EXERCISE SET 2B VISCOSITY THEORY, 2015 DEADLINE 10.4.2015

- 1. (2 points) Show that if $u \in C(\Omega)$ is a bounded viscosity subsolution to $\Delta u \ge 0$ in Ω , then sup-convolution u^{ε} of u is still a subsolution in Ω_{ε} .
- 2. Let u and u^{ε} be as in the previous exercise. Show that $u^{\varepsilon} \searrow u$.
- 3. (2 points) Let u^{ε} be as above. Show that there is C such that $u^{\varepsilon}(x) + C |x|^2$ is convex.
- 4. Show that if u is a viscosity subsolution to $P^+(D^2u) \ge f$, then v := -u is a viscosity supersolution to $P^-(D^2v) \le -f$.

Does it hold that if F is degenerate elliptic and u a subsolution to $F(D^2u) \ge 0$, then is v =: -u is a supersolution to $F(D^2v) \le 0$? How about if F uniformy elliptic?

5. Show that if $v \in C(\Omega)$ is a viscosity supersolution to $P^{-}(D^{2}v) \leq 0$, then

$$\tilde{v}(x) = v(x) + 2(|x|^2 - 1)$$

is a supersolution to $P^{-}(D^{2}\tilde{v}) \leq C$.

- 6. Show that $\nu'(D^2 u)\nu = g''(t) =: D_{\nu\nu}u$ where $g(t) := u(x + \nu t)$.
- 7. (Bonus) Show that if F is uniformly elliptic and smooth, then

$$|\xi|^2 \lambda \le \sum_{ij} F_{ij} \xi_i \xi_j \le \Lambda \, |\xi|^2 \,,$$

for suitable constants $0 < \tilde{\lambda} \leq \tilde{\Lambda} < \infty$. Above $F_{ij}(X) = \partial F(X)/(\partial x_{ij})$.