− ess infQ̃ u and ess supQ̃ u− u gives the same oscillation estimate.
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Thus

oscQρ u ≤ θlog(R/(2ρ))/ log(2) oscQ0 u

= θlog(R/(2ρ)) log(θ)/(log(θ) log(2)) oscQ0 u

=
( ρ

2R

)log(θ)/ log(2)
oscQ0 u

= C
( ρ
R

)− log(θ)/ log(2)︸ ︷︷ ︸
=:γ oscQ0 u.

Since ρ can be chosen arbitrarily small and u is locally bounded, this
implies Hölder-continuity. □

4.7. Remarks. Also a similar regularity theory that we established
for the elliptic equations can be developed for ∂u

∂t
+ Lu = f if the

coefficients are smooth enough.
Intuition: We consider formally the heat equation

{
∂u
∂t
−∆u = f in Rn × (0, T ]

u = g on Rn × {0}

and u decays fast enough at infinity. Then integration by parts gives

∫
Rn

f 2 dx =

∫
Rn

(
∂u

∂t
−∆u)2 dx

=

∫
Rn

∂u

∂t

2

− 2
∂u

∂t
∆u+∆u2 dx

=

∫
Rn

∂u

∂t

2

+ 2
∂Du

∂t
·Du+∆u2 dx

Then we calculate

∫ t

0

∫
Rn

∂Du

∂t
·Dudx ds =

∫ t

0

∫
Rn

∂|Du|2

∂t
dx ds

init cond
=

∫
Rn

|Du(x, t)|2 dx−
∫
Rn

|Dg|2 dx.
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Moreover, similarly as with the elliptic equations∫
Rn

(∆u)2 dx =

∫
Rn

n∑
i=1

∂2u

∂x2i

n∑
j=1

∂2u

∂x2j
dx

=
n∑

i,j=1

∫
Rn

∂2u

∂x2i

∂2u

∂x2j
dx

int by parts
= −

n∑
i,j=1

∫
Rn

∂3u

∂x2i∂xj

∂u

∂xj
dx

int by parts
=

n∑
i,j=1

∫
Rn

∂2u

∂xi∂xj

∂2u

∂xi∂xj
dx

=

∫
Rn

∣∣D2u
∣∣2 dx.

Choosing t so that
∫
Rn |Du|2(x, t) dx ≥ 1

2
supt∈(0,T )

∫
Rn |Du(x, t)|2 dx

and combining the estimates, we end up with∫ T

0

∫
Rn

∣∣∣∣∂u∂t
∣∣∣∣2 + ∣∣D2u

∣∣2 dx dt+ sup
t∈(0,T )

∫
Rn

|Du(x, t)|2 dx

≤ C

∫ T

0

∫
Rn

|f |2 dx dt+ C

∫
Rn

|Dg|2 dx.

Continuing in this way (cf. elliptic), we would obtain higher regularity
estimates as well. The solution has two more space derivatives than
f etc. To make above conclusions rigorous, we could again utilize
difference quotients both in space and time.

5. Schauder estimates

We finish the course by briefly returning to the elliptic theory, and
sketching the Schauder theory because this is needed to finish the story
with Hilbert’s 19th problem.

Recall Hölder continuity

Definition 5.1. Let u : Ω → R. For α ∈ (0, 1), we denote the semi-
norm

|u|Cα(Ω) = sup
x,y∈Ω,x ̸=y

|f(x)− f(y)|
|x− y|α

,
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and a set of all functions satisfying |u|Cα(Ω) <∞ by Cα(Ω). This space
can be equipped with the norm

||f ||Cα(Ω) = ||f ||L∞(Ω) + sup
x,y∈Ω,x ̸=y

|f(x)− f(y)|
|x− y|α

.

Similarly

Ck,α(Ω) = {u : Dβu ∈ Cα(Ω) for |β| ≤ k},

where β is a multi-index.

The main result of this section is

Theorem 5.2. Let u be a weak solution to −∆u = f in B(0, 2R)
with f ∈ Cα(B(0, 2R)). Then u ∈ C2,α(B(0, R/4)) with an explicit
estimate.

Remark 5.3. • Theorem 5.2 actually comes with estimate, see
Theorem 5.13.
• The result can be extended to Lu = f with

||aij||Cα(B(0,2R)) , ||bi||Cα(B(0,2R) , ||c||Cα(B(0,2R) ≤M,

uniform ellipticity, and aij = aji by the freezing of coefficients
technique.
• In regular domains, there is also a corresponding global result.

First, we look at the important step i.e. how to pass from integral
estimates (natural from the point of view what we have done so far) to
the pointwise Hölder norms. For this, we use a theory of Campanato
spaces. Denote

ux,ρ =
1

|Ω ∩B(x, ρ)|

∫
Ω∩B(x,ρ)

u(y) dy.

where Ω is a regular domain, for example Ω = B(0, R).

Definition 5.4 (Campanato space). Let µ ≥ 0 and u ∈ L2(Ω). Then
the functions satisfying

|u|L2,µ(Ω) = sup
x∈Ω,0<ρ<diam(Ω)

( 1

ρµ

∫
Ω∩B(x,ρ)

|u(y)− ux,ρ|2 dy
)1/2

<∞

belong to the Campanato space L2,µ(Ω). We use the norm

||u||L2,µ(Ω) = |u|L2,µ(Ω) + ||u||L2(Ω) .

Lemma 5.5 (Mean value lemma). Let u ∈ L2,µ(Ω), x ∈ Ω and 0 <
ρ < R < diam(Ω). Then

|ux,R − ux,ρ| ≤ Cρ−n/2Rµ/2|u|L2,µ(Ω).
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Proof. Let y ∈ B(x, ρ) ∩ Ω and write

|ux,R − ux,ρ|2 ≤ C(|ux,R − u(y)|2 + |u(y)− ux,ρ|2,

integrate over B(x, ρ) ∩ Ω ⊂ B(x,R) ∩ Ω to have

|ux,R − ux,ρ|2 =
∫
B(x,ρ)∩Ω

|ux,R − ux,ρ|2 dy

≤ C

∫
B(x,ρ)∩Ω

|ux,R − u(y)|2 + |u(y)− ux,ρ|2 dy

≤ C

∫
B(x,ρ)∩Ω

|ux,R − u(y)|2 + |u(y)− ux,ρ|2 dy

≤ C
(Rµ

ρn
+
ρµ

ρn

)
|u|2L2,µ(Ω)

≤ 2C
Rµ

ρn
|u|2L2,µ(Ω). □

In the proof of the key result, we need integral characterization of
Hölder continuous functions i.e. Campanato estimate.

Lemma 5.6 (Integral characterization of Hölder continuous functions).
Let n < µ ≤ n+ 2. Then L2,µ(Ω) = Cα(Ω) and

C−1|u|Cα(Ω) ≤ |u|L2,µ(Ω) ≤ C2|u|Cα(Ω)

with α = (µ− n)/2 and C = C(n, µ).

Interpretation: Cα(Ω) ⊂ L2,µ(Ω) and each u ∈ L2,µ(Ω) has a presen-
tative ũ in Cα(Ω).

Proof. The second inequality: Let u ∈ Cα(Ω), x ∈ Ω and 0 < ρ <
diam(Ω) and y ∈ Ω ∩B(x, ρ). We have

|u(y)− ux,ρ| =
∣∣∣∣∫

B(x,ρ)∩Ω
u(y)− u(z) dz

∣∣∣∣
≤
∫
B(x,ρ)∩Ω

|u(y)− u(z)| dz

≤ |u|Cα(Ω)

∫
B(x,ρ)∩Ω

|y − z|α dz

≤
C|u|Cα(Ω)

ρn

∫
B(x,ρ)∩Ω

|y − z|α dz = ∗
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since |Ω ∩B(x, ρ)|C ≥ ρn . Moreover, since y − x ∈ B(0, ρ) it follows
that B(y−x, ρ)∩Ω ⊂ B(0, 2ρ)∩Ω and by the change of variables that

∗ ≤
C|u|Cα(Ω)

ρn

∫
B(0,2ρ)∩Ω

|z|α dz

≤
C|u|Cα(Ω)

ρn

∫
B(0,2ρ)

|z|α dz

≤
C|u|Cα(Ω)

ρn

∫ 2ρ

0

rn−1+α dz

≤ C|u|Cα(Ω)ρ
α.

(5.52)

Hence

1

ρµ

∫
B(x,ρ)∩Ω

|u(y)− ux,ρ|2 dy ≤ C|u|2Cα(Ω)ρ
2α−µ|B(x, ρ) ∩ Ω|

≤ C|u|2Cα(Ω)ρ

2α− µ+ n︸ ︷︷ ︸
0

and thus the second inequality follows.
The proof of the first inequality is in three steps: construction of the

representative ũ, showing that ũ = u a.e., and showing that ũ ∈ Cα(Ω)
Step1(construction of the representative ũ): Let x ∈ Ω, 0 < R <
diam(Ω) and Ri = 2−iR, i = 0, 1, . . .. Then by Lemma 5.5∣∣ux,Rj

− ux,Rj+1

∣∣ ≤ CR
−n/2
j+1 R

µ/2
j |u|L2,µ(Ω)

= C2j(n−µ)/2+n/2R(µ−n)/2|u|L2,µ(Ω).

Thus for 0 ≤ j < i∣∣ux,Rj
− ux,Rj+1

+ ux,Rj+1
− . . .+ ux,Ri−1

− ux,Ri

∣∣
≤ CR(µ−n)/2|u|L2,µ(Ω)

i−1∑
k=j

2k(n−µ)/2+n/2

= CR(µ−n)/2|u|L2,µ(Ω)2
j(n−µ)/2+n/2

i−j−1∑
k=0

2k(n−µ)/2+n/2

= CR(µ−n)/2|u|L2,µ(Ω)2
j(n−µ)/2+n/21− 2(i−j)(n−µ)/2+n/2

1− 2(n−µ)/2+n/2

= CR
(µ−n)/2
j |u|L2,µ(Ω),

where C = C(n, µ). We have derived the estimate∣∣ux,Rj
− ux,Ri

∣∣ ≤ CR
(µ−n)/2
j |u|L2,µ(Ω), (5.53)
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It follows that ux,Ri
, i = 0, 1, 2, . . . is a Cauchy sequence. Hence we

may define

ũ(x) = lim
i→∞

ux,Ri
, x ∈ Ω.

It also holds that the limit does not depend on the particular choice
of R. To see this, take 0 < r < R and let ri = 2−ir, i = 0, 1, . . .. Then
again by Lemma 5.5

|ux,Ri
− ux,ri | ≤ Cr

−n/2
i R

µ/2
i |u|L2,µ(Ω)

≤ C

(
Ri

ri

)n/2

R
(µ−n)/2
i |u|L2,µ(Ω)

≤ C

(
R

r

)n/2

R
(µ−n)/2
i |u|L2,µ(Ω) → 0

as i → ∞, since µ > n. Thus ũR(x) = ũr(x). Moreover, by (5.53)
setting j = 0 and letting i→∞

|ux,R − ũ(x)| ≤ CR(µ−n)/2|u|L2,µ(Ω) (5.54)

so that ũ(x) = limR→0 ux,R.
Step2 (ũ = u a.e): By Lebesgue’s theorem

ũ(x) = lim
R→0

ux,R
Leb.
= u(x) a.e. in Ω.

Step3 (ũ ∈ Cα(Ω)):
Let x, y ∈ Ω, x ̸= y and set R := |x− y|. By (5.54)

|ũ(x)− ũ(y)| ≤ |ũ(x)− ux,R|+ |ux,R − uy,R|+ |uy,R − ũ(y)|
≤ CR(µ−n)/2|u|L2,µ(Ω) + |ux,R − uy,R|.

Set G = Ω∩B(x, 2R)∩B(y, 2R). Observe that G ⊂ Ω∩B(x, 2R) and
G ⊂ Ω ∩ B(y, 2R)), and C|G| ≥ Rn because Ω is smooth. Estimate
the second term on the RHS as

|ux,R − uy,R|

=

∫
G

|ux,R − uy,R| dz

≤ |Ω ∩B(x, 2R)|1−1/2

|G|

(∫
Ω∩B(x,2R)

|ux,R − u(z)|2 dz
)1/2

+
|Ω ∩B(y, 2R)|1−1/2

|G|

(∫
Ω∩B(y,2R)

|u(z)− uy,R|2 dz
)1/2

≤ CR(µ−n)/2|u|L2,µ(Ω).
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Combining the estimates, we have

|ũ(x)− ũ(y)| ≤ CR(µ−n)/2|u|L2,µ(Ω)

so that ũ ∈ Cα(Ω) with α = (µ− n)/2, and

|u|Cα(Ω) ≤ C|u|L2,µ(Ω). □

Calculation (5.52) gives us a useful estimate, that we state separately
as a lemma

Lemma 5.7. Let u ∈ Cα(Ω), x ∈ Ω. Then∫
B(x,ρ)∩Ω

|u(y)− ux,ρ|2 dy ≤ C|u|2Cα(Ω)ρ
n+2α.

Without loss of generality, as long as we have the uniqueness, we may
derive the Schauder estimates assuming smoothness, by using smooth
approximations, and passing to the limit at the end.

Lemma 5.8. Let u be a weak solution ∆u = 0 in B(0, 2R). Then for
any 0 < ρ ≤ R, it holds∫

B(0,ρ)

u2 dx ≤ C
( ρ
R

)n ∫
B(0,R)

u2 dx∫
B(0,ρ)

(u− uρ)2 dx ≤ C
( ρ
R

)n+2
∫
B(0,R)

(u− uR)2 dx,

with C = C(n).

Proof. The first estimate: By the elliptic counterpart of the (ess)sup-
estimate (cf. Lemma 4.17, and ex 13 in set 3 ), we have for 0 < ρ < R/2∫

B(0,ρ)

u2 dx ≤ Cρn sup
B(0,ρ)

u2 ≤ C
( ρ
R

)n ∫
B(0,R)

u2 dx.

For R/2 ≤ ρ ≤ R the result immediately follows∫
B(0,ρ)

u2 dx ≤ C
( ρ

R︸︷︷︸
≥C

)n ∫
B(0,R)

u2 dx.

The second estimate: The second follows from the first one by observing
that w = Diu is also a solution to the Laplace equation, and thus by
the first estimate∫

B(0,ρ)

(Diu)
2 dx ≤ C

( ρ
R

)n ∫
B(0,R)

(Diu)
2 dx (5.55)
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Summing over i, assuming 0 < ρ < R/2, and using Poincaré’s inequal-
ity ∫

B(0,ρ)

(u− uρ)2 dx
Poinc.

≤ Cρ2
∫
B(0,ρ)

|Du|2 dx

≤ Cρ2
( ρ
R

)n ∫
B(0,R/2)

|Du|2 dx

By Caccioppoli’s inequality (ex)∫
B(0,R/2)

|Du|2 dx ≤ C

R2

∫
B(0,R)

(u− uR)2 dx.

Combining the previous two estimates, we have∫
B(0,ρ)

(u− uρ)2 dx ≤ C
( ρ
R

)n+2
∫
B(0,R)

(u− uR)2 dx.

The case R/2 ≤ ρ ≤ R is again easier:∫
B(0,ρ)

(u− uρ)2 dx

≤
∫
B(0,ρ)

(u− uR + uR − uρ)2 dx

≤ C

∫
B(0,ρ)

(u− uR)2 dx+ C

∫
B(0,ρ)

∫
B(0,ρ)

(uR − u)2 dx dx

≤ C

∫
B(0,R)

(u− uR)2 dx

≤ C
( ρ

R︸︷︷︸
≥C

)n+2
∫
B(0,R)

(u− uR)2 dx.

(5.56)

□

Lemma 5.9. Let u be a solution to ∆u = f in B(0, 2R), and let
w = Diu, f ∈ Cα(B(0, 2R)). Then for 0 < ρ ≤ R

1

ρn+2α

∫
B(0,ρ)

|Dw − (Dw)ρ|2 dx

≤ C

Rn+2α

∫
B(0,R)

|Dw − (Dw)R|2 dx+ C|f |2Cα(B(0,R)).

Proof. Decompose w = w1 + w2, where{
−∆w1 = 0 in B(0, R)

w1 = w on ∂B(0, R)
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and {
−∆w2 = Dif = Di(f − fR) in B(0, R)

w2 = 0 on ∂B(0, R)

in the weak sense. Then use Lemma 5.8 for Diw1 (this is also a solution
to Laplace eq) to have∫
B(0,ρ)

(Diw1 − (Diw1)ρ)
2 dx ≤ C

( ρ
R

)n+2
∫
B(0,R)

(Diw1 − (Diw1)R)
2 dx

Summing over i∫
B(0,ρ)

(Dw1 − (Dw1)ρ)
2 dx ≤ C

( ρ
R

)n+2
∫
B(0,R)

(Dw1 − (Dw1)R)
2 dx

and further (change of radius as before in (5.56))∫
B(0,ρ)

(Dw − (Dw)ρ)
2 dx

≤ C

∫
B(0,ρ)

(Dw1 − (Dw1)ρ)
2 dx+ C

∫
B(0,ρ)

(Dw2 − (Dw2)ρ)
2 dx

≤ C
( ρ
R

)n+2
∫
B(0,R)

(Dw1 − (Dw1)R)
2 dx+ C

∫
B(0,R)

(Dw2 − (Dw2)R)
2 dx

≤ C
( ρ
R

)n+2
∫
B(0,R)

(Dw − (Dw)R)
2 dx+ C

∫
B(0,R)

(Dw2 − (Dw2)R)
2 dx

≤ C
( ρ
R

)n+2
∫
B(0,R)

(Dw − (Dw)R)
2 dx+ C

∫
B(0,R)

|Dw2|2 dx,

where we wrote Dw1 = D(w1 + w2)−Dw2 etc.
By using φ = w2 as a test function in

∫
Dw2 ·Dφdx = −

∫
fDiφdx

we get (recall zero bdr values)∫
B(0,R)

|Dw2|2 dx = −
∫
B(0,R)

(f − fR)Diw2 dx

≤ 1

2

∫
B(0,R)

(f − fR)2 dx+
1

2

∫
B(0,R)

|Dw2|2 dx.

Thus ∫
B(0,R)

|Dw2|2 dx ≤ C

∫
B(0,R)

(f − fR)2 dx

≤ CRn+2α|f |2Cα(B(0,R))

where we also used estimate similar to Lemma 5.7.
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Combining the estimates∫
B(0,ρ)

(Dw − (Dw)ρ)
2 dx

≤ C
( ρ
R

)n+2
∫
B(0,R)

(Dw − (Dw)R)
2 dx+ CRn+2α|f |2Cα(B(0,R)).

Then by Lemma 5.10∫
B(0,ρ)

(Dw − (Dw)ρ)
2 dx

≤ C
( ρ
R

)n+2α (∫
B(0,R)

(Dw − (Dw)R)
2 dx+Rn+2α|f |2Cα(B(0,R))

)
. □

In the previous proof, we used the following iteration lemma for

G(r) =

∫
B(0,r)

(Dw − (Dw)r)
2 dx

where r ∈ [0, R].

Lemma 5.10 (another iteration lemma). If

G(ρ) ≤ A
( ρ
R

)γ
G(R) +BRβ, 0 < ρ < R ≤ R0

where 0 < β < γ, then there is C = C(A, γ, β) such that

G(ρ) ≤ C
( ρ
R

)β
(G(R) +BRβ), 0 < ρ < R ≤ R0.

Proof. Ex. □

We also need a Caccioppoli type estimate.

Lemma 5.11. Let u be a solution to −∆u = f in B(0, 2R), f ∈
Cα(B(0, 2R)). Then there is C = C(n) such that∫

B(0,R/2)

∣∣D2u
∣∣2 dx

≤ C
( 1

R4

∫
B(0,R)

u2 dx+Rn ||f ||2L∞(Ω) +Rn+2α|f |2Cα(B(0,R))

)
.

Proof. Since u ∈ W 2,2
loc (B(0, 2R)) by our earlier regulatity results, we

may test with φ = Diϕ with a smooth function ϕ. Integrating by parts∫
fDiϕ dx =

∫
Du ·DDiϕ dx

int by parts
= −

∫
DDiu ·Dϕdx.
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Thus in the weak sense w = Diu

−∆w = Dif = Di(f − fR).

Testing this with φ = η2w, where η ∈ C∞
0 (B(0, R)), 0 ≤ η ≤ 1, η = 1

in B(0, R/2) and |Dη|2 ≤ C/R2, we have (ex)∫
B(0,R)

|Dw|2η2 dx ≤ C

∫
B(0,R)

w2|Dη|2 dx+ C

∫
B(0,R)

η2|f − fR|2 dx

≤ C

R2

∫
B(0,R)

w2 dx+ CRn+2α|f |Cα(B(0,R)),

where at the last step we also used Lemma 5.7. Further testing the weak
formulation of −∆u = f by φ = η2u where η ∈ C∞

0 (B(0, 3R/2)), 0 ≤
η ≤ 1, η = 1 in B(0, R) and |Dη|2 ≤ C/R2, we have∫

B(0,R)

w2 dx ≤
∫
B(0,3R/2)

|Du|2η2 dx

≤ C

∫
B(0,3R/2)

u2|Dη|2 dx+ CR2

∫
B(0,3R/2)

η2|f |2 dx

≤ C

R2

∫
B(0,3R/2)

u2 dx+ CRn+2 ||f ||2L∞(B(0,3R/2)) ,

where we estimated for example
∫
B(0,3R/2)

R
R
η2uf dx ≤ CR2

∫
B(0,3R/2)

η2|f |2 dx+
C
R2

∫
B(0,3R/2)

η2u2 dx. Combining the previous two estimates we have∫
B(0,R/2)

∣∣D2u
∣∣2 dx

≤ C

R4

∫
B(0,3R/2)

u2 dx+ CRn ||f ||2L∞(B(0,3R/2)) + CRn+2α|f |Cα(B(0,R)).

□

Lemma 5.12. Let u be a solution to −∆u = f in B(0, 2R), and let
w = Diu, f ∈ Cα(B(0, 2R)). Then for 0 < ρ ≤ R/2 there is C = C(n)
st ∫

B(0,ρ)

|Dw − (Dw)ρ|2 dx ≤ ρn+2αMRC

where

MR =
1

R4+2α
||u||2L∞(B(0,R)) +

1

R2α
||f ||2L∞(B(0,R)) + |f |

2
Cα(B(0,R)).
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Proof. By Lemma 5.9∫
B(0,ρ)

|Dw − (Dw)ρ|2 dx

≤ Cρn+2α
( 1

Rn+2α

∫
B(0,R/2)

|Dw − (Dw)R|2 dx+ |f |2Cα(B(0,R/2))

)
≤ Cρn+2α

( 1

Rn+2α

∫
B(0,R/2)

|Dw|2 dx+ |f |2Cα(B(0,R))

)
.

Then by the Caccioppoli type estimate Lemma 5.11 we have∫
B(0,ρ)

|Dw − (Dw)ρ|2 dx

≤ Cρn+2α
( 1

Rn+2α

∫
B(0,R/2)

|Dw|2 dx+ |f |2Cα(B(0,R))

)
≤ Cρn+2α

(
1

Rn+2α

( 1

R4

∫
B(0,R)

u2 dx

+Rn ||f ||2L∞(B(0,R))

)
+ |f |2Cα(B(0,R))

)
.

□

Theorem 5.13. Let u be a solution to −∆u = f in B(0, 2R) with
f ∈ Cα(B(0, 2R)). Then∣∣D2u

∣∣
Cα(B(0,R/4))

≤ C(
1

R2+α
||u||L∞(B(0,R)) +

1

Rα
||f ||L∞(B(0,R)) + |f |Cα(B(0,R))).

Proof. What we have in Lemma 5.12 looks very much like the Cam-
panato seminorm. Indeed, this is exactly the idea of the proof. To
be more precise, by Lemma 5.6 it suffices to bound the Campanato
seminorm.

|u|L2,µ(B(0,R/4)) = sup
x∈Ω,0<ρ<diam(B(0,R/4))

( 1

ρµ

∫
Ωp(x)

|u(y)− ux,ρ|2 dx
)1/2

.

To this end, let x ∈ B(0, R/4) and 0 < ρ ≤ R/2 and observe that
similarly as before in (5.56)∫

B(x,ρ)∩B(0,R/4)

∣∣D2u(y)− (D2u)B(x,ρ)∩B(0,R/4)

∣∣2 dx
≤ C

∫
B(x,ρ)

∣∣D2u(y)− (D2u)B(x,ρ)

∣∣2 dx.
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Then by Lemma 5.12,∫
B(x,ρ)

∣∣D2u(y)− (D2u)B(x,ρ)

∣∣2 dx
≤ Cρn+2α

(
1

R4+2α
||u||2L∞(B(0,R))) +

1

R2α
||f ||2L∞(B(0,R)) + |f |

2
Cα(B(0,R))

)
.

We combine the estimates, divide on both sides by ρn+2α, take
supx∈Ω,0<ρ<diam(B(0,R/4)), and power 1

2
to obtain the result. □

The previous theorem immediately implies Theorem 5.2.
By differentiating the Euler-Lagrange equation related to a mini-

mizer, using the Hölder-continuity result, then Schauder estimates and
iterating using so called bootstrapping argument, Hilbert’s 19th prob-
lem was settled.
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