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1. INTRODUCTION

This lecture note contains a sketch of the lectures. More illustrations
and examples are presented during the lectures.

Partial differential equations (PDEs) have a great variety of applica-
tions to mechanics, electrostatics, quantum mechanics and many other
fields of physics as well as to finance.

In addition, PDEs have a rich mathematical theory. In the ICM
at 1900, a German mathematician published nowadays a legendary
list of 23 mathematical problems that have been very influential for
20th century mathematics. We are interested in particular with the
problems:

(1) 20th problem: Has not every regular variational problem a solu-
tion provided certain assumptions regarding the given boundary
conditions, and provided that, if needed, the notion of solutions
shall be suitably extended?

(2) 19 th problem: Are the solutions of regular problems in the
calculus of variations always necessarily analytic?

Comments:

e Variational problems and PDEs have a tight connection. We
will return to this later.

e As Hilbert suggested, in most of the cases we will have to relax
the definition of the solution to PDEs to obtain existence of a
solution. Still we would like to preserve the uniqueness and to
some extend regularity and stability. These are the question
we will deal with in this course.
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2. SOBOLEV SPACES
2.1. Notations.

DOM = Lebesgue’s dominated convergence theorem,
Q CR" open set

|z| = \/2?+ ...+ 22 for z € R",

2|, = |z " + ... + |z,|P) /P for & € R™,

m(FE) = |E| = a Lebesgue measure of a set F

1
...dy:—/ oo dy
]{B(o,a) 1B(0,€)| /B,

f:Q2—R afunction

spt f ={x € Q : f(x) # 0} = the support of f
C(Q) ={f : f continuous in Q}

Co(2) ={f € C(Q) : spt f is compact subset of 2}

CH(Q) ={f € C(Q) : fis k times continuously differentiable}
CE(S) = ) N Co()
C>(Q) = N ,C*(Q) = smooth functions

C5e(Q) = C(02) N Cy(2) = compactly supported smooth functions
Remark 2.1. Recall that
u e CHQ) <= D c ()

for multi-index o = (ay,...,0) € N* and |a| ' = a1+ ...+ a, <k,
where

8041 aan

dxft " Qwon

D%y =

Example 2.2 (Warning). It is not always the case that spt f C Q.

Example 2.3. (1)

x? x>0
"R—=R = ’ -
S

feCi\C*(Q)
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(2)
el/(‘x|2_1), ‘x| < 1
0, |z] > 1.

¢ € C(Q),spt v C B(0,1)

v:R" = R, cp(x):{

FEzxercise.

2.2. Reminders (from the Measure and Integration). Let E be
Lebesgue measurable, 1 < p < oo, and f : E — [—00, 0] a Leabesgue
measurable function. Then we define

1
[ (Jlirdn) p <o
HfHLp(E) -
esssupg|fl,  p= oo
where
esssup |f| :=inf{M : |f| < M a.e.in E}.
E

Then we define LP(E) to be a a linear space of all Lebesgue measur-
able functions f : £ — [—00, 0o] for which

HfHLp(E) < 0.

If we identify functions that coincide a.e., then this will be a Banach
space with the norm defined above.
We also recall

LY (E):={f:E — [—o00,00] : f €& LP(F) for cach F € E},
where € means that F is a compact subset of E.
Remark 2.4. There is usually no inclusions between LP spaces:
> ¢ L9 Lt ¢ [P
This can be seen by recalling that
7% € L'((0,1)) <= a> -1

7 € L'((1,00)) <= a< —1.

Thus if we let 1 < p < g < oo and choose B > 0 such that

1 1
__>_5>__
q p

we have
z7% e LP((0,1)), but 2=? ¢ LI((0,1))
e ¢ LP((1,00)), but =% € LI((1, 00)).
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Nonetheless, Héolder’s inequality is often a useful tool:

Fgll e < 1A 9l o

[1salds < ( [157an)"( [ 1o,

where 1 < p,q < oo are Holder-conjugates that is

1 1

-+ -=1

q p
This implies, in particular, for 1 <p’ < ¢ < oo and for a set |E| < oo
that

that is

felV(E)= felLV(E)
because (1 —p'/q' = (¢ — I)/q/)

E
q-p")/d p’
S’El HfHLq’(E)-

Also the following inequalities are worth recalling. Young’s inequality:
foreache >0,1 <p,qg<oo,1/p+1/¢g=1 and a,b> 0 it holds

ab < ea? + Cb,

where C'= C(g,p,q) (meaning that C depends on the quantities in the
parenthesis). Minkowski’s inequality: for 1 <p < oo and f,g € LP(FE)
it holds that

||f+g||LP(E) < ||f||LP(E) + ||g||LP(E)

2.3. Weak derivatives. Let v € C'(Q2) and ¢ € C5°(2). Then by
integrating by parts

Op ou
fori=1,...,n.
/ axzdx /axigodx, or ¢ RN )

Observe that ¢ vanishes at the boundary and thus there is no boundary
term above.
More generally for multi-index a, || < k, and u € C*(Q), we have

/uDagodx:(—1)|a/D°‘ugpdx.
Q Q

Remark 2.5. Observe that the left hand side does not require u to be
continuously differentiable. This will be our starting point for defining
weak derivatives for functions that are not continuous differentiable.
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Definition 2.6. Let u,v € L}, () and o a multi-index. Then v is ath

loc

weak partial derivative of u if

/uDO‘godx: (—1)a|/v<pdx,
Q Q

for every test function ¢ € C§°(2). We denote

D%y := 0.

We denote weak partial derivatives with the familiar notation

ou
a!)ﬁ'i'
We also use
ou ou
Du=(—,..., —
“ (8$1’ ’Oa:n)

for the weak gradient.
Example 2.7.

r O<zx<1
1 1<x<?.

u:(0,2) = R, wu(zr)= {
We claim that the weak derivative is

, 1 0<z<1
u =v =
0 I<z<2

By definition, the task is to show that

/ vpdr = —1/ uy' dx.
(0,2) (0,2)

To see this, we calculate

/ ' dw :/ uy' dx +/ uy' dx
(0,2) (0,1) (1,2)

= u(L)p(1) = u(0)p(0) +u(2)@(2) —u(1)p(1)

- o @dm—/ v pdr
/(0,1) N 12

1 0

= —/ pdr
(0,1)

= —/ vpdx.
(0,2)
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Note that above u ¢ C*((0,2)) and u' ¢ C((0,2)). Also observe that
weak derivatives are only defined a.e. and thus it is irrelevant what is
the point value for example at 1.

We found one weak derivative but could there be several? Answer:
No, weak derivatives are unique up to a set of measure zero.

Theorem 2.8. A weak ath derivate of u is uniquely defined up to a
set of measure zero.

Proof. Suppose that v,v € Ll () satisfy

loc

/ uD%p dx = (—1)1
Q

= (-
for all p € C5°(Q). It follows that

/Q(v—ﬁ)<pd:c:0

for every ¢ € C§°(€2). This implies that v = v a.e. by the following
reason:

Let ' € Q and observe that C5°(€') is dense in L'(Y'). Indeed, then
there exists

vpdx

v dx

S— 55—

pi € CR (), pi <2
such that
©; — sign(v —v) a.e. in Q,

(more about approximations later) where

1 x>0
sign(z) =¢0 =0
-1 x<0.

Then

0=1lim [ (v—"7)p;dx
7 Q/

DgM/ lim(v — 0)p; dx

_ //(u _ %) sign(v — ) dz

= [ |v—71|dz,
Q/
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where the use of DOM is based on |(v — v)p;| < 2(|v| + [9]) € L' ().
This implies that v = v a.e. in , for any ' € €, and thus a.e. in
Q. O

The above proof also yields a useful result.

Lemma 2.9 (Fundamental lemma in calc var). If f € L (Q), and

/Qfgodxzo

for every ¢ € C°(R2), then f =0 a.e.
Example 2.10.

r O<z<l1
u:(0,2) = R, u(x):{2 l< 329

This time u' does not exist even in the weak sense.
Counterproposition: Suppose that there is v € L} (Q) such that

/ up' dr = —1/ vpdr,
(0,2) (0,2)

for every test function p € C§°(2). Then

/ vpdr = / up' d

(0,2 (0,2)

/ ' d —/ up' dx
(0,1) 1,2)

20" dx
(1,2)

¢ dr —

\

0,1)

— (1) + 20(1) + / odz

= (1) +/ pdx.
(0,1)

Then we can choose a sequence @; € C3°(82), |pi| < 2 such that ¢;(1) =
1 and pi(x) — 0 if © # 0. We obtain the desired contradiction by
calculating

0 = lim ( vsoidw—/ i dz — i(1))
(0.2) (0.1)

DgM(/ Ulim%‘dm_/ lim ¢ dz — i(1))
(0,2) 7 (0,1) *

—0—0— (1) =—1.
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The Sobolev spaces are named after a Soviet mathematician S.L.
Sobolev for his significant contributions to the theory starting 1930’s.

Definition 2.11 (Sobolev space). Let 1 < p < oo and k € N. A
function u :  — [—00,00] belongs to a Sobolev space WHP(Q) if u €
LP(Q2) and its weak derivatives D*u, |o| < k exist and belong to LP(£2).

The function u belongs to the local Sobolev space Wl]f)’cp, ifu € Whp(QY)
for each Q' € Q.

Remark 2.12. (1) Sobolev functions are only defined up to a mea-
sure zero similarly as LP functions.
(2) Notation H* := Wk2 as well as some further variants are en-
countered in the literature

Example 2.13. For the function in Ezample 2.7, it holds
u € WHP((0,2))  for everyp > 1
and
w ¢ WEP((0,2))  for any k > 2.
Example 2.14.
w: B(0,1) = [0,00], u(x)=l|z| ",z eR",B>0,n>2

will in be in Sobolev space for a suitable 5. When x # 0
ou

gAY g H
8@ - 5’1’| |.T’ ﬁ‘x’6+2
as well as
T
Du = —BW

We aim at showing that this function satisfies the definition of the weak
derivative but we will have to be careful with the singularity. Therefore
let p € C°(B(0,1)) and use Gauss’ theorem

0
/ Y r = / upv; dS
B(0,1)\B(0,e) O%i a((BO.\B(0.e))

where v = (v1,...,v,) is outer unit normal vector of the boundary.
Recalling that ¢ =0 on 0B(0,1) we get

0 0
/ uapda::—/ u g0(1!:13+/ wpv; dS
B(0,1)\B(0,¢) OTi B0,1)\B(0,e) OTi 9B(0,6)
(2.1)
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If we can pass to a limit € — 0 and to show that faB(o o) UPYi ds — 0,
we are done. To establish this we estimate

/ upv; dS‘ < HSOHLOO(B(0,1))/ e ds
0B(0,¢) 0B(0,¢)

< ||S0||Loo(B(0,1))Wn—lgn_l_ﬁ — 0

ase — 0, ifn—1— (> 0. Next we calculate

= 15} dx
/B(O 1) | O B(0,1) |:10|BjL2
=l
<o/
B(0,1) |x]ﬁ+2
_ 3 / LS
B(0,1) \:L']BH
! 1
= ﬁ/ / ———dSdp
0 JaB(0,p) poH

1
= ﬁ/ wnflpn7276 dp
0
n—1—p3

Loy
= PWn— 5 < 09,
P 1/0n—1—5 >

whenever n — 1 — 8 > 0. Thus, we have integrable upper bound for
XB(071)\§(078)3—; and we have

(2.2)

i du du POV / I ou p
11m xr = 11m xr
e—0 B(O,l)\E(O,E) axz v B(O 1) e—0 XB(O 1)\B 0 5) axz v

ou
= pdx
/3(0,1) Ox;

Similarly as in (2.2), we see that

1
/ jul de = / o p1 dp
B(0,1) 0

1 =B
= wn,l/ ad < 00,

on—p»
whenever n — > 0. Thus we can again pass to a limit
8 0
lim Ld dz P2 / U L4 dx.
e=0 JB0,1\B(0,e) Yo, B, 0T
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Recalling (2.1), passing to a limit ¢ — 0 and combining the above
estimates, we deduce

/ augpdm:—/ ua('pda:JrO
B(0,1) Ox; B(0,1) Ox;

for all o € C§°(R2).
By modifying calculation (2.2), we have

0 _
el — n—pB+1) >0 < 6<u
Ox; p

and

u€lP(Q) <= n—pB8>0 < %>B.

As a conclusion

ue W (Q) < B< nT

Observe: If p > n, then u ¢ WP(Q) for any p. Actually, we will
later see that when p > n, Sobolev functions have a Holder continuous
representative.

Example 2.15. A Sobolev function can be rather singular! Indeed, let
q; be a set of points with rational coordinates in B(0,1) C R™. Then

for

o0

w: B(0,1) = [0,00], wu(x)= Z %W - Qz‘|_6

i=1
holds
weWW(B0,1) < B < —L
p
Observe: u explodes at every rational point!

Example 2.16. Without a proof, we state that Cantor function is not
in W10, 1).
Theorem 2.17 (Calculation rules). Let u,v € W*?(Q) and |o| < k.
Then
(1) D%u € Wk=lalp(Q).
(2) D*(DPu) = DP(D%u) for all multi-indezes with |a| + |3] < k.
(3) Let A\, € R. Then Au+ pv € W*P(Q) and

D*(Au+ pw) = AD%u + pD.
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(4) If € € C°(Q), then Eu € WHP(Q) and
D (eu) =Y (g) DP¢ DBy

BLa

where

a\ o! L |
6 —m, Q. = Q1. ...° Q-

and B < a means 5; < «; for eachi=1,...,n.

Proof. (1) Clear.
(2) Let ¢ € C§°(R2). By the first statement, the weak derivatives
exist and

(—1)|B/D5Daug0dstné)0th (—1)a|/uD6Dag0dx
Q Q
def (_1)|a(_1)a+ﬁl/ngGDﬁud$
Q

= (=) / ©D*DPu dzx.
Q
(3) Clear.
(4) When |a| = 1, then (4) says
D (éu) = uD“ + D

which follows from the definition by observing

/qu‘dea:':/uDa(fgo)—wpDo‘fd:c
Q Q
:—/fDaugpdx—/u(Do‘ﬁ)gadx
Q Q
= _/(fDo‘u—i—uDo‘f)(pdx.
Q

The rest follows by induction, but details are omitted.

Remark 2.18 (Reminder). Vector space with the norm satisfying

(1) 0 < lu] < o0

(2) |lul]| =0 <= u=0

(3) ||cul| = || ||u||  for each ¢ € R

(4) |lu+vl| < [lull +[lv]|
is a mormed vector space. If, in addition, the space is complete, it
s called Banach space. Completeness means that all of its Cauchy
sequences converge.
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Definition 2.19 (Sobo norm). If u € W*P(Q), we define its norm to
be

1/p
<Z‘a|§k Jo [ Dul? d:):) 1<p<o
||u||wk,p(g) N
D la|<k €SS SUPq [ Dl p = 00.

Remark 2.20. The norm ||ul[yrrq) is equivalent with the norm

Z (/ \Dau\pd.r)l/p if 1 <p<oo.
Q

lal <k

This further gives that in the case p = oo the norm |[ullyue(q) 15
equivalent with

D%%| = D* .
gﬁ)}g essgup | D%l gﬁ% [ D%l ‘LOO(Q)

Definition 2.21. Let u;,u € W*P(Q). We say that u; converges to u
in WEP(Q) denoted by

w; —uin WHP(Q),

}ggo [lu = il |y () = 0-
Let ug,u € WEP(Q). We say that u; converges to u locally in W*P(€)
denoted by
w —u i WEP(Q),

loc

zllglo |lu— ui||Wk7P(Q’) =0

for every Q' € Q.

The space C''() is not complete with respect to the Sobolev norm:
to see this approximate in Example 2.7 the weak derivative by a smooth
function v; in LP. Then by integrating v;, we obtain u; € C*((0,2)) so
that

u; — u  in WHP((0,2)),
but clearly u ¢ C'((0,2)). However, the Sobolev space 'fixes’ this issue.
Theorem 2.22. The Sobolev space W*P(Q) is a Banach space.

Proof. First we check that |[u||yyx, g is a norm.
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(1) ||u||Wk,p(Q) =0 <<= u=0a.e.in
b2 :>’7
||ull ey = O implies that |Juf|,q) = 0 and this implies by
Chebysev’s inequality (see Measure and integration 1) that u =
0 a.e. in (2.
2 <:77
Suppose that © = 0 a.e. in 2. Then

OZ/UDagodm:(—l)|a/Ocpdm
Q Q

for every ¢ € C§°(R2), i.e. Du = 0.
(2) [[Aullyrn @) = (Al is clear.
(3) Let (1 < p < o0, if p= 00 a similar proof applies). Then

1/p
o+ vl < (0 1D+ D0l q )

lo| <k
Minkowski

1/p
< (X (1D ullgagey + 1001 )

o<k

Minkowski for ||,

< Do) (S Do)

|| <k lo| <k

Next we show that if u; is a Cauchy sequence in W*P(Q), then it
converges in W*?(Q) i.e. W*P(Q) is complete. To this end, let u; be a

Cauchy sequence in W*P(Q).
Claim: D%u; is a Cauchy sequence in LP(2) for each a, |a| < k.
Proof: This follows by fixing € > 0 and observing that

[1D%u; = Dusl| oy < Mot = willyrney < €
Q) (@)

whenever i, j are large enough, since u; is a Cauchy sequence in W*?(Q).///
The space L? is complete and thus there exists u, € LP(2) such that

D%u; = go in LP(Q).
In particular for o = 0
w; —u in LP(9Q).

Claim: D%u = g, in the weak sense.
Proof: Let ¢ € C§°(Q)

1
__'__:17 p7q21
q
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and observe that

/(u —u;) D% dx
0

Hélgder(/ lu — uy|” dx)l/p(/ |D%p| d:c)l/q —0
’ ’ (2.3)

by LP convergence. Thus
/uDacpdm (22) lim/uiDacpdm
Q tJa

=lim(—1)/! / D%u;p dx
! Q

sim to (2.3)

= (—1)'0‘| /ancpdx.

This completes the proof of the auxiliary claim.///
We have shown that D%u := g, € LP(£2) exists and

D%u; — uo, = D% in LP(92)
as desired. O

Remark 2.23 (Warning). The Sobolev space W"P(Q) is not compact
in the sense that from

||ui||Wk7P(Q) <(C< o0 (2.4)

it does not follow that there would be u € W*P(Q) and a subsequence
such that

u; — uin WHP(Q).

If this were true some existence results would be much easier. For
example, the functions

0 O<r<l1
ui:(0,2) = R, wi(z)=< (z—1)i 1<z<1+1/i (2.5)
1 I1+1/i<x<?2

are in WH1((0,2)) and furthermore

||ui||W1ﬁ1((072)) <2

However, there is no in WH((0,2)) convergent subsequence. If there
was a limit, it should be (to have even L' convergence)

{0 0<z<l1
u(r) =
1 1<z<?

but this is not in W1((0,2)).



PDE 2 17

Whenp > 1, WFP(Q) is a reflexive Banach space and thus from (2.4)
it follows that there is weakly convergent subsequence u; (consequence
of Banach-Alaoglu’s theorem). Especially, there is the weak limit u €
WHrP(Q) such that

[ul| < Timinf |Ju]|.
T

We omit the details here but observe that (2.5) shows that this fails in
the case p = 1. By modifying the example to be

0 0<z<1
u(r) =S (z—1)Vi 1<z<1+41/i
1/v/i 1+1/i<z<?2,

we have u; € WH2((0,2)), [|uillyreqoay < C and
u; — v weakly in W (€),

where uw = 0. It clearly holds that

0= ||u||W172((072)) < hmiinf ||Uz'||wly2((o,2)) :
Observe carefully that strong convergence does not hold

u; = u in WH2((0,2)).
2.4. Approximations. Below we denote
Q. ={x e Q: dist(z,00) > ¢}

which is an open set by continuity of dist(z, 0€).
Definition 2.24 (Standard mollifier). Let

Cel/(|x|271) |I| < ]_
0 |z] > 1

/ ndr = 1.

(@) = ()

n:R" — R, 77(3:):{

where C is chosen so that
Then we set for € > 0

which s called a standard mollifier.
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Remark 2.25. Observe that
ne € Ce°(R™), sptn. C B(0,¢)

and

vmele L dv=de / n(y) dy = 1.

Definition 2.26 (Standard mollification). Let
f:Q—=[-00,00], f€L,.Q).

loc

Then we define the standard mollification for f by
Jo: =R, foi=n%f,
where n. x f = [ n(x —y) f(y) dy denotes the convolution for x € Q..

Theorem 2.27. The standard mollification has the following properties
(f € Ll (Q) unless otherwise specified)

loc
(1)
Df. = fx D). in ),
and
fe € C™(8).
(2) Let f € LP(Q)). Then
fe— f ae in
(3) If f € C(Q), then
fe = f,  umiformly in compact subsets of €.
(4) If f € L} (Q) for 1 <p < oo, then for ¥ € Q" € Q
el oy < AN ooy
for small enough € > 0, and for 1 < p < oo
fe—f in LY ().
Warning: The convergence does not hold for p = oco.
(5) If f € WiP(Q) for 1 <p < oo, k€N, then
Df. =n.xD*f in (..
(6) If f € WiP(Q), for 1 <p < oo, k €N, then
f-= f in WEP(Q).

loc
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Proof. (1) Let

ith

and h > 0 such that = + he; € €).. Intuitive idea is

)= [P rdy

To make this rigorous we would like to deduce

fc, . felz + he) = fo(x)
o, ) = h
:iiir%]%(/ﬂlng(xﬁthei—y)f(y)dy—//na(x—y)f(y)dy>
1 . 1 x+hei—y xr—vy
= o Jo b (=) =0 ) Ty

= / , —anag;i— 9 () dy

ﬁne*f

(2.6)

where B(x + he;,e) U B(z,e) C ' € Q. For this we need
to calculate the limit inside the integral and to look for an
integrable upper bound to be able to use DOM:

Claim 1:

1 xr+he; —y x—y 10n(*Y)
E(U( € )=l € )>_>E ox;

Proof: This can be seen to hold by setting

_ Ty
o) =n(*=Y)
and the limit is
o _1on x—y
awi(«r)—gaxi( =) /1]

Claim 2: 3(n(z + he; —y) — n(z — y)) f(y) has an integrable
upper bound in V.
Proof:
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SRS

(2)

|[fe(@) = f2)] =

(n(x + he; —y) —n(z —y)) f(y)

PDE 2

h

U(x + he;)) —Y(z) = %1/)@ + te;) dt

0

h
0
Thus
(2 + hei) = p(x)| < h[|IDY] oo o

and

< [DY|| ooy 1F(W)] € LY(SY).

Thus the use of DOM in (2.6) was correct and the proof is
complete. A similar argument shows that for every multi-index
a, D*f. exists and

D®f. =D * f.

Moreover, the convolution on the RHS is continuous (ex). Now,
repeating the argument for higher derivatives f. € C*°(€Q.) fol-
lows.

Let z € ' & Q so that the convolution below is well defined
for a small enough ¢, recall [, 7. dy = 1, and estimate

/Q ne(e — 9)f () dy — ()

[ e =006 - 1) dy‘
“ (2.7)

1
<l 35 [, 150) = 1@y

< Clllymey £ 106) = S@)]dy 0

B(0,e)
a.e. in €2, where at * we used Lebesgue’s differentiation theo-
!
rem. Above fB(O,E) o dy = o fB(O,z—:) ... dy.

Let Q' € Q" € Q). Then f is uniformly continuous on a compact

subset . Let £ > 0 be small enough so that for z € € we
have B(z,e) C ©”. By uniform continuity, for any § > 0, there
exists € > 0 such that

[z —yl <e=|flz) - fly)l <0

/1]
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for any x,y € ", Then by this and (2.7), we have

£:0) = F@)] < Clltllmeny £, 176) = Flo)]dy

B(z,e)

< ey £, 01
z,e
< Cnll poogny 0

independent of x € ' for all small enough ¢.

(4) Let 1 <p<ooand z € € Q" € Q. Then

|fe(2)] =

/ R dy]

< / =) e ) ) dy
B(x,e

Holder

= (/B(;r €) 775(55 - y) dy> o </B(ac €) 775(90 N y)’f(y)‘p dy) 1/:0.

J/

~
1

We apply this estimate together with Fubini’s/Tonelli’s theorem
(R*" measurability ok). Thus, whenever £ > 0 is small enough,

()| dx < (T — Pdyd
[wrars [ [ nw-piswr

~ [ [ nG-wisera
" [ e = o)l ddy
= [ 1t [ o= vy

Q//

< [ 1@ [ e -y)ds ay

Q//

~

-
1

= [ fl"dy

QII

It remains to show that f. — f in L} (€). Recall (not
proven here) that C(Q") is dense in LP(Q2”) ie. for any f €
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LP(2") and 6 > 0, there exists g € C(€”) such that

(/m f —glPdy)"? < 6/3.

From this and the beginning of the proof, we deduce

(-
Minlgwski( i \f _ g|p dx)l/p + ( 5 ]g . g€|p dx)l/p + ( o |gs - fs|p dx)l/p
<3§/3+ (/Q, 9= g.I" dz) """ + (/Q,, 9= 1 dz)"”

<o/ ( [ lo— gl )"+ 53
Q/
<0/3+d/3+9/3,

where the last inequality follows from fact we proved earlier:
for continuous functions the convergence is uniform and thus

1 1
([ 19— gl de)"" < suplg—g.||"" < 6/3
% zeQy
for small enough ¢.

(5) Exercise.
(6) Exercise.
U

2.5. Global approximation in Sobolev space. We already stated
in Theorem 2.27 (6) that Sobolev functions can be estimated locally
by mollifying. At the vicinity of the boundary this does not hold as
such since we need some space to mollify. To establish a global approx-
imation the idea is to take smaller and smaller € when approaching the
boundary so that B(z,e(z)) C € always holds.

Theorem 2.28. Let u € W*P(Q) for some 1 < p < oco. Then there is
a sequence u; € C®(Q) N WHEP(Q) of functions such that

w; —uin WEP(Q).
Proof. We define

Qoz®
;= {x e Q : dist(z,00) > 1/i} N B(0,1)
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and observe that €2; are bounded sets such that Qy € Q) € ... € Q
and

Q= Ej Q;.
i=1

Claim: There are & € C5°(Qi12 \ 1) such that

0<¢& <1, Zé}zlinQ.

=1

This is called partition of unity. 3 _
Proof: Clearly we can choose functions & € C§°(£2;42\£2;_1) such that

Ogélgl, and ézzllnﬁHl\Qz
We set

Z?il &(x) 7

Observe that for any fixed x € €2, only three terms in the sum will be
nonzero. Similarly &; is nonzero at the most for three indices. Then by

Yoo Gilx) =500, % =1 the claim follows.///
We continue with the original proof. By Theorem 2.17 (4) &u €

WHFP(Q) and

§i(z) =

i=1,...

spt(&u) C Qiga \ Qs
Hence for small enough ¢;
e, * (&u) € CF° (it \ﬁi—l)
and
)
||f'7& * (&U) - giunk,p(Q) S E
We define

v = Zn&' * (51“)
i=1
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Then it holds that v € C°°(2) because at each point x € ) there are
at the most three smooth functions that are nonzero in the sum. Then

Z ne, * (Siu Z Siu
=1

v = ullyrs@
Wk.p(Q)
< Z 7e, * (&u) — Gullyyra o)
< i é ) O
—_— : 2 *

Corollary 2.29 (Approximation characterization of the Sobolev space).

u € WH(Q)
if and only if there exists a sequence u; € C*°()) such that
u; — u in WHP(Q).

Proof. 7="": This follows from the previous theorem.
"<": u; is a Cauchy sequence, and since W*?(QQ) is a Banach space
by Theorem 2.22 it follows that u € WHP(Q). O

In other words: W#P(Q) can be characterized as a completion of
C>=(Q) (or (C=(), ]| Wk,p(Q)) to be more precise).

2.6. Sobolev spaces with zero boundary values: Wé‘:’p(Q). Above,
we showed that W*?(Q)) can be characterized as a completion of C*°(€2).
By following this idea, we define Sobolev spaces with zero boundary
values as a completion of C§°(€2).

Definition 2.30. u € WP(Q) if there exists a sequence u; € C3°(Q)
such that

u; —u in WEP(Q).

Remark 2.31 (Purpose). u € WJ"P(Q) has "zero boundary values in
the Sobolev sense”. Later, we want to set boundary values for weak
solutions of PDEs: given v € W*P(Q), we say that u takes boundary
values v in "Sobolev sense” if

u—v € Wyr(Q).

Remark 2.32 (Warning). The regularity of 2 affect the outcome,
and Wol’p(Q) functions do not always look what one might intuitively
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expect by thinking smooth functions with zero boundary values. Set
Q= B(0,1)\ {0}. Then for

u: Q=R u(x)=dist(xz,0B(0,1))

it holds that u € W,*(Q) whenever p < n.

Reason (with omitting some details): Choose a cut-off function & €
C(B(0,1)), 0 <& <1 such that & (x) =1 in B(0,¢) and in B(0,1)\
B(0,1—¢), & =0 in B(0,1 —2¢) \ B(0,2¢) and |DE.| < Cfe. Then
(1—-¢&)ueCP(Q) and

(1—&u—u in WH(Q)

as € — 0, whenever p < n. Indeed, by MON (=Lebesque’s monotone
convergence thm) (1 — &) )u — u in LP(Q)) and we may concentrate on
showing that 22-(1 — &)u — 2% in LP(Q). To see this, we calculate

using Theorem 2.17

0 ou |*
/Q g, (1~ &) =51 do
0 ou |P
- /Q g, (L~ &) — 5 do
_ afe au (‘9u p
- /Q “on TS T
p p
< O/ Ok dx+C/ % "1 — |a)P da
B(0,2¢) | O%i B(0,)\B(0,1-2) | OTi
p
+C’/ Eg% dx
Q 0z;

<C [ 1D6 di+ C4 4 C||Du] e [ 67 da
Q ——Jo
=1
< Ce™[eP 4+ Ce + C(2e + (2¢)™) — 0,

when ¢ — 0 and p < n.

The problem in this example is that {0} is too small to be “seen”
by WHP(Q) function when p < n. Let us also remark that Lebesque
measure is not the most accurate gauge to measure smallness of sets in
the Sobolev theory. In a sense right gauge is so called p-capacity.

The following lemma shows that when considering Sobolev spaces
over the whole R™, Wy P(R") coincides with W' (R").

Lemma 2.33. W, ”(R") = WhP(R").
Proof. Exercise. 0
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2.7. Properties of W'?(Q), 1 < p < co.
Lemma 2.34 (Chain rule). Let f € C'(R), ||f'|| @ < o0, and
ue Wh(Q). Then

of(u) ., | Ou
oz, _f(u)ﬁ_xj’

j=1...,n

. F) . .
a.e. in €2, and where %, # denotes the weak derivative.
J J

Proof. We have proven that we can choose u; € C*(2) NW'P(Q) such
that

u; — u  in WhHP(Q).

Claim: For any ¢ € C§°(Q2)
8@ B dp
/ f(u dm lim / f(uz)a—x] dx.

Proof: Let 1 < p < oo (the case p = 1 is similar). Then since 1/p +
(p—1)/p =1, we have

&p dp
W52 dn | st o

&/v F(us)| D] de
Holder
/’f ul ’pdx /P /|Dgp‘p/p 1) dl’)(p 1/p

- ~1)/
< ||f/HLoo(R)(/Q|U—ui|pdx) /p(/Q|Dg0|P/p 1) dx)(p p_>07

where * follows from | f(u) — f(u;)| =

£)dt] < F| ey s = l.///

/f( )8g0 der = lim | f(u;))=—— 0 dx

0z i—»00 [ 0x;

calc for smooth functions auz
—lim [ f'(u)

a /ng f (ul)ax-

/f —s@dl’

1—00 Q ﬁwj
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Since the LHS above is as in the definition of the weak derivative of
8f (u) , the proof is complete. At * we used

LG - g yeds

J

/ ou; y ou , ou ou
(f (Ui)% —f (Ui)a—% + f (Ui)% — f(u )8;1: o dx

J J

— 0.

() — () o
Lj Lj
The first term converges because of Holder’s inequality and the second
by the fact that since u; — w in LP we can choose a.e. converging
subsequence to u. Moreover, as f’ is continuous, also f'(u;) — f'(u)
a.e., and the conditions of DOM are satisfied.

Theorem 2.35. If u € WHP(Q), then recalling uy = max(u,0) and
u_ = —min(u,0), we have uy,u_,|u| € W(Q) and

Du a.e. in{x € : u(z)> 0}
DU+ = .
0 aein{ze: ulx) <0}

—Du a.e. in{reQ : ulx) <0}
Du_ = .
0 a.e. in{r € : ulx) >0}

and
Du  ae in{reQ : u(x)>0}
Dlu| =<0 a.e. in{x € : uz)=0}
—Du  a.e. in{xeQ : u(r) <0}
Proof. We aim at using the previous theorem for a suitable f. Let
Vs2+e2—e s>0
fels) = {o s <0.

It holds that f. € C'(R) and lim. ¢ f-(s) = f(s), where

s s>0
f(s):{o s < 0.

Also observe that
] ooy < 00
Thus by Lemma 2.34

/fs /f —sodx
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for every ¢ € C§°(£2). Observe that

lim f.(u) =uy in
e—0
and

(1) = 1 inf{zre: ulx)>0}
Yo in {r e€Q: u(x) <0}

By DOM

dp . Oy
fueagde= [ mptagtde
L 8g0
-t [ 1t axjdfc

:lim—/ éu— dx
Qf()axjsa

e—0

ou
—lim—/ (u)=—pdx
A )@xjso

e—0

ou
/Q;g%ﬂ )5 e

/ ou
= — —pdx.
{zeQ:u(z)>0} 81‘]

This proves the first part of the claim. The second and the third follow
by observing

u_=(—u)y and |u|=us+u_. O
Corollary 2.36. Let u,v € WH(Q) and A € R. Then

min(u, v), max(u, v) € WH(Q),
min(u, \) € WLP(Q)
and

Du a.e. in{r e Q : u(z) <A}

D min(u, \) = {() a.e. in{x € : ulr) > A}
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Proof.
max(u,v) = u, {r e u(r)=>wv(r)}
7 v, {xe:ulr)<v(x)}
_ {%(u+v+(u—v)), {r e : ulx)>v(x)}
%(u+v— (u—w0)), {z€Q: ulz)<v(x)}
1
=5t vt fu—vl)
and

1
min(u,v) = é(u +v—|u—0|).
Corollary 2.37. Let u € WH(Q) and X\ > 0. Then for

A {r e :ulx) >N}
uy = min(max(u, —A),A\)) =<qu  {reQ: \<ulr) <)}
A {xeQ:ur) <A}

we have
uy —u in WH(Q)
when A — 00.

Proof. Exercise.

29

O

Theorem 2.38. If u,v € WhP(Q) N L>(Q), then wv € WP(Q) N

L>(Q), and
81‘]‘ N 6xj a{L‘j

almost everywhere in €.

Proof. Exercise: The derivatives in the statement denote weak deriva-
tives, so start from the integral definition and use similar techniques

as in Lemma 2.34.

2.8. Difference quotient characterization of Sobolev spaces.

Definition 2.39. Letu € L} () and Y C Q ande; = (0,...,_1

loc
ith
Then difference quotient of u to direction e; is
u(x + he;) — u(x)

D" —
Fu(a) ;

7\ )

O
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for x € Q' and |h| < dist(Y, 09). Further, we denote

D"y = (D!, ..., D).

n

Theorem 2.40. Let u € W'P(Q) for 1 < p < oo. Then there exists
C = C(n,p) > 0 such that

} ‘Dhu| ‘LP(Q/) <C ||Du| |LP(Q)
for every ¥ @ Q and |h| < dist(SY,09Q). Here HDhuHLp(Q,) = ||| D"l HLP(Q,)

Proof. Let first u € C=(Q) N W?(Q). Then

|u(z + he;) —u(x)| = / ETi u(x + te;) dt’

= / Du(z + te;) eidt'

te;
:/ x+edt‘

t
/ ou( x—i— ez it
Thus
‘Dzhu(:v)‘ _ u(z + he;) — u(x)
h
|A] .
Si/ Ou(x + te;) "
|h| 0 €T
Holder + 1 (1" | Qu(z 4 te;) [P \1/p
< [— — 4t
ie.
1 " ou(z + te;)|P
D)’ < - / Jutw te:) | gy
D@l =g ) oz,
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Using this

/}Dh dx<m/l/|h|
=

t
ou(x + ez dtda:

Ou( x+s|h|e,~) s d

S NP
Fugml// ou(zx + s|h|e;) de ds
0 !
NP

< sup/ Ou(z + s|hle;) d

s€[0,1] J ox;

p

S/ ou(x) de.

Q Ox;

Then we deduce the result for the full gradient

P u 2\ P/2

N |Dhu(x)‘ dr = /Q/ (; }Dfu(m” ) dz
< C’/li ’D?u(x)‘pdx
= Ci N ‘Dfu(x)}p dx

prev10us

axz

/Q<z as;?

=1
:c/ \Du(z)P dz.
Q

We assumed u € WHP(Q2) N C*(Q), but we can extend the result for
WhP(Q) by approximation. O

p/2
) dx

Theorem 2.41. Let ¥ € Q. Ifu € LP(Y), 1 < p < oo and if there
exists a uniform constant

HDhuHLP(Q’) <C (2.8)
for all |h| < dist(QY,00), then u € WHP(QY) and
1Dul| gy < C



32 PDE 2

for the same constant C.

Proof. Let ¢ € C°(€Y'). Then
[Pt )=t

h
- % / Ju(@)p(w + he;) da - % N u(z)p(x) do
vt [t heet) dy - [ ul)ela) da
_ // u(q;)—u}ix—hei)gp( ) da

for |h| so small that spt (- + he;) C €. Then

/ uDp dx = —/ (D;"u)p da, (2.9)

"integration by parts for difference quotients”. From the assumption
(2.8) it follows that

D"
0<‘h‘<sd1ii£)(Q’,8Q) H [ U} ‘LP(Q/) < OO)

and because LP(Q2'), p > 1 is reflexive, there exist v; € LP(€2') and a
subsequence h; — 0 such that (see Remark 2.42)

D; "y — v; weakly in LP().

()

Next we check that this weak limit is a weak derivative. Recalling (2.9),
it follows that

’ 8:132

= — lim goD udx

weak convergence
= — [ v dx.
Q
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As a conclusion —v; = 88;_ in a weak sense, and thus u € W1?(Q0).

K3
Moreover, for weakly convergent sequence, we have
ou
8137;

<.

Lr(QY)

< liminf HDZ”U‘
hj*)O

el o) = \
Lp(Q)

Remark 2.42 (Reminder).
fi = [ weakly in LP(Y)

figde = | fgdx
o o

for every g € L' (), where 1/p+1/p =1, 1 < p < co. If space is
reflexive, it is weakly sequentially compact: every bounded (in the norm
of the space) sequence has a weakly convergent subsequence. Moreover
for this sequence

1/ 1]y < Himinf [ /5] g -

2.9. Sobolev type inequalities. Study of Sobolev type inequalities
is divided in three intervals of exponents:

(1) 1 <p < n, Gagliardo-Nirenberg-Sobolev inequality

(2) p=n
(3) n < p < oo, Morrey’s inequality

. 1 _
Also recall the notation 57— fB(az,r) ody = fB(I’T) c.ody.

2.9.1. Gagliardo-Nirenberg-Sobolev inequality, 1 < p < n. We define a
Sobolev conjugate

i
or in other words
1 1
ponpr

Motivation for this form of the Sobolev conjugate is as follows: We
want to prove that an inequality of the form

(/ |u]qu)1/q§0(/ \Du]pdx)l/p,
n R’ﬂ
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for every u € C§°(R"™) and constant independent of u. Then it should
also hold for

ur(z) = u(Ax) € CF(R™), A > 0.

For this function

Ol V2 L / u(y)| dy
Rn

|u
]Rn
and

/ ‘Du,\($)|pd$:/ IADu(\x)|” dx
n R

y=ie 1 p
2 | 1Duwr

Thus we would have

(3 [ an) ™ < (5 [ puwras)”

and constant would be independent of A only if

)\n/q+1—n/p —)\0

that is
1 1 1

p n g
Next theorem shows that any function in W?(R") can be controlled
by its gradient. Later we will see that this holds in general for W, ”(Q)-
functions (recall that Wy (R") = W'P(R")). Also observe that the
constant below does not depend on the function u itself.

Theorem 2.43 (Sobolev’s inequality, 1 < p < n, R"). Let 1 < p < n.
Then there exists C' = C(n,p) such that

(/ ul” dm)l/p* < C(/ |Du|pdx)1/p.
Rn Rn

for any u € WHP(R™).

Proof. By approximation argument, as shown at the end of the proof,
we may again assume that u € C§°(R"). Then

i Ou
WT1, . Ty Ty) = a—(xl,...,tj,...,xn)dtj
—00 U5

implying

u(z)| §/R|Du(:€1,...,xj,...,xn)|dxj.
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Multiplying we obtain

n n— - vy
| /( 1) H /R|Du($1,...,l’j,--wxn”dxj)

and further

1/(n—1) " 1/(n—1)
R R R g R
* -1) n
< </ |Du|da:1 H
R

/(n=1)
//|Du|dxjdx1 :
=2

in * we used generalized Holder’s inequality, Lemma 2.45, with powers

Z?:_ll —L- = 1. We repeat the argument for z,:

//|u(:c)\”/(”_1)dx1da:2
R JR
1/(n—1) L= 1/(n-1)
§/</|Du|dx1) H(//|Du|dxjda:1> dzxs
R \JR s VIRJR
1/(n—1)
< <//\Du]d:c2d:c1)
R JR
1(n-1) 1/(n-1)
/ (/|Du|dac1> H(//|Du|da:jdx1> dxs
R \JR i3 JRJR
en Holder 1/(n—1) 1/(n—1)
: < <//|Du!d:ﬂ1d:v2> (//|Du|da:1d$2>
R JR R JR
" 1/(n—1)
5 “JrRJRJR

J

VS

Repeating the argument n times, we finally obtain

n/(n—1)
/ . / ]u(a:)|”/(n71) dzydxsy . .. dx, < (/ . / |Du| dxq dxsy . . . dmn) )
R R R R

This is the claim for p = 1.
When 1 < p < n, we apply the estimate for

v=lul’



36 PDE 2

where 7 is to be selected. The above result yields

(n—1)/n
(/ |u|m/(n—1)dx>

< / Dlul’| dz
_ / | D] d

Holder (p—1)/ 1/
< 7( |u|(7—1)p/(p—l) dm) P p( | Dul? dx) b
R™ R”
Solving for v so that on both sided u has a same power i.e.
ny/(n—1) = (v = 1p/(p—1)
= mp-1)=0@-Dr-1)p
< Y(m—n—np+p)=—(n—1)p
p(n—1)
n—p

= =
Using this v we have

.\ (=1)/n —1
([ i) < M( u
R" Rn

n—p
and since

. (r—1)/p 1/p
P dx) ( | Dul? dx)
Rn

we are done for C§°(R").
We complete the proof by justifying the smoothness assumption. Let
u € WHP(R™) and u; a smooth sequence such that

u; — u  in WHP(R™).
We can also (not proven here) take a further subsequence so that

Uu; — U a.e.

This wu; is a Cauchy sequence in LP" (R"), since for any € > 0

u; — u; € C§°(R™)
i = 5] o gy < 1D (s = )| o my < €

for all large enough i,j. LP (R") is complete and thus there exists
u € LP"(R™) (more details at the end of the proof) such that

w; —u in LP(R™). (2.10)



PDE 2 37

Thus

[l | Lo (g
Minkowski
< | — ul] o ®n) T [l | o (Rn)

< Jus = | e gy + C | D[ 1o ny
< fui = u||LP*(R") + C||Du; — Du||LP(R”) +C HDUHLP(R")
_>0+O+CHDUHLP(R”)7

which completes the proof, in case, we can show the following: We
omitted one point above; why should L?"-limit also be u?

Claim: LP" limit in (2.10) must be u.

Reason: Assume the contrary:

u; — g in LP"(R™).
Choose a further subsequence
U — ¢

pointwise a.e. and by our earlier choices

U; — U a.e.,
a contradiction. U
Corollary 2.44.

u € WY (R") = u € LP(R™) N LP" (R™).

Lemma 2.45 (Generalized Holder). Let

1 1
—+ ... +—=1
b1 Pm

and suppose that u; € LP(Q), ... uy € LP™(Q). Then

i . 1/ps
/Q]ul.....um|da:§g(/{l‘uimdx) .

Theorem 2.46 (Sobolev’s inequality, 1 < p < n, Q). Let 1 < p < n.
Then there exists C' = C(n,p) such that

(/ juf?” dz)"" < c(/ |Duf? dz)"”?
Q Q

for any u € WP ().
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Proof. Idea. Similarly as before, we can concentrate on u € C§°(2)
and then obtain the general case by approximation. Now, u can be
extended by zero to have u € C§°(R™). Then we can apply Theorem
2.43 to obtain the result. U

Remark 2.47 (Warning). The above theorem does not hold without
assumption u € Wol’p(Q) on zero boundary values.

Corollary 2.48. Let 1 < p < n. Then there exists C = C(n,p) such
that

(][ ul”” d:c)l/p* < CT(][ | Dul|? dx)l/p.
B(z,r)

B(z,r)
for any u € Wy *(B(x,7)).

Theorem 2.49 (Sobolev’s inequality, n < p < 00, Q). Let n < p < o0
and |Q] < co. Then there ezists C' = C(n,p) such that

1/p
esssup |u| < C’|Q|(p_")/p"(/ | Dul? dx)
0 0

for any u € WP ().

Proof. This result is proven later in the section of Morrey’s inequality.
O

Corollary 2.50. Let n < p < oco. Then there exists C' = C(n,p) such
that

1/p
esssup |u| < Cr(p_”)/p</ | Dul|? dy)
B(z,r)

B(z,r)
1/p
< C’r(][ | Dul? dy> ,
B(z,r)

for any u € Wy *(B(x,7)).
Corollary 2.51. Let n < p < co. Then there exists C' = C(n,p) such

that
1/q 1 1/p
(/ |u|qdy) <Cr "/p+”/q</ |Du|pdy>
B(z,r) B(z,r)

1/q 1/p
<][ |u|qdy) < C’T<][ | Dul? dy>
B(z,r) B(z,r)

for any q € (0,00] and u € WP (B(z,7)).

1.e.
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Theorem 2.52. Let p =n > 1. Then there exists C' = C(n) such that

1/ 1/
([ uran)” <con( [ pura)”
B(z,r) B(z,r)
1/ 1/
(][ uldy) qscr(][ Dul? )"
B(z,r) B(z,r)

for any q € (1,00) and v € Wy P(B(z,7)).

1.e.

Proof. Exercise. [

2.9.2. Poincare’s inequalities. We denote up(y ) = fB(x " udy.
Observe in particular that the constant in the next estimate is inde-
pendent of p.

Theorem 2.53. Let (2 C R™ be an open bounded set, and 1 < p < oo.
Then there is a constant C' = C(n) such that

/ lul” doz < CP diam(Q)p/ | Dul? dx,
0 Q

for every u € W,?(Q).

Proof. By approximation, we may assume u € C3°(Q2). Set/choose
r = diam(Q?)
Y=y, ya) €,

QC H — 1,y + 7]
Similarly as in the proof of Theorem 2.43

y1+r
lu(z)| < / |Du(ty, za, ..., x,)| dt;
y

1—7
Holder yutr
< (i / Du(ay, ... w,)[" de1) 7,
yi1—r
so that

yi+r

@) < )0 [* Dutar, .z

yi—r

End of first part.
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Using this

Yn+T y1+tr
/|u\pdx§/ / lul’ dxy ... dx,
Q Yn Yy

1

Yn+T y1+r
< (27’)”/ / |Du|’ dzy ... dx,
Yn—T yi—r
< (27“)”/ | Dul? dz.
0
The case u € W,*(Q) again by approximation. O

For simplicity, we next work in cubes:

Q = [an,by] X ... X [an,by] CR™, (b —ay) =...= (b, — ay),

[(Q) = (by — ay) = side length of the cube,

and

Observe that |Q| = (" and diam(Q) = /n .

Theorem 2.54 (1 < p < o0). Let 1 < p < oo, Q CR" and u €
WP(Q). Then

/ lu — ugl” dz < lpnp/ |Dul? dzx.
Q Q

for every u € WHP(R").

Proof. By approximation argument, we may again concentrate on u €
C*(R™). Let x,y € @ and approximate

() = uy)] < u(@) —u(@y, ., Tao1, yn) | + -+ (@, 42, Y0) — w(y)]

n b;
SZ/LI |Du(l‘17"'7xi—17tayi+17"‘7yn|dt-
i=1 i
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Thus
u(z) — u(y)[’
n b; »
S (Z/ |DU(I17"'7xi—17t7yi+17"'ayn|dt>
i=1 @i
Holder , bi 1/p\ P
< (Z(bz — ai)(p_l)/p</ |Du(z1, .., Tie1, 6 Yig1s - -, Un) [P dt) )
i=1 a;
* n b;
gnplzplz/ Du(. )P dt
i=1 Y ai
convexity
where at * we used (c; + ... + )P = (Rer + ...+ 2¢,)P <
S (nes)? .
Now
P
/ lu — ugl” de = u(x) —][ u(y) dy| dx
Q Q
P
/ ‘][ y)dy| dx

[ o)~ ut)r g
< y)I" dy dx
0 /a
np—llp—l// n /bi
< — |Du(...)|" dt dy dx
QL Jo Q; a

Fub+recall (...) np_llp—l ) n /
Q) ; Q

< nplp/ |Du(z2)|" dz.
Q

The general case u € W1P(R") again follows by approximation. 0

Theorem 2.55 (1 < p<mn). Let 1 < p <n andu € W'?(Q). Then
there exists a constant C = C(n,p) > 0 such that

/p* 1/p
(/ }u—uB“ dy) < C(/ \Du|pdy>
B(z,r) B(z,r)
p* 1/p*
( |u — UB(z,r) dy> < C’r(
B(z,r) B(

for every B(z,r) € Q.

1.e.

v/
| Dul” dy> ’

,r)
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We do not prove the result in this form, but prove a weaker result
in cubes with a bigger cube on the right hand side:

n). Let w € WHY(R"), Q := Q(z,1) C R"

Theorem 2.56 (1 < p
20). Then there exists a constant C' = C(n,p) > 0 such

and 2Q) = Q(z,

that
(/Q s — uQ|p* dy> 1/p* < C</2Q Duf? dy) 1/p

1.e.

(]{2 u — uQ|p* dy) 1/p* - Cl(]{@ Dul? dy>1/p‘

Proof. Let n € C§°(R™) be a cut-off function such that

C

and

)1 ze@
) =4 z € R™\ 20.

Then (u — ug)n € Wy*(2Q) and

. 1/p*
(/\u—uQ\p d:z:) '
Q

spt C2Q « 1/p*
" / (g dz)
Sobome 1/
’ / D((u— ugin)l? )"
1/p
< C’(/ p|Du|pdx) +C’</ |D77|p|u—uQ|pd:E>
1/p
/ | Dul|” dx / lu — ugl” dx .

A

14.2.2013
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Further we may change ug to uyg as

v
(/ |u—uQ|pdx> '
2Q
1/p
= (/ |u — ug + usg — u2Q|pdx>
2Q
1/p 1/p
SC’(/ |u—u2Q|pdx> +C</ |u2Q—uQ|pd$>
2Q 2Q
1/p LN ¥/
SC’(/ |u—u2Q|pd:L’> —i—C(/ uQQ—][ udy d:c)
2Q 2Q Q

Poincaré 1/p
< cz(/ \Duy”dx> v
2Q

Holder 1/ 1/
< Cl(/ |Du|pda:> p—i—C’(/ ][ |u—uQQ|pdyd:B> "
2Q 2Q J2Q
Poincaré 1/
< C’l(/ |Du|pdx> p,
2Q

where we used the facts that f, < C' f,, and [,, 1dz = |2Q)|. Combin-
ing the above estimates, [ will cancel out, and we obtain the claim. [J

Remark 2.57 (Warning). Global version

/ lu — ug|” dy < C/ | Dul? dy.
Q Q

does not (in contrast with Sobolev’s inequality) hold without regularity
assumptions on 2. FExercise.

2.9.3. Morrey’s inequality, p > n.

Theorem 2.58. Let u € WI'P(R™), p > n.  Then there exists C =
C(n,p) such that

u(z) — u(y)| < Clz — y|* " || Dul| oy
for almost every x,y € R™.

Proof. Let u € C*(R") N W' (R") and x,y € Q := Q(xo,!). Again

/Ol%wt(w—y»dt\

u(z) = uly)] =

< /01 Du((1 = t)y + tz) - (z — y) dt‘.
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uly) — ][Q wde
< ][Q [uly) — ()| da

By using this

[u(y) — ugl =

1
/ Du((1 —t)y +tz) - (x — y) dt| dx
defofgrad 1 gt d
// S (1= thy+ 1) |(x— W)l dt do
(1 - .
< 12/ /w) 8,2@ )y + tz)| dx dt

Then we change variables z = (1 — t)y + tx i.e. zg = (1 — t)y + tz and
dz =t"dz

= 12/ /xol) azz
= ln n—1 Z/ / Q(z0,t0) 822
Holder

= [n—1 Z/ / Q(z0,10)

QL =ty +tzo, 1) C Qzo,1) 7 1 -
i W__1||Du||LP(Q(xOJ)/ t—nIQ(:co,l)l(p )P gt
0

(1 —=t)y+tx)|dedt

)| dz dt

ou
7%, (2)

p 1/
dz) "1z, t)| PP gt

1
1
< i Dy | gelt 7

1
<l | D gy [
0

where we also used n(p—1)/p—n+1= (np—n—np+p)/p= (p—n)/p
and n(p—1)/p—n = (np—n—np)/p = —n/p. Since, and here we use
the fact n < p,

[ = -2 =/
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we get by combining the estimates that

np -n
o nl(p )/p ||DU||LP(Q($0’Z))

uy) = uo| <

P 1-n/p
< — nl Dul| Lo (o) -

To establish the final estimate, we write

u(z) = u(y)| < |u(r) —ug| + |ug — u(y)]

2np _,
< HDuHLp(Q(

— p —_n xo,l)) :

for every x,y € Q). Hence, as for every x,y € R™ there is Q (¢, () such
that | = 2|z —y| and z,y € Q(z0,!), we finally have

[u(x) = u(y)| < Clo =y ™" || Dul [ .

for u € C°°(R™) N W1P(R").
We extend this result to u € W'P(R") by approximation: Let u. be
a standard mollification of u. Then by the above

luc(2) — u(y)] < Clz —y|"™"" || Duc||gn

By passing to a limit ¢ — 0 and using the results, proved for approxi-
mations, we get for almost every z,y € R" (at Lebesgue points of u to
be more precise)

[u(x) = u(y)| < Cle —y|" ™" || Dul [ - D

Remark 2.59. By Morrey’s inequality every u € WHP(R™) can be
redefined in a set of measure zero to be Holder-continuous.

Remark 2.60. In the open set ) the above only holds locally in the
sense that

WhP(Q), p>n= C2P(Q).

loc

Ez: Find an example showing that W'P(Q), p > n = C%~"/P(Q) is
false.

2.9.4. Lipschitz functions and W ().

Theorem 2.61. A function u : R® — R has a Lipschitz continuous
representative if and only if u € WH>(R") .
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Proof. 7<7: Let u € W1(R") and spt u is compact (if not, we may
multiply by a cut-off function). By our results for approximations
u. € C3°(R™)
u. — u a.e. R"
[tell oo ry < lull poo gny

(the third one immediately follows from the def of mollification.) Thus
we may estimate

fue() — ue(y)| = / Duly +t(z —y)) - (z — y) dt

< [ Dtte[ poo gy |7 = 9

< ||Du||L°°(R") |z — yl.

Then, we pass to a limit € — 0 and, since the left hand side converges
almost everywhere we obtain that

u(z) = u(y)] < [|[Dul] poo @y |2 — 9.
”=7: Suppose that u is Lipschitz continuous i.e.
u(z) —uly)| < Llz —y|
for all =,y € R". We utilize the difference quotiens and estimate

u(x — hej) —u(x) <

|5 ul(@)] = 3 <

and thus HDj_hu(x)HLQ(Q) < L|Q|% for a bounded 2 . Since L? is
reflexive there exists a subsequence h; — 0 and functions v; € L*>(12)
such that

Dj_hiu — v,  weakly in L*(Q).
Thus

890 def ; h;
/Qua—aj] dr = /Q(hlilinoDj p)udx

DOM ;. hi
= f}zlin() Q(Dj p)udx

= lim [ pD; Mudz
h;—0 J
i=0.Jq

= / vjpd
Q
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for every ¢ € C§°(Q). Thus
0
gu —v; in the weak sense. O
3@
19.2.2013

2.10. Compactness theorem. Recall Remark 2.23 showing that Sobolev
space is not compact. However, Sobolev space embeds compactly to
suitable LP spaces. This is sometimes useful for example in the exis-
tence proofs.

Theorem 2.62 (Rellich-Kontrachov compactness thm). Let B be a
ball, u; € W'*(B), 1 < p < n and ||ul|yrpp < C < oo for each

1 =1,2,.... Then for each 1 < q < p* there exists a subsequence and
a limit u € WYP(B) such that

u; —u in LYB).

We don’t work out a detailed proof, but remark that the proof is
based on the following steps:

e By approximation, it holds that
(uj)e > w; in LY(B) ase — 0, uniformly in i.

e Thus it suffices to prove the result for mollified functions. We
show for mollified functions that

C C
(el < =, [D(wa)e] < 7

e Arzela-Ascoli’s compactness result completes the proof.

Remark 2.63. The case p > n is easier. Why?

3. ELLipTIC LINEAR PDES

We consider the second order elliptic equations in the divergence
form. Recall from PDE1 that divergence form equations have a natural
physical interpretation as an equilibrium for diffusion.

We consider the boundary value problem

Lu=f inQ
u=g¢g onJf,

where  is a bounded open set, u :  — R is the (a priori unknown)
solution to the problem, and g : 2 — R and f : 2 — R. Finally, L
denotes a second order partial differential equation of the form

Lu(x) = = Y Di(ai;(x)Dju(x)) + Z b; () Dyu(x) + c(x)u(z)

2,j=1
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for given coefficients a;;, b; and c.

Example 3.1. Let b; =0 and ¢ =0 and A(x) = [aijlij=12,..n - Then

Lu=— Y D(a;(x)Dju(z)) = — div(A(z) Du).

ij=1
This explains, why we say that the equation is in the divergence form.

We assume that A is a symmetric matrix ie. a;; = a;;.

Definition 3.2 (uniformly elliptic). PDE is uniformly elliptic if there
exists constants

0<A<A<
such that

2 2
MEP <) ay(@)&g; < Al
ij=1
for a.e. x € Q and £ € R™.
Furthermore, our standing assumptions are

(lw’,CZ‘,bZ‘ c LOO(Q) (311)

Intuitively, uniform ellipticity tells us how degenerate the diffusion
determined by the diffusion coefficients to each direction can be: dif-
fusion does not extinct or blow up. This helps in existence, regularity
etc. Uniform ellipticity tells that real (due to symmetry) eigenvalues
Ai(z) of A satisfy A < \;i(z) < A.

Example 3.3. 2 € (0,2)=Q,b=0=c,a=1 and

)1 2e(0,1]
J(@) = {2 z e (1,2).
Consider the problem
Lu = f, x €
u(0) =0 = u(2).

Then solving formally in (0,1] and (1,2) as well as requiring that the
solution is in C, from the equation
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we obtain

2 41250 z € (0,1]
uw@) =4 3
—x®+ 2252 — 0.5, z€(1,2).

Clearly, this is not in C?. Is this a unique solution in some sense?

Even more irregular examples are possible, see Example 3.12.

Example 3.4. Let A=1. Then A = A and
— div(A(z)Du) = — div(Du) Z Diu = Au

te. we obtain Laplacian.

Example 3.5. Let

P s
(1-omg e
Then
o?[¢)? <Z% V&€ < €7,
i,j=1
and

w:B(0,1) > R, u=|z|""z

with x = (x1,x2) is a solution to — div(A(x)Du(z)) in a sense studied
below. (Exercise)

Remark 3.6. Observe that here A does not depend on u or Du. If it
did, for example A = |Du|p_2], yielding the so called p-Laplacian

div(|Du[’"*Du) = 0,
the equation could be nonlinear.

3.1. Weak solutions. In the spirit of Hilbert’s 20th problem, to guar-
antee the existence of solutions, we can extend the class of functions
to be studied. These less than C? regular solutions are called weak
solutions (in contrast with classical solutions that are C? and satisfy
the equation pointwise).

We work in the spirit of Sobolev spaces, test the equation with
smooth test functions and integrate by part to get rid of the second
derivatives, so that only u € W'%(Q) is needed in the weak definition.
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Let u € C%*(Q), a;; € CYQ), f € C(Q) and p € C(Q). Then
starting from Lu = f we can calculate

/Qfgadx:/g(—ZDi(aijDu +Zb )Dju + cu)p dx

ij=1

int by parts / Z a;; DjuD;p + Z bi(x) Dyugp + cup) du.

i,7=1

(3.12)
On the other hand, if

0:/ ZaUDuDlgo—l—ZbDugo+CU30 f@)
Q

1,7=1
int by:parts / ( . Z Diaz‘iju + Z biD;u + cup — f)(Pd:U
Q ij=1 i=1

for every ¢ € C5°(2), then by fundamental lemma in calc var Lemma
2.9, it holds for a.e. = € ) that

i,j=1 i=1

Observe that the right hand side of (3.12) makes sense even with
weaker assumptions, for example,

aij,bi,c € L2(Q) and f € L*(Q)
and
u € Wiz (9).

Definition 3.7 (Weak solution, local). The function u € W,5*(Q) is a
weak solution to Lu = f if

/ Za”D uDZgo—i—Zb Dug0+cug0 da:—/fgoda:
Q 7,7=1
for every ¢ € C§°(Q).

Remark 3.8 (Warning). This definition is useful when studying local
properties such as local reqularity of solutions. However, the solutions
are not uniquely identified without fixing boundary values.
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Definition 3.9 (Weak solution to the boundary value problem). Let
g € WH2(Q). The function u € W'%(Q) is a weak solution to

Lu=f 1inQ
u=g on OS2
ifu—geW,?(Q) and
/Q ij=1
for every ¢ € C§°(£2).

ai;DjuD;p + Z bi(x) Dyugp + cup) do = /Qfgo dx
i=1

Remark 3.10. In the literature, the sums are sometimes dropped for
brevity

/(aiijuDigo + b;(x)Dyup + cuyp) de = / fedz.
Q Q
Example 3.11. Let us check that
2
- +1.25 0,1
'U/(Q}') = 2 T ’ T € ( ’ ]
—x% +2.25x — 0.5, ze(1,2).

1s a weak solution to Fxample 5.5. We choose a symmetric cut-off
function

(—x+(1+2r))/r, ze€(l4+r1+2r)
(x—1—=2r)/r, xze(l—-2r1-r)
1, in B(1,71)
0, otherwise

If o € C(Q), then ¢ = (1 — (n,)c)p is an admissible test function.
Since all the ingredients are smooth, we see by integration by parts

classical sol in spt ¢
/fgbdx = /au'qb’da:
Q Q

= [+ (1= )¢ de
By approximation results and DOM
/ u'(1—(n)o)¢) de — / ' dx
Q Q

as first € = 0 and then v — 0. On the other hand, since |n.| = 1 is
symmetric and v € C(Q), we deduce

—Awmmvméo

1’]:
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as € — 0 and then r — 0.

Example 3.12. z € (0,2)=Q, f=1,b=0=c¢,

Consider the problem

Lu=f, x e
u(0) = 0 = u(2).

Then solving formally in (0,1] and (1,2) as well as requiring suitable
conditions in the middle , we obtain

u(x):{—%—i—gx z € (0,1]

IQ
—z+1%:v+é, x € (1,2).

This is not in C? or even C'. Ex: Show that this is a weak solution
to the above problem.

3.2. Existence. For simplicity, let b, = 0 and that we look for solu-
tions with zero boundary values i.e.

u € Wy?(Q).

The Riesz representation theorem can be used to prove existence for
weak solutions to

— Y Di(ai;Dju) + cup = f
ij=1
To this end, we define an inner product in VVO1 2(Q) by

(u,v) = / ( Z a;;DjuD;v + cuv) d.
Q

ij=1
Lemma 3.13. There is ¢y such that if ¢ > co, then (-,-) is an inner
product in W12(Q).

Proof. We intend to show that (u,u) = 0 implies u = 0 a.e. The other
properties of inner product are easier.
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If ¢ > ¢y > 0, then the proof is immediate, but we can improve the
bound for c¢j.

n

(u,u) = / ( Z a;DjuDiu + cu?) dx
Q=1
ellipticity

> /)\]Du\2—|—cou2 dx
Q
Sob.-Poincaré, Thm 2.53 A 9 A
> Z|Dul® 4 (= + co)ut dx
2
> o ||u||W1v2(Q) )
where ov = min{\/2, (co + A/(2u))}, and p originates from [, u*dx <

ft o, |Dul? dz, pp = cdiam(Q)?. Furthermore, we require co+\/(2/t) > 0
which gives the condition for c¢g. O

Remark 3.14. If we set
el == v/ (u, u),

then by the above proof |||ul|| > ¢ HUHWOLQ(Q)' On the other hand

n
lall < [ (3 ayDyubiu+ i) ds
Q=1
elliptic

z zy/|DuFdx+thmmx/lﬂdx
Q Q

2
< c||u||W3,2(Q) :
Thus the new norm |||-||| is equivalent to H'||W01,2(Q).

Lemma 3.15. Let Wy*(Q) be Wy*(Q) with the new inner product
(-,-). Then

F@:Lﬂw

is a bounded linear functional in Wy (Q).
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Proof.
F(v)] = / foda
Q
Holder 9 1/2 9 1/2
< (/fdx) </vda:)
Q Q

< M2y 0l 2y

< [l 2o 11
where at the last step, we used the equivalence of the norms. 0

Theorem 3.16. There is a constant ¢y such that Lu = f has a weak
solution u € W, *(Q) for every f € L*(Q).

Proof. By the previous lemma

Fv) = /vadx

is a bounded linear functional in Wy *(Q).  Moreover, W2(Q) is a
Banach space since the norms |[[-[|;1.2(q) and |[|[-[|| are equivalent. By
Riesz representation theorem for Hilbert spaces, there exists a unique
u € W)*(Q) such that

F(v) = (u,v)

= / Z CLZ'ijUDZ'U + cuv dx
Q'

t,j=1

for every v € Wy*(€2). By the equivalence of norms Wy *(Q) € W% (Q)
and we have shown that there is a unique u € WOM(Q) such that

/ fodr = / Z a;;jDjuD;p + cup dx
Q Q;

,j=1

for every p € C§°(Q). O

Example 3.17. Consider Q = (0,2), c=0=0b, f =1 and
1
o) = {x z € (0,1]

1 ze(1,2)

and a problem

u(0) =0 = u(2).

Observe that this is not uniformly elliptic.

{Lu:f, x €
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Then by solving in (0,1) and (1,2) respectively the equation
1= f=Lu=—(a(z)u'(z))

we obtain

—r+cIn(z) + ¢, x€(0,1]
u(z) = 1.2
—50° t vty xe(l,2

Ex: Is there a weak solution?

Remark 3.18. o Let g € WH2(Q) and consider the problem
Lu=f inQ
u=g on 0f2.

Then the problem

Lv=f—Lg 1inf)
v=20 on 0f).

has a solution, and u = v+ g is a solution to the first problem.

e Also observe that no regularity assumptions on 0S) is needed.

e If we included + 3, b;D;u to our operator, then L would not
define an inner product. In this case, finding the element u as
above 1is still based on Riesz representation theorem but requires
more work. This is called Lax-Milgram theorem.

Example 3.19. Let f € L*(Q). Then the Poisson problem
—Au=f inQ
u=20 on 02

has a unique weak solution.

”Research problem”: Show that there exists solution (in a suitable
sense) to —Au = &y, — div(A(z)Du) = & and to — div(|Du|’>Du) =
do.

3.3. Variational method. The existence can be shown by studying
the corresponding variational integral. The variational integral related
to PDE

— Z Di(aiiju) +cu = f
3,5=1
is

1 n
I(v) = 5 /Q(Z a;;DjvDw + cv?) do — /fou dx

1,j=1
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The PDE — Z” 1 i Dju+cu = fis called the Euler-Lagrange equa-
tion of this variational integral.

Example 3.20. The variational integral corresponding to the Poisson

equation —Au = f is
1
—/|Dv|2d:17—/fvd$.
2 Jao Q

Definition 3.21. A function u € W,2(Q) is a minimizer to the vari-
ational integral

I(u) < I(v)
for every v e Wy (9Q).

Definition 3.22. Let g € W'2(Q). A function u with u—g € Wy*(Q)
15 a minimizer to the variational integral with boundary values if

I(u) < I(v)
for every v such that v — g € WOI’Q(Q).

Theorem 3.23 (Dirichlet principle). If u € Wy*(Q) is a minimizer
to the variational integral I(u), then it is a weak solution to the corre-
sponding Fuler-Lagrange equation.

Proof. Let ¢ € C3°(Q2) and € > 0. Now
u+ep € Wol’2(Q)

Iw) < I(utep)

/Zaw u+ep)Di(u+ep) + c(u+ ep) dx—/fu+5cp) dx

=:1i(e).

We utilize the fact that if v is a minimizer, then i(¢) has a minimum
at € = 0 so that

i/(O) =0.
Then

i(e / Z aij(DjuDyu + eDujDip + eDjpDiu + €*D;jpD;p)

i,j=1

1
—1—5/( + 2eup + e%p /fu—l—ap
Q
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and

1 n
i'(e) = 3 / Z aij(Du; Dy + DijoDyu + 2eDjpDip) + c(2up + 2e¢?) dw
Q-

i,j=1

—/Qfgoda:.

From this

1 n
i'(0) = §/ Z a;j(Du; Dy + DjpD;u) + c2up dx — / fpdz
Q; 9)

,j=1

g 24 / Z a;jDjuD;p + cup dr — / fodr =0. O
Q50 Q
Lemma 3.24. There is a constant ¢y such that for any f € L*(2), the
variational integral 1(v) is bounded from below in Wy (Q) if ¢ > co.
Further, we have the estimate

/ | Dol dz + / v dr < ¢ + el (v),
Q Q
where ¢y, co > 0 are independent of v.

Proof. By Young’s inequality [, [/ fv/ve|dx < § [, v? do+o- [, f? d,
and thus
ell

A
I(v)2/—|Dv|2+@vgda:—/|f\|v\dm
Q2 2 0

Young A 2  Co o 5/ 5 1 / ,
/92| v|” + SV dT— 5 Qv T - o Qz‘ x

Poincaré, Thm 2.53 ) 9 1.\ 1
> 2 IDvfde + S (5 4 e — “de — — [ f*d
- 4/g| v x+2(2u+co 8)/90 ! 2€/Qf ’

where we choose ¢y > —\/(2u) and € such that ﬁ +co—e > 0, so that

inequality holds for every v € VVO1 2(Q) Recall that p is the constant
in Poincaré’s inequality.
The estimate in the claim is also build in the above proof. 0

Next we show existence of a minimizer. As shown above, minimizer
is also a solution to the Euler-Lagrange equation. The following proof
does not use Hilbert space structure (unlike the first proof) and works
in the context of nonlinear equations as well.

Theorem 3.25. There is a constant ¢y such that if ¢ > ¢, then for any
f € L*(), the variational integral I(v) has a minimizer u € W, 2(Q).
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Proof. By the previous lemma [(v) is bounded from below and thus

inf  I(v)
veW, 2 ()

is a finite number. By the definition of inf there exists a minimizing
sequence uy € Wy?(Q) such that

I(ug) —» inf  I(v)
veEW, 2 ()

as k — 0o. Since the finite limit exists, we also have

for some M < oco. By this and the estimate in the previous lemma, we
have

/|uk|2dx+/|Duk]2dx§cl—|—ch.
Q Q

Since uy, and Duy are bounded in L%*(€2), there is a subsequence, still
denoted by uy such that
up — u weakly in L*(Q),
Duy, — Du  weakly in L*(Q)"™.

Since the space VVO1 2(Q) is closed under weak convergence so that u €
Wo ™ (9).
Next we show

I(u) < limkinfl(uk).

To establish this, observe that a similar argument as in Lemma 3.24
implies

/Q Z a;;D;(up — u)D;(uy, — uw) + c(uy — u)2 dx

2,7=1

ell
S )\/ D — ) + c(up — u)? da > 0.
Q
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from which it follows that

/ Z CLiijUkDZ’Uk + CU% dz
Q'

1,j=1

> 2/ Z a;; Djup Div + cupu dx
Q

i,j=1
n

—/ E aijDjuD;u + cu® dx.
Q=1

Using this, we get

ij=1

> 2limkinf/Q Z a;j Djup Diu + cupu dx

ij=1

- / Z a;;DjuDu + c(u)? dx
Q-

3,j=1
= / Z ai;DjuDyu+ c(u)? dz,
Q=1

since Duy — Du weakly in L*(Q)". Combining this to the fact that
weak convergence implies

hm/fukdx:/fudx.
ko Ja Q

we obtain [(u) < liminfy I(uy).
Since we originally chose uy, so that limy, I(ug) = inf, 120 I(v), we
finally obtain

I(u) < limkinf I(uy)

= inf I(v).

veW, 2(Q)

Thus u € Wy *(Q) is a minimizer to the variational integral. O

28.2.2013
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3.4. Uniqueness. We start by showing that we can extend the class
C°(Q) of test functions to Wy (Q).

Lemma 3.26. If u € W,*(Q) is a weak solution to Lu = f, then

/ Z a;jDjuD;v + cuv dx = / fudx
Q; Q

2,j=1
for every v e Wy (9Q).

Proof. Let v € Wy*(Q). By definition of W,?(Q), we may take a
sequence gy, € C§°(Q) such that

o — v in WHP(Q).
By using this, (3.11), and Holder’s inequality, we obtain

‘ / Z (aiijuDiv + cuv — fv) dx‘
Q

ij=1

B ‘ /Q Z (ai; DjuDi(v — o) + cu(v — ¢p) — f(v = ¢x)) da

,7=1

+ / Z a;jDjuD;pr + cupr — for dfﬂ‘
QO

2,7=1
s;§j|mmmﬁﬂnjéu%quv—q%ndx

ij=1

+ [ feuto = @u)| +15(0 = )l do +0
Q

" 1/2 1/2
< Z HainLOO(Q) (/Q]Dju|2dx) (/Q\Di(v—sﬁk)‘zd@

ij=1

el ([ 4ot
+ </Qf2d$>1/2</ﬂ |v B cpk|2dx>l/2

— 0

as k — oo. O

Theorem 3.27 (Uniqueness). Let uy,uy € Wy*(Q) be two weak solu-
tions. Then almost everywhere

U1 = Ug.
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Proof. By the previous lemma,

/ Z a;; Djuy Div + cujv dx = / fvdx
Q) Q

ij=1

/ Z a;jDjus Div + cugv do = / fudx
Q) Q

i,7=1
for every v € Wy*(Q). By subtracting the equations
/ Z a;; Dj(ur — ug)Div + c(uy; — ug)vde = 0.

Q=1

Now we choose v = (u; — uy) € Wy*(R2) and estimate
0= / Z aiij(ul — u2)Di(u1 — UQ) + C(Ul — U,2)2 dx
O =
2,7=1
Z / )\|D,(u1 — U2)|2 + C(Ul - u2)2 dr.
Q

Then

A
/c\ul—u2|2d:v2 ——/|u1—u2\2d1‘
Q 2u Jo

with the choice ¢ > —A/(2u). Combining the facts and recalling
Poincaré’s inequality [;,v?dz < u [;,|Dv|* dz we have

A 2 A A
0> [ 21Di(us — (———) —up)?d
= /Q 2| (’LLl UQ)‘ + 2,u 2/L (Ul UQ) i
A
= 5/ ]Dl(ul — U2)|2 dzx.
Q
Using Poincaré’s inequality, we see that u; = uq a.e. 0

Example 3.28. The uniform ellipticity was utilized again: Choose
Q= (0,2) and
Then

w(z) = —0.52% + z, z € (0,1]
YT —a2 2501, 2 €[L,2)
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and

—0.522 +z, z¢€ (0,1
uz(7) =
1.5 —z, z € [l1,2)
are weak solutions to Lu = f. (Ex)

3.5. Regularity. In the previous sections, we relaxed the concept of a
solution and observed that weak solutions are not necessarily C?. Next
we study what is the natural regularity class and which conditions are
needed to have a better regularity.

First we motivate our approach by a formal calculation. Let f €
L*(Q) and u be a solution with zero bdr values to a Poisson equation

—Au=f

/f2dx:/(Au)2dx
Q Q
[5s
N Qi 6%2
_2/82U82
0x2 0z
1,j=1

int by parts 83 8u
Z / 0120z 895]

int by parts
d
Z / 0z;0x; Gx @:Bj ’

i,j=1

= / ‘D2u‘2d:€,
Q

in R™”. Then

where we denoted

2%u _%u

81% ttt 9x10xp
9%u 92y

D2u — Ox20x1 °°  Ox20Tn
0%u 9u
Oxndx1 " ox2

2
82
and | D% = 300, (52
1. guess: The L? norm of second derivatives is estimated in terms of
L?-norm of f.
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Then let us differentiate the Poisson equation

af 0 ou
— =——Au=-A—.
oxy, oxy, “ Oz,
Denote f := % and u = 6% ie.
—Au = f.

Now we may apply the previous calculation to have
2. guess: L%-norm of the third derivatives of u can be estimated in
terms of L?-norm of the first derivatives of f.
3. guess: A solution v has two more derivatives than f and L2norm
of the kth derivatives of u can be estimated in terms of L?-norm of the
k — 2 derivatives of f.

Next we make these formal calculations rigorous for

i,5=1 i=1

with the uniform ellipticity condition, and open, bounded €2.

Idea: We establish this by roughly speaking replacing derivatives of
the formal calculation by difference quotients, and carefully deriving
estimates for these.

Theorem 3.29. Let
ai; € CH(Q),b; € L®(Q),c € L®(Q)

and

feL*9).
Further, let w € W12(Q) be a weak solution to Lu = f. Then

ue Wpk(Q)
and for any Q' € Q)

ullyzzon < (112 + [1DUll 2 )

where ¢ may depend on Y, 2 and a;;, b;, ¢, but not on w.

Remark 3.30. e Observe that the estimate ( and c) is uniform
over all the boundary values, since we didn’t assume zero bdr
values this time.
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e [t follows from the theorem that
Lu= fa.e.,

because if u € WE(S) then

/ ( Z CLZ'ijUDz’SO + Z szzuSO + cuyp — f%p) dx
Q i=1

i,j=1
int by:parts _/ ( Z Di(aijD]‘u) + Z szzu + cu — f)godl'
Q =1 i=1

holds for every ¢ € C§°(2). Then the fundamental lemma in
the calculus of variations, Lemma 2.9, implies the claim. Such
solutions are sometimes called strong solutions.

o Assumption a;; is necessary.

Proof of Theorem 3.29. Let ) € Q" &€ Q and choose a test function
n e Ce(N), 0 <n <1 such that

(z) 1 zedY
€Tr) =
7 0 zeQ\Q

Since u is a weak solution, for every v € W,*(Q)
/ Z a;; DjuD;v dx = / fudx
Q50 Q

where f = f — " b;D;u — cu. We choose a test function, for A > 0
small enough

v =—Dy" (" Dju)

where
Dlu(z) = u(z + he;z) — u(x)
is the difference quotient introduced in Section 2.8.
Let
A= —/Q i a;; DjuD; (D" (n* Diu) do
ij=1
and

B:=— / FD " (* D) de.
Q
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We first estimate A using D;D;"(n?Diu) = D."D;(n*Diu) at the
first step, as well as the standard rules of calculus 5.3.2013

Q

ij=1

in arts for DI -
tbyp :t Dk / Z DZ (CLZJD]U) DZ(T]QDZU) dl'
Q

t,j=1

= / Z (DZaiiju + a,-jD,};Dju) (277DmDZu + 2D Dsu) dx
Q

2,j=1

= / Z (Dpai;Dyju(2nDinDpu) + Dyay; Dyu(n* Dy Diu) + ai; Dy Dyju(2nDinDiu)) dx
Q

2,j=1

+/ Z a;; Dy Dju(n*Di D)) da
Q

ij=1

= A; + As.

Then since | D), |a;;|, |Dlta;;| < c and n* < e, we have

|A| < c/ n(|Du|’DZu| + | Dul| Dy Dul| + |DZDuHDZuD dx
0
Young

< 5/772|D2Du‘2dx—1—c(5)/ (|Du|2—|—|DZu‘2) dx
Q o

§€/772‘D,’§Du’2dx+c(5)/ |Dul|? dz
0 Q

D,};u|2dm < Jo | Dul? da.

where at the last step we used Theorem 2.40: fQ,,
By uniform ellipticity

Q

,5=1

zA/ﬂD,@Dufdx.
Q
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It remains to estimate B. We calculate

|B|=| [ fvdx

= /(f - ZbiDiu - CU)D;}L(UQDZU) dx
Q ;

S c(e)/ﬂ(|f|2+ Duf* + |uf?) de
ve [ Dptntnde
Next we estimate the last integral by again by Theorem 2.40
/Q | D" (D) | dae < /Q |D (2 D) | da
< /Q |2nDyDju + DD}l da

< / ‘QnDnDZu + UQDZDu‘z dz
Q

[nl|Dn| < ¢,n* < cn?

< c/gvﬂDZu‘zdx+C’/Q772‘D,1§Du}2dx
Thm§2.400/ |Du]2d:v+0/n2‘DZDu|2dx.
Q Q
Thus
B Sc(a)/g(\f|2+|Du]2+|u|2) dm+g/ﬂn2\pgpu\2dx.
Combining the estimates with the fact
Ay — |A1| < |A| = |B|
we have
)\/172|D2Du‘2d$—5/772‘D2Du}2dx—c(6)/ |Dul? dx
Q Q Q

gc(a)/ (11> + | Dul* + [ul?) dx+5/nQ|DZDu‘2d:c
0 Q
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le.
)\/nz‘D,ljDufd:c—Zs/772|D2Du‘2dx
Q Q

§c(5)/ﬂ(|f|2+|Du|2+|u|2) dx+c(5)/ﬂ|Du|2dx.

Choosing € = A/4 and recalling n = 1 in €', we have

A

_/ UQ‘DZDU|2dm < c/ (|f|2 + |Dul® + |u|2) dzx.
2 o/ Q

This implies by Theorem 2.41 that Dyu € WL*(Q) and thus u €
W22(Q). O

loc

We can also obtain [, lu* dz instead of Jo |Du|? dz on the right
hand side of the estimate in the previous theorem. Observe that u is
does not have zero bdr values so that we cannot use Sobolev-Poincare
type inequalities directly. Nonetheless, a suitable estimate holds for
solutions. This is a Caccioppoli type estimate.

Lemma 3.31 (Caccioppoli’s ie). Let u, a;j,b;,c and f be as in the
previous theorem. Then

|Dul? dz < c/ (luf* + f?) dz
Q

Q/

for Q' e Q.

Proof. Choose a test function v = n?u, where 7 is the same cut-off
function as in the proof of the previous theorem so that

/ Z ai; DjuD;(n’u) + Z biDsu(n*u) + cu(n®u) dx
@ i=1

3,7=1

= / Z aijDju(2nDimu + n* Diu) + Z b Diu(n*u) + cu(nu) dx
Q

ij=1 i=1

Q

i,7=1

+ / Z 2a;;unDjuD;n + Z b; Dyu(n*u) + cu(n’u) dx
i=1

ij=1
= A; + As.
By the uniform ellipticity

A > )\/ n?|Du)? dx
0
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Recalling that |a;;|,n, |Dn| < ¢ and using Young’s inequality yields
|Ay| < 5/ n?| Dul|® dx + C’/ u? dx.
Q Q

Finally, again by Young’s inequality

/fnzudx SC’/f2dx—|—C’/u2dx.
Q Q Q

Combining the above estimates with the PDE itself we have
)\/ n?|Dul? dz < 5/ n?|Dul? dz + C’/ u? + f*dx.
Q Q Q

By choosing € = A\/2 we can "absorb” the first integral on the RHS
into the left, and the proof is complete. U

By adjusting the proof of Theorem 3.29 slightly to obtain some do-
main Q, O’ € Q € Q on the right in the estimate, we could com-
bine Theorem 3.29 with Caccioppoli’s inequality and have the following
corollary.

Corollary 3.32. Let
ai; € CH(Q),b; € L®(Q),c € L®(Q)

and
feL*9).

Further, let w € W12(Q) be a weak solution to Lu = f. Then
u e Wil(Q)

and for any Q' € Q)
ullw2e@y < (1fl 2 + ulliz) )
where ¢ may depend on Y, 2 and a;;, b;, ¢, but not on w.

By a similar argument as above combined with the induction, we
could prove the following higher regularity result if the coefficient and
data are smooth enough. For details, see Evans: PDE p. 316.

Theorem 3.33 (Local smoothness). Let
aij, bi7 c e COO(Q)
and

f e ™).
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Further, let u € WY2(Q) be a weak solution to Lu = f. Then
u € C™(9Q).
3.6. Comparison and max principles. In this section we consider
Lu =~ Di(a;(x)Dju(x)) + c(z)u(x) = f.
ij=1

Theorem 3.34 (Comparison principle). Let u,w € W2(Q) be weak
solutions and (u —w), € Wy*(Q). Then

u<w .
Proof. The idea is the same as in the proof of the uniqueness. First

/ Z a;jDjuD;v + cuv dx = / fudx
Q) Q

ij=1

/ Z a;jDjwDiv + cwv dr = / fvdx
Q Q

ij=1

for every v € Wy*(Q). By subtracting the equations

/ Z a;; Dj(u —w)D;v + c(u —w)vde = 0.
Q-

,j=1

Now we choose v = (u — w); € Wy*(Q2) and estimate

0= /Q Z ai;Dj(u —w)Di(u — w)y + c(u — w)2 dx

2,7=1
> / Dy = w) s + c(u — w)?. da.
Q
Since

/c(u—w)idmZ—i/(u—w)idI
Q 21 Ja

with choice ¢ > —\/(2u). Combining the facts and recalling Poincaré’s
inequality [, v*dz < p [, | Du|? dz we have

02 [ D= w)l + (52 - 5 - w) do

zé/ |Di(u — w) | da.
2 Ja

Again using Poincaré’s inequality (recall exercise set 1), we see that
(u—w); =0 a.e., that is u < w a.e. O
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Remark 3.35. By analyzing the above proof, we see that also the fol-
lowing holds: Let u,w € W2(Q) and u and w be sub- and supersolu-
tions respectively ie.

/ Z aijDjuDiv + cuv dx < / fvdx
Q Q

ij=1
/ Z a;;DjwD;v + cwv dr > / fvdx
Q0 Q
for every v >0, v € Wy*(Q), and (u — w), € Wy*(Q). Then

u<w in ).

For the next theorem, we define

supu :=inf{l e R : (u—1); € W3 (Q)}.
o0

Theorem 3.36 (Weak max principle). Let u € W'2(Q) be a weak
solution to —> 7", Di(ai;(v)Dju(z)) + c(r)u(z) = 0, with ¢ > 0.
Then

esssupu < sup uy..
Q o0

Proof. Set M := supyquy > 0. It holds that (u — M), € Wy (Q).
To see this, choose decreasing sequence l; — M so that (u — ;)4 =
(uy — 1) € W3 (Q). Then since € is bounded, it follows that u—1; —
u— M in WH2(Q). By the exercise in the Set 1,

(u—1;)1 — (u—M),; in W-(Q)

and thus the claim (v — M), € W,*(Q) follows.
We may use v = (u— M), as a test function in

/ Z a;;jDjuD;v + cuv dx = 0
Q

ij=1

/ > a;D;MDyw + cMvdz > 0,
Q

ij=1

where M, c,v > 0 was used. We subtract subtract these to have
)\/ |D(u— M) |” + c(u— M)% dz < 0.
Q

From this it follows that ©v < M a.e. U
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3.6.1. Strong maximum principle. Strong comparison principle for weak
solutions follows from the De Giorgi or Moser type iteration arguments
that we have not proven yet. Nonetheless, we show that due to the
classical theory this is something to be expected anyway.

We denote

C'(Q) = {u € C*(Q) : D" is uniformly continuous
on bounded subsets of € for all || < 1}.

The argument does not rely on divergence form. For simplicity of
notation we consider

Lu=— Z CLUDZ‘D]'U = 0.
i,j=1

By interior ball condition for €2 at xq € 02, we mean that there is a
ball B C €2 such that xq € 0B.

Lemma 3.37 (Hopf). Let u € C?*(Q) N CY(Q) satisfy Lu < 0, and
suppose that there is xo satisfying interior ball condition for B and
u(zo) > u(z) for all x €.
Then
ou
ov

where v is exterior unit normal for B at xg.
Proof. We may assume that B = B(0,r) and u(zg) > 0. Set for v > 0

v(z) = el et g e B(0,r).

(Z’Q) >0

Then
Djv = —Qxﬂe’”"x‘Q
and
D;Djv = (—2d;;v + 472x,-a:j)e_7‘$|2.
Thus

Lv=— i al-jDZ-Djv

i,j=1

n
= — Z aii(—28i7y + 4y*xi2;)e !

4,j=1

< (27D i — 4N a)e T

=1

2
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Thus for large enough v, we have
Lv < (272@1»1» — 472/\|x|2)e_7‘:”|2 <0.
i=1

By the assumption u(zg) > u(z) for all x € Q, for small enough £ > 0,
it holds that

u(zg) > u(zx) + ev(x)

on 0B(0,7/2) C . The same holds on 0B(0, r) since there v = 0. We

have
L(u+ev —u(xg)) = Lu+eLv <0,

and therefore the weak maximum principle for classical solutions (ex.)
implies

u+ev—u(zy) <0 in B(0,r)\ B(0,7/2).

But
u(zo) + ev(zg) — u(xy) =0
so that
O(u+ev—ulz
( - ( 0)) (xO) >0
This yields
O ) > 2% () = —e %2 Du(g) = -2 (—2zgye-1) > 0. O
8u$0_ 81/:170_ r v%o) = r oY ’

Remark 3.38. The nontrivial point on Hopf’s lemma 1is that the in-
equality 9(zo) > 0 is strict!

Theorem 3.39 (Strong max principle). Let u € C?(Q) N C(Q) satisfy
Lu <0

, and let ) be a bounded, open and connected set. Then if u attains its
max at the interior of €1, it follows that

U = sup u.
Q

Proof. Let M := maxgu and
C={re: ulx)=M},
V={xeQ: ulx) <M}
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Let us make a counter proposition that V' is not empty. Take a point
y € V with dist(y, C") < dist(y, 0£2), which exist since dist(C, V) = 0
by continuity of u. Let

B =B(y,r)CcV

be a largest possible ball in V' centered at y. Then B touches C' at
some point zg, and thus V satisfies interior ball condition at this point.
By Hopf’s lemma,

5(370) >0

but this is a contradiction since xy is a max point for u implying
Du(xy) = 0.

4. LINEAR PARABOLIC EQUATIONS
Next we study generalizations of the heat equation. We denote
Qr =Q x(0,7)
and
0pQr = (2 x {0}) U (052 x (0,7)).
Definition 4.1 (parabolic Sobolev space). The Sobolev space
L*(0, T; WH2(Q),

consists of all measurable(in Q) functions u(z,t) such that u(x,t) be-
longs to W2(Q) for almost every 0 <t < T, (u(z,t) is measurable as
a mapping from (0,T) to WH*(Q), and the norm

(//Q (lu(z, t)|* + | Du(w,t)] )dxdt) .

is finite. The definition of the space L*(0,T; Wy*(Q)) is analogous.

The notation above refers to Banach valued functions (0,7)
W12(Q) and thus refers to Bochner integration theory. However, we
do not pursue this analysis here.

Definition 4.2. The space
C(0,T; L*())

consists of all measurable functions u : Qp — R such that

lulleqorsson = mase ([ fute 0 dr) ™ < o0

12.3.2013
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and for anye > 0 and t; € [0,T] there is 6 > 0 such that if [t; — ta| <6,
where ty € 0,7, then

(/Q lu(z, t1) — u(z, ta)| dm) i <e.

Theorem 4.3. The space C>®(Q7) is dense in L*(0,T; WH2(Q)).

Proof. The space W'?(Q) is separable (not proven here). The proof
consists of three steps. First, by separability, we can approximate any
function u € L*(0,T; W2(Q)), denoted by u(t) = u(zx,t), with simple
functions. By modifying the simple functions in the set where the
norm is large compared to the norm of the original function, and using
Lebesgue’s dominated convergence theorem, we obtain a L?-convergent
sequence. Finally, we mollify the simple function.

Next we work out the details. Utilizing the separability of W12(Q),
we can choose a countable dense set

{ar}pe, Cu(0,7).
We define for k =1,...,n
Fi={fewQ) : Hf_a'kHWLQ(Q) = min ||f_aiHW1,2(Q)}

1<i<n

and
By =uwNFP), Dy=Bp, Dp=Bi\(US'BY) for k=23,....

It follows from the measurability of u(t) that the sets D} are measur-
able, and thus

n

un(t) = Z axpy (t)

k=1
is a simple function. Because {ax}32, is a dense set, it follows that a.e.
u,(t) = u(t) in WH(Q) as m — 00.

In order to use Lebesgue’s dominated convergence theorem, we mod-
ify u,, whenever ||u,(t)||y1.2(o) is large compared to [[u(t)|[y1.2(q), and
define

v (t) _ U;n(t)y lf ||un(t)||W1,2(Q) S 2 ||u(t)||W1’2(Q) s

If f[u()|lyr2q) = 0, then v,(¢) = 0 and if [[u(t)||y12q) > 0, then
v, (t) = u,(t) for n large enough. We deduce

va(t) = u(t) i WHQ),  and  lua(®)llynag) < 2[u®)llyrag, -
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Thus Lebesgue’s dominated convergence theorem implies
g 2
/ [on(t) — u(@®)[[p12¢) dt =0, as n — oo
0

Next we denote

Dy = D\t € (0,7) + llun(®)llwaoey > 2110 oy}

and get

3

valt) = 3 @y (0).
k=1

We have shown earlier, using approximations that C*°(Q2) is dense in
W12(Q), and hence we can choose ¢ € C*°() such that

2 £
|ler — arllyrz2q) < T

This implies

T n n
JRDIERTHOED SR
0 k=1 k=1

Finally, we may mollify in ¢ with a mollification parameter d,, (this
follows from the approximation results applied in 1D) such that for
eachk=1,...,n

/OT ‘XﬁZ(t) - (Xf)g)an(t)‘th <

2

dt < e.
W1.2(Q)

€
n|lkllwrz)

Accomplishing this approximation for each k = 1,2,...,n, we obtain
the desired smooth function

> enlxpp)s (1), (4.13)
k=1

which completes the proof. l

Lemma 4.4. Let u € L*(Q), extend u as zero to (—o0,0) and (T, 00)
and set

wlant) = [ ulwt = ns)ds
R
where 1. 1s a standard mollifier. Then

ue = u in L*(Qr)
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Proof. By repeating the argument in the previous proof (cf. (4.13)), we
can produce a smooth approximation g such that

(/ u— g dy)"* < 6/3.
Qr

We extend u by zero to (—o0,0) and (7, 00), and denote by u. a stan-
dard mollification in the time direction. Similarly as for space mollifi-
cations

t+e
wle = || nt - syues)ds
t—e
t+e
< / ns(t—s)l/Qna(t—5)1/2|u(x,s)|ds
t—e
Hélder t+e 1/2 t+e ) 1/2
< (/ n:(t — s) ds> (/ N (t — s)|u(zx, s)| ds) )
t—e t—e
e
and

t+e
/ luc(, )] da dt < / / ne(t — 8)|u(x, s)|* ds da dt
Qr Qr Jt—e

T
:/ //ne(t—8)|U(:E,s)|2dsdxdt
o JaJr
Fubini T 9
= // /ﬁe(t—8)|U(x,8)| dx dtds
rJo Jo
T
:// Ue(t—s)dt/lu(a:,s)|2dxds
RJO Q
S//\u(at,s)ﬁda:ds
rRJQ

= / lu(z, s)|” dz ds.
Qr
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We deduce

( |u—u5|2dxdt)l/2
Qp
Minkowski

S g ara) e ([ o gPaea) 4 ([ g -l e
T T T
§5/3+(/ |g—g€|2dmdt)1/2+(/ g — ul*dz dt)"”
Qr

Qr
<40/3+ (/ lg — ga|2dmdt)1/p + /3.
Qp
By adjusting the argument we used in with z-approximations, we see

that g. — g pointwise in Q2x (0, T'). Moreover, |g — g.|* < 4maxq, |g| €
LY(Qr) and thus by DOM, for all small enough &

(/ |g—ga|2da:dt)1/2§5/3. O
“r 14.3.2013
Theorem 4.5. Let u € L*(Qr) and 2% € L*(Qr). Then there is such
a representative that

u € C(0,T; L*()).
Proof. By the previous lemma

Ue = u, in L*(Qr) (4.14)
o _, in L2( x (h, T — b)), |

0t’

where ¢ < h and the proof of the second statement again follows the
guidelines of the space approximations. By Fubini’s theorem for a.e. x
the function ¢ + u(z,t) in L*(0,T) C L'(0,T). Thus for a.e.  u.(x,t)
is a smooth function so that

2 Ju,

. ot

ue(z,t1) —us(z, ty) = dt

and

t28u
L R
L2()

We apply (4.14) to the RHS together with Fubini’s thm and state
without a proof (cf. approx section) that LHS converges for a.e. ti, ts.
Thus

2
lu(, 1) = u(z, t2)|[72() < Clt — | dadt.
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This also implies the continuity on the whole interval [0, 7). O

We study initial-boundary value problem for given ¢ : Qp — R,
f : QT — R

u+ Lu=f, x€Qr
u=g, r € 0y

Here

Lu(z,t) = — Z D;(aij(x,t)Dju(z,t)) + Z bi(z, t)Dju(x,t)

ij=1 i=1
+ c(x, t)u(z, t).

Definition 4.6 (uniformly parabolic). The operator is uniformly par-
abolic if there are 0 < A < A < oo such that

Alg” < Z a;;&€; < A€,
ij=1
Definition 4.7 (local weak solution). A functionsu € C,.(0,T; L2 ()N
L2 (0, T;W'2(Q)) is a weak solution to the above PDE if

loc loc

- / wpy da dt + / Z a;; DjuD;p + Z b; D;up + cup dx dt
Qr

Qr ;=1 i=1
= fodxdt
Qp
for every v € C3°(Qr).
Definition 4.8 (global weak solution). Let g € C(0,T;L*(Q)) N
L2(0, T;Wh(Q)). A functions uw € C(0,T; L*(2)) N L2(0,T; W2(Q))
s a weak solution with boundary values g to the above PDE if

- / wpy da dt + Z a;jDjuD;p + Z biD;up + cup dx dt
Qr 01§ j=1 i=1

= fodxdt
Qp

for every ¢ € C3°(Qr), and
u—ge€L*0,T;Wy*(Q))

as well as

/u(x,O)gb(x) dm:/g(m,O)gb(x) dx  for every ¢ € C5°(§2).
Q

Q
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4.1. Existence: Galerkin method. Let f € L*(Q7). For simplicity
we only consider the problem

= AU + f, n QT
u =0, on 02 x [0, 7]
u(z,0) = g(x), on

where g € VVO1 (€2), but intend to use methods that also work in greater
generality. In the weak form,

—/ u%da:dt—i- Du-Dgpdazdt:/fgodxdx (4.15)
op Ot Qr Q

for every ¢ € C§°(Qr).
Idea in Galerkin’s method is to take a basis w; i = 1,2, ... in L? and
W,%(Q) and approximate solution as

m

U (2,1) = Y & (t)wi().

=1

Choosing the coeflicients properly, we can show that this approximation

converges to a weak solution. Galerkin’s method has turned out to be

useful in numerical approximations to solutions of PDEs as well.
Step 1(basis): Let

Wi, 1= ]., 2, .«
be orthogonal basis in W,*(Q) (wrt the standard inner product in
I/Igol 2(Q)), and orthonormal in L*(Q) (with respect to inner prod of
L?).
Step 2 (approx solutions): Construct approximating solutions by

= Z ' (t)wi(z

i=1
where the coefficients satisfy
Ou,,
—w dr = Du,, - Dwidx + | fwydx (4.16)
o Ot Q Q

for k =1,2,...,m. Then for LHS

au—mwk dr = / Z L dx

orthonormality ocl L

ot
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and
—/ Duy, - Dwy, dex = — / it (t)Dwy, - Dwy dx = —c* (1) M.
Q Q

Altogether, we obtain ODE

oW _
LS — —er(t)/h+ i),

where fi.(t) = [, f(x, t)wi(z) dz. It follows that

A (t) = et (Ck + /t e/ i (1) d7’>
0

where ¢, are chosen so that

x) = Z crwi ()

which is possible since w;, i = 1,2, ... forms a basis for WOI’Q(Q).
Step 3 (uniform estimates for solutions): Multiplying (4.16)
by the coefficients and summing, we obtain

—/Dum'Dumd:c—l—/fumdx
Q Q

O,
— Uy, d
q Ot

10
28t/u dx = /|Dum| dm—l—/fumdx

Further, by integrating over (0, 7), we obtain

1 1
—/ufn(x,T)dx——/ufn(x,O) dx
2 Jo 2 Jo

—/ |Dum]2da:dt—|—/ fum dzdt.
Q, Q,

i.e.

We further estimate by using Young’s and Sobolev-Poincaré’s inequal-
ities

T
/f:z;tumdazdt’<0 dexdt—i—a/u/ /uildxdt
QO 0o Ja

T
<C f2dxdt+g/ /|Dum|2d:vdt
Qr 0 JQ

where p is again the constant in Sobolev-Poincaré’s inequality. By
choosing ¢ > 0 small enough, we can absorb the gradient term and
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obtain an important energy estimate

1
sup —/uﬁl(x,t) dx+/ | Dty | da dt
t€[0,7 Q Qrp

(4.17)
< C/ufn(:c,O) dr+C [ f*dzdt.
0

Qr

Multiplying (4.16) by %czn(t) and summing over k, we obtain

S TRNT

and again integrating over (0,7") and using Fubini, we have

iy |? 1 / /T 0 ) / i
— | drdt=—= — | Du,,|” dt dx + f——dxdt.
/QT ot 2 JaJo 8t| | ap Ot

Again by using Young’s inequality

2
1
/ A dg;dﬁ——(/\Dum(:v,TﬂZ—/|Dum($,0)]2dm)

) (4.18)
O, 9
<eg — | dxdt+C fodxdt.
op | Ot Qr
Combining (4.17) and (4.18), we have
2
/ | Dt |+ 3(;L_m + |t |* ez dt
Qr t

(4.19)

§C/\Dum(a:,0)]2dx +C [ fdxdt,
Q

Qrp

TV
— [ |Dg(x)|? dz, as m—so0

where the right hand side is independent of m . Altogether, we have

ou
Dm2 m
/QT| ] 5

where C' is independent of m.

Step 4 (taking limits): Since the estimate (4.20) is uniform in m,
the sequence u,, is uniformly bounded in L*(0,7; W'?(Q2)) and 2%= in
L?(Qr). Thus, there exists a weak limit such that

ou

we L20,T; W, 2(Q)), 5 € L2(Qp).

Further, by Thm 4.5, u € C(0,T; L*(Q)).

2
+ |t |* dz dt < C (4.20)
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Step 5 (weak solution): A priori, u,, satisfies the weak formula-
tion for basis functions, so it remains first to check that u is a weak
solution. To this end, let

heC(Q) and o € C([0,T)),

and choose a sequence
j
x) = Zakjwk(x) — h in WH(Q) as j — oo.

We multiply (4.16) by v (t), integrate over (0,7"), and pass to a limit
m — 00 to have

/ /—wkz/zdxdt /T/qu-wadx
-|-/OT/wak1/1dxdt.

Then, we multiply this by as;, and sum up to have

T J
/ / Zakjwkw dx dt = / / Du - DZakjwkw dx dt
Q k=1
T J
+ / / f(z,t) Z apjwrt dx dt.
0 Ja P

Then passing to a limit with 7, we end up with

/ /5““ Vo (t) dar dt = / /Duxt) Dh(x)(t) da dt
//fxt W(t) da dt.

By modifying the proof of Thm 4.3, see in particular (4.13), we see that
by summing up the functions of the type h(x)1(t) we may approximate
functions in L?(0,T; W,*(€)). Thus, in particular,

T T
/ / —pdrdt = / /Du~D<pd:cdt+/ /fgpdxdt
Q o Ja

for all ¢ € C3°(Qr).
Step 5 (initial condition): It remains to check that the ini-
tial condition is satisfied. Similarly as above, denoting v,(x,t) :=




PDE 2 83

_1 Bri(t)wi(x), 5 < m, and for which v;(z,T") = 0 we obtain

/ /aumvjdxdt / /Dum Duv;(z) dxdt

/ / [z, t)vj(x) dz dt.
Integrating by parts wrt t,

/um(x 0)v;(z,0) dx—/ /um(%] dx dt
/ /Dum vadxdt+/ /fv]dxdt

Then we pass to a limit m — oo, and then with j — 0o, where we may
choose fB; so that v;(z,0) — ¢(x) € C5°(Q) in L*(Q2) and v; converges
to a suitable test function v. This produces

Jawotwras— | ' [o% ara
—/OT/QDU-Dvdmdt—F/OT/vadxdt.

On the other, passing first to a limit m — oo and then j — oo in
(4.21), as well as integrating by parts wrt ¢ after that, we get

_/ (z, dx—/ /u—d:l:dt
—/0 /QDu-Dvdxdth/OT/vada:dt.

Comparing (4.22) and (4.23), we see that u satisfies the initial condi-
tion.
We have proven the following.

Theorem 4.9. Let g € Wy *(Q) and f € L*(Qp). There exists a weak
solution to the problem
= Au+ f, m QT
u=0, on 0 x [0,T]
u(x,0) =g(z), on Q.

(4.21)

(4.22)

(4.23)

Remark 4.10. The condition g € WOI’Q(Q) can be relaxed as well as
the operator with

aij, bi,c € L=(Qp), f € L2(QT)
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s ok, see Fvans p. 356. The method remains essentially the same.
Method also generalizes for more general bdr conditions g € C(0,T; L*(Q))N
L0, T; Wh2(Q)).
4.2. Standard time mollification. Now ‘3—’; exists but in more gen-
eral situation (for example u; = div(A(z,t, Du)) for a suitable nonlin-
ear operator), u does not necessarily have time derivative. Nonetheless,
ig is often useful to have u in the test function, and thus we would have

5¢ in the weak formulation, which does not necessarily exist as a func-

tion. This problem is treated by time mollification.
Let ¢ € C§°(Qr). Our goal is to show

_/OT/QUE%dH/OT/Q(Du)E-Dwz:0, (4.24)

where ¢ in u. and (Du). denote the mollification with respect to t.
Let spt¢(x,-) C (e,T —€). We can use Lebesgue’s dominated con-

vergence theorem to see that D [ = [ D in this case. Further, by

Fubini’s theorem and by taking into account the support of ¢(z, ), we

see that
T
/ / Du(z,t) - Do. dz
o Ja

_ /0 ! /Q Du(,t)- D /[R b, ).t — ) ds d=

= /R/Q/OT Du(x,t) - Do(x, s)n.(t — s) dt dx ds o)

= /R/Q/OT Du(x,t)n.(t — s)dt - Do(z, s) dz ds.

Since 7. is an even function, we have

/0 Du(x,t)n.(t — s)dt = /0 Du(x,t)n.(s —t)dt = (Du(z, s)).,

(4.26)
where we can restrict ¢ < s < T — . This is due to assumption
spt(o(x,-)) C (e,T — ¢). By subtracting (4.26) into (4.25), we obtain

/OT /Q Du(x,t) - Do.(z,t) dz .

— /aTE/Q(Du(a:,s))E - Do(x, s) dx ds.
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Similarly

/OT /Qu(x,t)aaqig dx dt
—/OT/Q/Ru(:c,t)%gb(x,s)ng(t—s) ds dz dt
—/6TE/Q/OTu(x,t)ns(t—s) dt%¢(m,s) dz ds
_ / o /Q us(x,s)%¢(x,s) de ds.

The definition of a weak solution combined with (4.27) and (4.28) imply
(4.24).

(4.28)

4.3. Steklov averages. Another alternative is to use Steklov aver-
ages. Let u € L'(Q7). Then the Steklov average is defined as

1 t+h
uhzﬁ/ u(z,T)dr, te (0,7 —h).
t

Weak formulation can also be written (ex) for 0 < ¢; <ty < T as

/Qu(:zr,tg)go(:v,tg)d:)s—/u(:v,tl)tp(:r,tl)dx

Q

—/ ugotdxdt—i-/ Du- Dpdxdt =0.
QX(t1,t2)

QX(tl,tz)
Then choose (s, x) € C§°(2r) independent of ¢ (this is not compactly
supported in ¢ as it is constant in ¢, but it does not matter). Since ¢

is compactly supported in s, we can choose t; = s, to = s+ h for small
enough h. Then divide by h, and observe that ¢; = 0 so that

0 :% /Q(u(x, s+h) —u(x,s))e(x,s)dx
1 s+h
+ 7 /Q/S Du(z,t)dt - Do(z,s)dx

:/Q%go(az, s) dx—i—/Q(Du)h(x,s)~D<p(:c,s) dx.
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Integrate wrt s over (0,7) to obtain

O:/Q Mgp(az, s) dxd8+/ (Du)p(z, s) - Dop(x, s)dr ds

88 Qr

= —/ Uha_go d:z:ds+/ (Du)y, - Dpdxds,
Qr ds Qr
(4.29)

for every ¢ € C3°(Qr).

4.4. Uniqueness. In this section, similarly in the elliptic case, we sim-
plify the treatment considering

Lu=— Z D;(a;;Dju) + cu
ij=1

with ¢ > ¢y, ¢y € R. In the proof below, we want avoid using the time
derivative of a solution and therefore use mollifications.

Theorem 4.11. The weak solution to

us+ Lu =0, nQr
u=g on Op{r.

with g € C(0,T; L*(2)) N L*(0, T; WH2(Q)) is unique.
Proof. Let u and w be two weak solutions. Then similarly as in (4.24)
—/ Ue g dxdt—i— ZCLUDU )eDiv® + cu(v®). dxdt =0
Qr Qr ; 1,7=1

where spt v C 7, and ¢ is small enough, and a similar equation for w.
Then by subtracting the equations, we have

— /Q (u— d:cdt+ QT”ZI ag(D w)).D;(v°).) (4.30)

+ c(u — w)(v%)dx dt = 0.

We choose

v (2, 1) = (xn(t))e(u — w)e
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with

0 t <h,

(t—nh)/h h <t <2h,

1, 2h <t <T —2h,
(=t+T—h)/h, T—-2h<t<T—h,
0, T—h<t

Moreover, by density we can extend the class of test functions so that
(v9). is admissible (ex). We estimate

ov®
/QT(u - w)EE dx dt
_ / (1 — ), 2= W) gy
Qp

ot
_ O(Xn)e Iu — w).
— /QT(u—w)E Y (u—w)5+(xh)€—at dz dt
a(Xh)s / 1 a(u B w>2
_ _ 2 N e
- /QT (u —w)? g dx dt + QT(Xh)52 5 dx dt

Then we integrate by parts and pass to a limit

int by parts . 28( ) _1/ a(Xh)s . 2
= /QT(u w): 5 dx dt 2 Jo. ot (u—w)Zdxdt

_ 1 a(Xh)a 2
= §/QT g (u—w)zdxdt
ezl [0
= 2/QT 8t(u w)” dx dt

2h
/u— d:vdt /u— dxdt
T—2h

0—5/9( u(z, T) — w(z,T))*dr,

where at the last step we used continuity and the initial condition.
The other terms in (4.30) converge by similar approximation argu-
ments as before, and combining the above calculation together with
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(4.30), we obtain by first letting € — 0 and then h — 0

0= 1/( (2,T) —w(z,T))*dx
/Q > aiiDj(u — w)Di(u — w) + c(u — w)(u - v) da dt

T 4,5=1
parab ] 9
S 5/(u(x,T)—w(x,T)) da
Q

+/ ADj(u—w)|* + c(u — w)? d dt
Qr

> %/Q(u(a:,T) —w(x,T))* dv + /QT (2 + co)(u —w)?dz dt

where we used Sobolev-Poincaré’s inequality with a constant p. If
—v = 3(A/p+ o) > 0 then the result is immediate. Otherwise, let
us denote n(T) := [, (u(x,T) —w(x,T))? dz. Then the above estimate
reads as

7/0 n(t)dt > n(T).

We can repeat the argument for a.e. t € (0,7") instead of T', and have
¥ fo s)ds > n(t). But this is as in well-known Gronwall’s inequality
(proof is ex.) which now says n(t) = 0 a.e. completing the proof. [

4.5. Regularity. For simplicity we concentrate on £ = Au+ f, f €
L>(Qr) but method immediately extends to more general linear PDEs.

Definition 4.12 (supersolution). A function u € L3 (0, T; WL?(Q))
1s a weak supersolution to % =Au+f, if

)
—/ wZdvdt + | Du-Dededt> | fodrdt
o O

QT QT
for every ¢ € C§°(2r), ¢ > 0.

Definition 4.13 (subsolution). A function u € L3 (0,T; W-(Q)) is
a weak subsolution to %—? =Au—+f, if

—/ ua—god:vdt—l— Du - Dydxdt < fodxdt
Qr 8t Qr Qr
for every ¢ € C5°(Qr), ¢ > 0.

Formally we can write for example for subsolutlon —Au < f.
Rough plan:
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We will describe details, notation etc. later, but look at rough ideas
to begin with.

We look at parabolic Harnack’s inequality. The elliptic Harnack’s
inequality for positive harmonic function in {2 reads as

esssupu < C'essinf u
B B

where 2B C Q (local estimate). In contrast with this, in parabolic
Harnack’s inequality the sets on RHS/LHS are not the same. Instead,
they take into account the flow of information from the past to the
future. Indeed, parabolic Harnack’s inequality for a positive solution
to the heat equation can be stated as

esssupu < C'essinf u
Q- QF
where (™ lies in the past compared to Q*, where the cylinder lie well

within the domain (again a local estimate) . There are counterexamples
(ex) showing that this so called waiting time is indispensable.

(1) (Easier part ) We intend to show that a positive subsolution is
bounded from above with explicit estimate

esssup u < C’/ wdx dt
Q Q
where Q, Q are parabolic cylinders .
(2) (Harder part ) We partly show a lower bound for a positive
weak supersolution in a form

/ udz dt < Cessinfu.

In this estimate, direction of time plays a crucial role.

Lemma 4.14 (Energy estimate). Let u > 0 be a weak subsolution
% — Au <0 toin Qr and v > 1. Then there exists C = C(7) such
that

/ | Du|*u" " n? dx dt + ess sup / u'n? dx dt
Qr te(0,7) JQ
on

<C | WDy dedt+C | uty 5

Qr Qr

dx dt

for every n € Cg°(Qr), n > 0.
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Proof. Use (formal, details are ex.) test function ¢ = n°x(,u” (now ~
is a power) in

—/ ua—gpdxd:?%— Du - Dpdxds < 0.
op Ot Qr

First term can be estimated by integration by parts as

o 2. h v
/uaidxds:/ uwdxds
ap Ot Or ot

8772X6Lt _,o0u
= /QT U(TU7 + T}2X6L7t7u7 1&) dx ds

For the second term

Du - Dpdxds

Qr

= Du - D(n*xg,u") da ds
Qr

= / x| Dul*u’ ™! + Du - x§ Dn*u” dzx ds
Qr

N / x| Dulu’ ™t + w002 Dy b (D) u D2 da ds.
Qr

Then use Young’s inequality to estimate the second term.
Finally combine the estimates and absorb the gradient term into the
left, choose t suitably so that one of the terms is close to esssup-term

(detailed calculation was presented during the lecture). O
2.4.2013

Choosing v = 2¢* — 1, k = 0,1,2,..., ¢ > 1 gives the following
corollary. Also observe that as v increases, the constants in the previous

lemma remain bounded. Thus we can choose the constant independent
of k below.

Corollary 4.15. Let u > 0 be a subsolution in Qp and ¢ > 1. Then
there exists C = C(q) such that

J

for every n € Cg°(Qr), n > 0.

Dud"

2

n* dx dt + ess sup/ u2qk772 dx dt
te(0,T) JQ

o

SC’/ u2qk|Dn|2dmdt+C’/ u2qkn‘—‘dxdt
Qr Qr @t
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Lemma 4.16 (Parabolic Sobolev’s inequality). Letu € L*(0,T; W, *(Q))
and ¢ =1+ 2/n. Then there exists C' = C(n) such that

/ |u|2qudt<C’ esssup/|u| dx n/ | Dul|? da dt
Qr te(0,T

Proof. By Holder’s inequality for a.e. t € (0,T")

/|u|2qu</|u|l_q+2q+(q_l) dz
< ([ |u!(q_1)”d:c .
1 n/(n— 1
/ O/ / uf?d

Then using Sobolev’s inequality with 1* =n/(n — 1) and 1, we have

(n—1)/n 1
(/ | (/D) dx) SC/ ‘D(|u|(1+q))‘ dx
Q Q

:C/\u|q]Du\da:
Q

Holder 1/2 1/2
< C’(/ |ul* dx) (/ |Du\2dx>
Q Q

Then we combine the estimates, integrate over (0,7") and estimate by
ess sup to obtain the result. O

For notational convenience we consider the domain around the origin.
This can be done without loss of generality.

Qr = B(0,R) x (—R* R?),
We assume that 2 <n and R < 1.
Lemma 4.17. Let u > 0 be a subsolution to 24 — Au < f in Qs .

ot
Then there are C = C(n) such that

1/2
esssupuSC’(][ u2d$dt> + C e (@n)
QRry2 Qr

Proof. The proof consists of several steps:
Step 1 (simplification): Set w = u + (tmax — 1) |[f|[ (> Where
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tmax 1S a suitable constant so that t,., — ¢t > 0, and observe that
0
- dxdt—l— Dw - Dpdx dt
ot On
| wSpdrds [ Du-Dodear— [ 1l iq, e
Qr ot Qr Ox L>(Qr)
< [ U= llngapdsde <o
R

Thus we may concentrate on the homogenous equatlon — Aw < 0.
If the results holds for w

1/2
esssupw < C’<][ w? d:vdt)
QRr/2 Qr

this then implies

1/2
esssupu§0<][ u2d:vdt) + Clfl Lo (qp) -
QRr/2 R

Step 2 (reverse Holder): By step 1, let u > 0 be a subsolution to
— Au < 0. Let p,o be such that

R
§§p<0§R

and choose a cut-off function n € C§°(Q,), 0 <n <1 such that n =1
in @, and

C
S

on |2
| Dl + 'E

By Corollary 4.15 (the same proofs give the estimates in ), instead of
Q1) choosing k = 0, we have

|Du]277 dx dt + esssup / u?n? dx dt
B(0,0)

—02,02)

§C’/ uQ\Dn|2d:vdt+C/ una ‘d:xdt
o Q

ot
p—0)?Jq,
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By using parabolic Sobolev’s inequality in Lemma 4.16 and then the
previous estimate, we deduce

(/ u? dxdt)l/q

P

2/(nq) 1/
< CYesssup (/ (nu)? d:r;) ! (/ |D(nu)|* dmdt) !
t oB o

(2/n+1)/q
< Cl/q(esssup/ n*u? dx+/ |D(nu)|? dxdt) i
oB Qo

t

t

1/q
< (C—p)Q/ u? dx dt.
O—_

gCl/q(esssup/ n2u2d$+/ \Dn]2u2+?72|Du]2d:Udt>
ocB QU

Similarly

( / u?? dx dt) v

P
parab Sobo
<

t

o

(2/n+1)/q°
<oV <ess sup/ n*u®? dw + / |D(nu?)|? dz dt) 1/
B(O,o’) Qo

t

t

Cor 4.15, k=1 Cva 1/q
< (= / udrdt) "
(0 —p) Qo

1/q
<oV <ess sup/ n*u®? dw + / | Dn|*u® 4 n?| Du|? da dt)
B(0,0) Qo

This argument in general yields

1 . 1/(24"+1)
(Rn+2/qu dwdt)

1/q 1/(2¢%)
< (0—2/ M dwdt)
R(p—0)? Jg,

Step 3 (Moser’s iteration): Replace in (4.31) p by pr+1 and o by
pr where

(4.31)

pk=§(1+2’“), k=0,1,...

2 2/(nq?) 1/
CV ess sup (/ (nu)? dm) ! (/ |D(nu?)|? da dt) !
B(0,0)

4.4.2013

2
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so that py — pr+1 = H27F(1 — 1/2) = R27%72. Thus

1 1/(2q+1) C'1/a92(k+2) 1/(2¢%)
(R”+2 / u2qk+1 dx dt) < <W / u2qk dx dt) .
Q Q

Pk+1 Pk

We iterate this

1 1/(2¢%1)
(e [ e
Q

Pl+1
k
< Cl/(2qk+1)2(k+2)/qk( 1 / L2 dt) 1/(24)
B Rn+2
Qny
k—1
SCl/(quH)Q(k-&—Q)/qkC«l/(2q’“)2((k—1)+2)/q’“*1< i+2/ 20 dxdt)l/(2q )
R Ja,,
k—1
< Ol/(2qk+1)2(k+2)/qk01/(2qk)2((k_1)+2)/qk1<Rj+2/ 2 dxdt>1/(2q )

Qpj_1

Lo 1/2
< C727 <][ u? dx dt> ,
Q

PO

where

Then let & — oo and observe that the LHS in the above estimate
converges (see Measure and integration 1) to ess SUPg , , U- U

Lemma 4.18 (Iteration lemma). Let G(s) be a bounded and nonneg-
ative function for s € [R/2, R]

Co
(0 —p)
where @ < 1 and R/2 < p < o < R. Then there is C = C(a,0) such
that

G(p) < 0G(0) +

G(p)<C (w,ij—op,)a) )

where R/2 < p/ < o' < R.
Proof. Ex. O
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Corollary 4.19. Let u > 0 be a subsolution to % — Au < f in QaR.
Then there is C' = C(n, s) such that

1/s
esssupu < C(][ u’ dl’dt) + C [l Lo (gp) -
QRry2 Qr

for s > 0.
Proof. First, we may again without loss of generality restrict ourselves
to the homogenous case.

If s > 2, then the result follows directly from the previous lemma and
Holder’s inequality. Let then 0 < s < 2. Using the result of previous

lemma with o, p instead of R/2, R, and p; = p+27"(c — p) as well as
inspecting carefully the proof, we get

k+1
(in/ W gy dt) V@)
7" JQop iy
C 1/(24%)
< (oo / o di dt)
oo —p)* Jg,

vt o 1/(24%)
<(-Z ( / W da dt) .
c=p) g,

Iterating this, observing that Y~ 1/¢' =1/(1-1/¢q) =1/((¢—1)/q) =
q/(¢g —1) = (1+2/n)/(2/n) = (n+ 2)/2, and then using Young’s
inequality to the resulting inequality we have

e o VT 1/2
esssupu < C727 ( ) ( / u? dx dt>
Qo

Q, o—p O—n+2

(n+2)/2 1 1/2
o2 ( / W2 dr dt)
o=p o Ja,

0( ! / ( V2500 d dt)m
e e— esssup u u- axr
(0—=p)""2 Jo," Q.

Young ] 1 1/s
< —esssupu—i—C(—H/ usdxdt> ,
2 qQ, (0 —p)" Jo,

since (2—s)/24s/2 = 1. Then use iteration Lemma 4.18 with o' = R/2
and 0/ = R , we get

esssupu < ¢ < / u® dx dt> v O
Qryo — (R _ R/2)(n+2)/s On .

IN

IN

Next we consider the second part.
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Lemma 4.20. Let u > 6 > 0 be a weak supersolution to % —Au>0.
Then w = u~' is a weak subsolution.

Proof. First observe that «™' < 6~ and |[Du™!| = |[u2Du| < 6~2|Dul
so that ™! is in the right parabolic Sobolev space. We choose (for-
mally) a test function ¢ = nu=2 withn € C§°(Qr), n > 0, and calculate

0 S/ —uaﬁ+Du-D@dxdt
o Ot

-2
= / _ua(nu ) + Du - D(nu™?) dw dt
Or ot

0 ou™!
- / __77“71 — 27 ut —Du™'- Dn— 277u73|Du|2dxdt

0
< D=t — Dyt Dndzdt
o Ot

where at the last step we integrated by parts and dropped the negative
term. Thus

0 z/ —@u*1 + Du~'- Dndxdt. O
Q, Ot

Lemma 4.21. Let u > 6 > 0 be a weak supersolution to ‘?9—7: — Au > 0.
Then there is C = C(n, s) such that

—1/s
( ][ u *dx dt> < (Cessinf u.
Qn QRry2

for any s > 0.

1

Proof. By the previous lemma, u~" is a subsolution. Then by Corollary

4.19, we have

1 B 1/s
esssupu - < C’( ][ (u)"*dx dt)
QRry/2 Qr

so that

—1/s
( ][ u ¥ dx dt) < essinf u.
Qr QRr/2
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We denote
Q = B(0, R) x (—3R?, 3R?),
Q" = B(0,R) x (R? 3R?),
Q™ = B(0,R) x (—3R* —R?), (4.32)
(

Q" = B(0,R/2) x (2R* — (R/2)* 2R* + (R/2)%),
Q™ = B(0,R/2) x (—2R* — (R/2)*, —2R* + (R/2)?).

The proof of the following deep theorem can be found in Fabes and
Garofalo: Parabolic B.M.O and Harnack’s inequality.

Theorem 4.22. Let u > 6 > 0 be weak supersolution to % —Au>0
in Qar. Then there is s > 0 and C = C(n) such that

(f_ u? dxdt)l/s < O<]{? u* dxdt>_l/s.

Combining the previous two results i.e. Lemma 4.21 and Theorem
4.22, we immediately obtain weak Harnack’s inequality. One could
show (not done here) that this holds for 0 < s < (n + 2)/2 with
C' = C(n,s) and in particular with s = 1.

Theorem 4.23. Let u > 6 > 0 be a weak supersolution to % —Au>0
in Qar. Then there is s > 0 and C = C(n) such that

1/s
(f u’ dx dt) < C’escsginfu.

Corollary 4.24. Letu > § > 0 be a weak supersolution to %—Au > f
in Qag. Then there is s > 0 and C = C(n) such that

1/s .
<][u d;cdt) < CesginfquCHfHLoo(Q)-

Proof. Observe that u+(t—tmi) || f|| (@) = 0, Where tmi, is a constant

such that t — t,,;, > 0, is a weak supersolution to % — Au > 0 and
thus by the previous theorem

1/s
<][~_(u + (t — tmin) ||f||Loo(Q))S dx dt)
< Cesginf(u + (¢ = twin) [l Lo (3)-

This implies the result. O

9.4.2013
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Then by weak Harnack’s inequality (Corollary 4.24 ) and local bound-
edness estimate (Corollary 4.19), we get for a weak solution of % —
Au = f that

1/s
esssmpuSC(][~ usdl‘dt> + C [ fll1=(a)
o _

. 2
< Cesg}rnfu%—C’ 1]z ) -

This finally gives us parabolic Harnack’s inequality.

Theorem 4.25 (Harnack). Let u > 0 > 0 be a weak solution to 2% —
Au=f in Q. Then there is C = C(n) such that

esssupu < Cessinfu + C () -
Q,p o+ /11, @)
Remark 4.26. The assumption u > § > 0 is only technical: if u > 0,

we may consider u+ ¢ and since the constant in Harnack’s inequality
s independent of 6, we may let § — 0.

Example 4.27. "Elliptic” Harnack’s ie., where we have same cylinder
on both sides, does not hold in the parabolic case: the equation 5* —
Uz = 0 has a nonnegative solution in (—R, R) x (—R?, R?) (translated
fundamental solution)

1 __(z+6)?
u(z,t) = ———=e t+2R?)

Vit+2R?

where € is a constant. Let x € (—R/2,R/2), x # 0 and t € (—R?, R?).
Then

_ f27(z+§)2 _ —:62—215 z2+215
u(0,) = ¢ 4(+2R%) = ¢ 4(t+2R%) = e4(t+2R?) — ()

as & signx — —o0.

4.6. Holder continuity. By iterating (weak) Harnack’s inequality we
may prove the local Holder continuity of weak solutions.

Theorem 4.28. Let u be a positive weak solution to g—? — Au = 0.

Then there ezists v € (0,1) and a representative such that
[u(z, 1) = u(y, s)| < Clle =yl + |t — s|'/*)"

locally.
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Proof. We take the weak Harnack for s = 1 for 'granted and using that
for a weak (super)solutions u — ess infs u and esssups u — u, we have

][ udr —essinfu < C ( esg2 Jirnf u — essinf u)

Q Q Q

esssupu—][ udr < C(esssupu—esssupu).
Q Q Q Q+

Summing up yields
oscyu < C’(och U — 0SCQ+ u),

where we denoted

08Cy u := esssup u — ess inf u.
9 Q

Rearranging the terms, we have
08Co+ U < (1 — é) 08C U.
Thus by setting § :=1—1/C € (0,1) we obtain
osco+ < foscy u. (4.33)
The proof of (weak) Harnack would also work in the geometry
Q := B(0,R) x (—R? R?)
Q' = B(0,R/2) x (R*/2 — (R/2)*, R*/2 + (R/2)?).

Using this and denoting, with a slight abuse of notation,

Qu = B0, R/2") x (b = (R/2")2 ty + (R/2")?)

for a suitable ¢, we obtain oscg, u < f oscg, u. Repeating the argument,
we deduce

oscg, u < 0% oscg, u.

Then fix p < R and k such that 28 < R/p < 281 k =0,1,2,... so
that 27*R > p > 2=¢+D R and

k <log(R/p)/log(2) < k+1

log(R/(2p))/log(2) < k

1Or use (strong) Harnack to have JCQ— udzr < Cessinfg+ u. Then applying this

to u —essinfy u and esssupy u — u gives the same oscillation estimate.
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Thus

osco, u < gloe(R/(2p))/ log(2) 0SCQp U
— plos(£/(2p))log(8)/(10g(6) 10g(2)) g Qo U

p 1 log(0)/1og(2)
()

—log(6)/10g(2)
(P >
=C <R> 0SCQ, U

Since p can be chosen arbitrarily small and u is locally bounded, this
implies Holder-continuity. U

4.7. Remarks. Also a similar regularity theory that we established
for the elliptic equations can be developed for g—;‘ + Lu = f if the

coefficients are smooth enough.
Intuition: We consider formally the heat equation

9 — Au=f inR"x(0,7]
u=g on R" x {0}

and u decays fast enough at infinity. Then integration by parts gives

ou
2dr = — — Au)dx
Rnf x /( u)®

(%
/ — —2—Au+Au dx
8u 0Du
= — 2——.D A
Ot + 5 u+ Au? dx

Then we calculate

t 2
/ / @ Dudzrds = / / 0| Dyl dz ds
n 0 n at

e [ Dutepfde - [ Dyl
R™ R7
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Moreover, similarly as with the elliptic equations

"L 0% = 0%
2 — - -
/RH(AU) dr = /n ; o2 2 57 dx

_ i / 0?u 0%u u
B an 022 895

i,j=
int by parts . Z 3u ou
= e 0x201; 70x; (995] v
int by parts Z 82U du

= e 890 890] O0z;0x;

= / ‘Dzu‘de.
Rn

Choosing ¢ so that [g, |Dul*(z,t)dz > Lsup,cqr [ |Du(z,t) do

and combining the estimates, we end up with
+ ‘D2u‘2 dx dt + sup / |Du(z,t)|” dx

T ou?
/0 /n E te(0,T)
T
§C’/ / \f]2dxdt+0/ |Dg|” dz.
0 n Rn

Continuing in this way (cf. elliptic), we would obtain higher regularity
estimates as well. The solution has two more space derivatives than
f etc. To make above conclusions rigorous, we could again utilize
difference quotients both in space and time.

5. SCHAUDER ESTIMATES

We finish the course by briefly returning to the elliptic theory, and
sketching the Schauder theory because this is needed to finish the story
with Hilbert’s 19th problem.

Recall Holder continuity

Definition 5.1. Let f : Q — R. For a € (0,a), we denote the semi-
norm

)

|f(z) = f(y)]
|U|Ca(Q) = Ssup G
syeQazy [T =Yl

11.4.2013
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and a set of all functions satisfying |u|ga gy < 0o by C(Q). This space
can be equipped with the norm
/(@) — f(w)]
Hlee@y = Il + sup  ——7—.
|| ||C () || ||L () ety ‘x _ y‘

Similarly

CH(Q) = {u : D’u e CQ) for |8 <k},
where B is a multi-index.

The main result of this section is

Theorem 5.2. Let u be a weak solution to —Au = f in B(0,2R) with
f e C*(B(0,2R)). Thenu € C>*(B(0, R/4)).

Remark 5.3. e Theorem 5.2 actually comes with estimate, see
Theorem 5.185.
o The result can be extended to Lu = f with

Hainca(B(o,zR)) ) Hbz'HCa(B(o,zR) ) ||CHCa(B(o,2R) <M,

uniform ellipticity, and a;; = aj; by the freezing of coefficients
technique.
e [n reqular domains, there is also a corresponding global result.

First, we look at the important step i.e. how to pass from integral
estimates (natural from the point of view what we have done so far) to
the pointwise Holder norms. For this, we use a theory of Campanato
spaces. Denote

1
v |QHB($7P)| QNB(z,p)

where  is a regular domain, for example Q = B(0, R).

Definition 5.4 (Campanato space). Let u >0 and u € L*(Q). Then
the functions satisfying

1 ) 1/2
Wy = s (= fuly) = el dy) " < o0
€Q,0<p<diam(Q) NP7 JONB(x,p)

belong to the Campanato space L2#(2). We use the norm

Uy u(y) dy.

[l g2 0y = Ul g2y + [l 20 -

Lemma 5.5 (Mean value lemma). Let u € L**(Q), z € Q and 0 <
p < R < diam(Q2). Then

|ux7R - uw,p| < CP_H/QRM/2|“|£27“(Q)'
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Proof. Let y € B(x,p) N Q and write

’ux,R - Ux,p|2 S C(’ux,R - u(y)|2 + |U(y) - ux,p 2a

integrate over B(x,p) N2 C B(z, R) N to have
’um,R - ux,p|2 = ][ |ux,R - um,p|2 dy
B(z,p)NQ2
<Cffn = u) + fuly) gl dy
B(z,p)NQ2
<Cffn = ul) o+ fuly) -~ wl dy
B(z,p)N2

RE  pt
<O+ o)l
R
< 20F|u|i2qu(9)' O]

In the proof of the key result, we need integral characterization of
Holder continuous functions i.e. Campanato estimate.

Lemma 5.6 (Integral characterization of Holder continuous functions).
Letn < p <n+2. Then L2*(Q2) = C*(Q) and

C_1|U|C'O‘(Q) < |U|L27M(Q) < 02|u|CQ(Q)
with a = (u—mn)/2 and C = C(n, u).

Interpretation: C%(Q) C £L2#(Q) and each u € L*#(Q) has a presen-

tative @ in C*(Q).

Proof. The second inequality: Let v € C*(Q), v € Q and 0 < p <
diam(Q2) and y € QN B(z, p). We have

][ u(y) —u(z)dz
B(z,p)NQ
<) - ul)d:
B(z,p)NQ
< ’U\Ca(Q)][ ly —2|*dz
B(z,p)NQ

Clu| e
< | |i () / |y N Z‘a dz — *
p B(z,p)NQ2

|U(y) - u:c,pl =
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since |2 N B(z, p)|C > p™ . Moreover, since y — x € B(0, p) it follows
that B(y —x, p)NQ C B(0,2p) N and by the change of variables that

C «
< Mi (ﬂ)/ 27 d
P B(0,2p)NQ

Clulga
< |ulc (Q)/ 2 d
P* JBo2) (5.34)

< Clulca (e /2prn—1+a "
p" 0
< Clulga(o)p®™
Hence
1

7 LW Up.pl* dy < ClulEaiyp®™ | Bz, p) N Q|
x,p)N
200 — p+n
2 X
< Clulgegyp 0

and thus the second inequality follows.

The proof of the first inequality is in three steps: construction of the
representative @, showing that @ = u a.e., and showing that @ € C*(Q)
Stepl(construction of the representative @): Let x € Q,0 < R <
diam(Q) and R; = 27'R, i =0,1,.... Then by Lemma 5.5

—n/2 pp/2
’uzij - Uz,Rj+1| <C Jrl/ Rg/ |u|£“(9)

— (9i(n—p)/24+n/2 p(p—n)/2 |u|£2 w@y-

Thus for 0 < j <1

}ux,R‘j — Uz,Rj4q + Uz, Rjyq — - + Uz, R; 1 — Uz,R;
i—1

< CRW—m)/2 ‘u’m”(ﬂ) Z ok(n—p)/24n/2
k=j

— ORIy 1y )220 ”21 k(n—p)/2+n/2
k=0
1 — 9i—i)(n—p)/24n/2
1 — on—w)/2+n/2

= ORIy 1y, g 27010/ 24012

-n)/2
= CRY ™|l o ).
where C' = C(n, u). We have derived the estimate
-n)/2
< CRE‘” / ’u|L21N(Q)7 (5.35)

‘/U’IE,RJ' - uCE,Ri
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It follows that ug R, ¢ = 0,1,2,... is a Cauchy sequence. Hence we
may define

i(z) = lim ug g, x €S
1—00
It also holds that the limit does not depend on the particular choice
of R. To see this, take 0 < r < R and let r; =27%, i =0,1,.... Then

again by Lemma 5.5

—n/2 2
<cr " RY |ul g2 (0

Ri n/2 —n)/2
=¢ <_) LA e

T

|ux,Ri - u:):,ri

R n/2 .
=¢ <7> Bl gy = 0

as i — 0o, since > n. Thus ugr(x) = 4.(z). Moreover, by (5.35)
setting 7 = 0 and letting ¢+ — oo

so that 4(x) = limp_,o Uy g.
Step2 (4 = u a.e): By Lebesgue’s theorem

a(xr) = ll:iig%) Us.R Leb u(z) a.e. in Q.

Step3 (@ € C°(Q)): 16.4.2013
Let z,y € Q, x # y and set R := |z — y|. By (5.36)
|i(x) — a(y)| < [W(z) — ver| + [t r — wy r| + [uyr — U(y)|
< CR(M?n)/2|u’£2’H(Q) + [ua,r — Uy,R-

Set G = QN B(x,2R)N B(y,2R). Observe that G C QN B(z,2R) and
G C QN B(y,2R)), and C|G| > R™ because () is smooth. Estimate
the second term on the RHS as

|u:t:7R - uy,R|

= ][ |Uus. r — Uy r|dz
G

QN B(x,2R)| 2 1/2
S | N (ZL', R)| (/ |ux,R . U(Z)F dZ)
|G| QNB(z,2R)

QN B(y,2R)|? 1/2
=+ ‘ (y7 )’ (/ ‘U(Z) . uy,R|2 dZ)
’G‘ QNB(y,2R)

< CR(“_H)/2|U‘E2»M(Q)’
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Combining the estimates, we have
() = aly)| < CRY™Plul a0
so that @ € C*(Q2) with o = (u —n)/2, and
’u|CQ(Q) < C|u|L21N(Q)‘ O

Calculation (5.34) gives us a useful estimate, that we state separately
as a lemma

Lemma 5.7. Let u € C*(2), x € Q. Then
[ o) el dy < Clufea gy
B(z,p)NQ

Without loss of generality, we may derive the Schauder estimates
assuming smoothness, by using smooth approximations, and passing
to limit at the end.

Lemma 5.8. Let u be a weak solution Au = 0 in B(0,2R). Then for

any 0 < p < R, it holds
>n/ u? dx
B(0,R)

/ w?dr < C (
B(0,p)
n+2
/ (u—u,)?dr < C’( ) / (u — ug)? dz,
B(0,p) B(0,R)

with C = C(n).

Do W

Proof. The first estimate: By the elliptic counterpart of the (ess)sup-
estimate (cf. Lemma 4.17, and ex 13 in set 3 ), we have for 0 < p < R/2

/ u?dr < Cp" sup u? < C <£> / u?dr.
B(0.,) B(0.) R’/ Jpo,R)

For R/2 < p < R the result immediately follows

/ u2dx§C'< 4 )n/ u? de.
B(0,p) \_R_/ B(0,R)

>C

The second estimate: The second follows from the first one by observing
that w = D;u is also a solution to the Laplace equation, and thus by
the first estimate

/ (Dyu)?dz < C (ﬁ)" / (Dsu)? d (5.37)
B(0,p) R/ Jpo,r)
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Summing over i, assuming 0 < p < R/2, and using Poincaré’s inequal-

1ty
9 Poinc. 9 9
/ (u—wu,)*de < Cp / | Du|” dx
B(0,p) B(0,p)

S(hﬁ(£>é/ |Dul* dx
R/ JB(o,r/2)

By Caccioppoli’s inequality (ex)

C
/ |Dul? dz < —3 (u —ug)*dx.
B(0,R/2) R B(0,R)

Combining the previous two estimates, we have

n+2
uw—u,)dr <C L / u—ug)?dr.
/ L ) (&), e

The case R/2 < p < R is again easier:

/ (u— up)2 dx
B(0,p)
S/ (u — up +ug — u,)* dx

B(0,p)
SC’/ uU—u 2dx+C'/ ][ up — u)tde de

B@m‘ z) B(0,9) B@m# 7 =) (5.38)

C/ (u —ug)*dx

B(0,R)

p n+2 / 9
<Cl = u— upr)”dx.

IN

t

Lemma 5.9. Let u be a solution to Au = f in B(0,2R), and let
w = Dju, f € C*(B(0,2R)). Then for0 < p <R
1 / 9
— |Dw — (Dw),|” dzx
pn-‘rQa B(0,p) p

C 2
< Rnioa /B |Dw — (Dw)g|" dz + C|f‘%’a(B(O,R))'
(O,R)

Proof. Decompose w = w; + wy, where

—Aw; =0 in B(0,R)
w; = w on 0B(0, R)
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and

wy =0 on 0B(0, R)

in the weak sense. Then use Lemma 5.8 for D;w; (this is also a solution
to Laplace eq) to have

9 p n+2 9
B(0,p) R B(0,R)

Summing over ¢

9 P n+2 9
[ u- ey par<c (8 [ (0w - (Duw?as
B(0,p) R B(0,R)

and further (change of radius as before in (5.38))

/ (Dw — (Dw),)* dx
B(0,p)

<C / o Dw (D)t /B o (Duy— (D)o

0,p)

n+2
<c(2) / (Dur ~ (Dw?de+C [ (Dus ~ (Duz)i) da
B(0,R)
p n+2 9 2
<o () / (Dw — (Dw)p)? dz + C (Dwy — (Dwy)g)* d
R B(0,R)
n+2
<C <£) / (Dw — (Dw)g)*dz + C | Dw,|? dz,
B(0,R) B(0,R)

where we wrote Dw; = D(w; + wy) — Dws etc.

By using ¢ = ws as a test function in [ Dwy- Do dr = — [ fDpdx
we get (recall zero bdr values)

/ Dus|? da = — / (f = fr)Dws da
B(0,R) B(0,R)
1

1
§—/ (f—fR)de—I——/ | Dw,|? da.
2 B(0,R) 2 B(0,R)
Thus

/ | Dws|? dx < C/ (f — fr)?dzx
B(0,R) B(0,R)

n+2o 2
< CR™*|flce(s0.m)

where we also used estimate similar to Lemma 5.7.



PDE 2 109

Combining the estimates

/ (Dw — (Dw),)? da
B(0,p)

<C(8)" [ (Dw— (Dwprfde+ CR\1 b
R B(0,R) 7

Then by Lemma 5.10

/ (Dw — (Dw),)? dx
B(0,p)

<o (L) (Dw — (Dw)g)? dx + R f|? 0
< I . R C*(B(0,R)) )
In the previous proof, we used the following iteration lemma for

G(r) = / (Dw — (Dw),)* dz
B(0,r)
where r € [0, R].
Lemma 5.10 (another iteration lemma). If
G(p) < A (}%)WG(R) +BRP, 0<p<R<R,
where 0 < 8 < vy, then there is C'= C(A,~, ) such that

P\’ 8

G(p) gc(ﬁ) (G(R) + BR®), 0<p<R<R,

Proof. Ex. 0
We also need a Caccioppoli type estimate.

Lemma 5.11. Let u be a solution to —Au = f in B(0,2R), f €
C*(B(0,2R)). Then there is C = C(n) such that

/ |D2u}2dx
B(0,R/2)
1
g(}(—/ e+ B 1oy + B ooy )
7 o Lo2(©) Ca(B(0,R))

Proof. Since u € W2?(B(0,2R)) by our earlier regulatity results, we

loc

may test with ¢ = D,;¢ with a smooth function ¢. Integrating by parts
/fDiqbda: = /Du -DD;¢dx

int by parts / DD;u - D¢ du.
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Thus in the weak sense w = D;u
—Aw = D;f = Di(f — fr).
Testing this with ¢ = n?w, where n € C5°(B(0,R)), 0<n <1, n=1
in B(0, R/2) and |Dn|* < C'//R?, we have (ex)

/ ]Dw]27)2 dr < C’/ wQ\Dm2 dx + C/ 772\]” — fR\zdx
B(0,R) B(0,R) B(0,R)
C

< — w? dx + CR"+2a|f|Ca(B(o,R))7
B(O,R)

where at the last step we also used Lemma 5.7. Further testing the weak
formulation of —Au = f by ¢ = n?u where n € C§°(B(0,3R/2)), 0 <
n <1, n=1in B(0,R) and |Dn|* < C/R?, we have

/ w? dr < / | Du|*n? da
B(O,R) B(0,3R/2)

SC’/ u2|Dn|2dI—|—C’R2/ n?| f|? da
B(0,3R/2) B(0,3R/2)

C n 2
< — / u*dx + CR"™ HfHLoo(B(O,3R/2)) ’
B(0,3R/2)

where we estimated for example fB(o 3R/2) En*uf dv < CR? fB(O 3R/2) n?| f|? da+

=/ B(0.3R/2) n?*u? dz. Combining the previous two estimates we have

/ ’D%’Q dx
B(0,R/2)
¢ / 2 9
< — u“dr + CR"||f||7~ +CR"+2a\f| o .
4 B03R/2) L>(B(0,3R/2)) C*(B(0,R))

O

Lemma 5.12. Let u be a solution to —Au = f in B(0,2R), and let
w = D, f € C*B(0,2R)). Then for 0 < p < R/2 there is C = C(n)
st

/ |Dw — (Dw),|* dz < p" > MzC
B(0,p)

where

]- 2 ]- 2 2
Mp = Ritia |[ul| oo (B0, R)) T 2o 1o (B0.)) T | floa(B0.80)):
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Proof. By Lemma 5.9
/ |Dw — (Dw),|* dx
B(0,p)

7 (6% 2
< Cpt? ( | Dw — (Dw)g|" dz + |f|2ca(B(0,R/2))>

Rn+2a /B(O,R/Z)

1
<C"+2°‘<—/ Duwl? da + |f|2a )
=~ 0p Rnt2a 0.5/ | | | fle (B(0,R))

Then by the Caccioppoli type estimate Lemma 5.11 we have

/ \Dw — (D), dz
B(0,p)

1
< Cf n+2a (_ / D 2 d 4 2 N )
= 0P R [0 mo) |Dw|” dz + | f|c (B(0,R))

1 1
<C n+2o (_/ 2d
> 0p <Rn+2a R4 B(O,R)u z

n 2
+ R HfHLoo(B(o,R))) + ‘f|2Ca(B(0,R))>‘

U

Theorem 5.13. Let u be a solution to —Au = f in B(0,2R) with
f e C*B(0,2R)). Then

2

‘D u‘Ca(B(O,R/4))

1 1
< C(W ull oo B0,y + R f 1 o B0,y + | flcaB0.8))-

Proof. What we have in Lemma 5.12 looks very much like the Cam-
panato seminorm. Indeed, this is exactly the idea of the proof. To
be more precise, by Lemma 5.6 it suffices to bound the Campanato
seminorm.

u (5 [ 1) = w,ar)”
U po, = sup — u(y) — uy, x) .
L2(BO.R/4)) 2€Q,0<p<diam(B(0,R/4)) P! Joy,(x) o

To this end, let x € B(0,R/4) and 0 < p < R/2 and observe that
similarly as before in (5.38)

2
/ | D*u(y) — (D*u) papnpo.r/e| do
B(z,p)NB(0,R/4)

< C’/ |D2u(y) — (Dzu)B(m,p)|2 dx.
B(z,p)
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Then by Lemma 5.12,
2
| D)~ (D agepfds
B(z,p)

1 1
n+2a 2 2 2
< Cp™* (W ul|7oe 0,y T R 1z (B0,R)) + |f’Ca(B(0,R))>‘

We combine the estimates, divide on both sides by p"™2® take
SUP,c0,0<p<diam(B(0,R/4)), ald power % to obtain the result. U

The previous theorem immediately implies Theorem 5.2.

By differentiating the Euler-Lagrange equation related to a mini-
mizer, using the Holder-continuity result, then Schauder estimates and
iterating using so called bootstrapping argument, Hilbert’s 19th prob-
lem was settled.

6. NOTES AND COMMENTS

I would like to thank Juha Kinnunen for providing his lecture notes
at my disposal when designing this course. Other material includes
"Elliptic & Parabolic Equations” (Wu, Yin and Wang, 2006, World
Scientific), ”Partial Differential Equations” (Evans, 1998, American
Mathematical Society), ” Elliptic Partial Differtential Equations of Sec-
ond Order” (Gilbarg, Trudinger, 1977, Springer), ”Second Order El-
liptic Equations and Elliptic Systems” (Chen, Wu, 1998, American
Mathematical Society), ” Direct Methods in the Calculus of Variations”
(Giusti, 2003, World Scientific), and ”Partial Differential Equations”
(DiBenedetto, Birkhauser, 2010).
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