Genres and Ontologies in Enterprise Architecture - A Short Introduction to GOBIAF

Miika Nurminen (minurmin@mit.jyu.fi)

Enterprise Architectures Course Seminar
15.5.2007
Outline

- Theory base
 - Enterprise Architectures
 - Metadata and Ontologies
 - Communication Genres

- GOBIA Framework
 - GOBIA Development Method
 - Business Process and Information Management Levels
 - Ontology Level
 - Architecture Level
Enterprise Architectures

- An enterprise architecture (EA) is the overall framework or blueprint of how the enterprise uses information technology to achieve its business objectives (van den Hoven, 2003) defining the business, information necessary to operate the business, and applications and technologies necessary to support business operations (cf. CIO Council, 1999).

- A way to map the holistic information needs of an organization, relate them to specific business functions, and document their interrelationships for software development, integration and sharing of data (Brancheau 1989).

- The main objective of the EA can be regarded to act as a bridge between the business and technical domains (Young, 2001) within organizations.

- Problems:
 - too pervasive; complicated (time-consuming) to use and maintain; lack of a holistic information presentation mechanism to present interconnections within and between cells in the grid; systems oriented; lack of business information support; inefficient domain analysis methods; digital information oriented

- There exists a need for a single model type and notation for modeling the semantics between entities in EA models.
Metadata and Ontologies

Metadata

- Data about data (Gilliland-Swetland: "perceives as the sum total of what one can say about any information object at any level of aggregation")
- An information object is, anything that can be addressed and manipulated by a human or a system as a discrete entity. In GOBIAF, the enterprise architecture descriptions are a form of explicit, external and centralized metadata
- RDF: flexible graph-based datamodel and XML-based serialization format for metadata. URIs are used as an addressing mechanism
- RDF descriptions are statements (triples) of form (resource,property,value)

Ontology

- Vocabulary/schema for metadata (Gruber:"explicit specification of conceptualization")
- Diverse forms: a vocabulary, taxonomy, thesaurus, object-oriented class hierarchy or logical theory can be regarded as an ontology
- **Knowledge base contains ontology populated with metadata.**
- RDFS (RDF Schema) and OWL (Web ontology language): RDF-based ontology languages. RDFS allows construction of class hierarchies and type constraints in properties, OWL adds advanced features (cardinality, metaclasses etc).
- Ontology development is hard (multiple "standards", information aquisition bottleneck)
- Provides shared, formal knowledge about the domain
"there is a Person identified by http://www.w3.org/People/EM/contact#me, whose name is Eric Miller, whose email address is em@w3.org, and whose title is Dr."

An RDF Graph Describing Eric Miller (source: RDF Primer)
Ontology example

A Vehicle Class Hierarchy (source: RDF Primer)
Communication Genres

- Genres can be regarded as domain specific concepts expressed in organizational communication (cf. ontologies)
 - … prototypical models for communication (Swales, 1990)
- Captures all information flows (Spinuzzi, 2001) including verbal communication, data in information systems, and paper as well as electronic documents
- Provides a way to evaluate the key internal operations in the success of a business process without technology constraints in mind. A “lightweight” way to model business processes
- The genre-based analysis method (Tyrväinen, Kilpeläinen and Järvenpää, 2005) is used here as a domain analysis method to model the business process from information flow viewpoint
- Genres complement and ease the development of ontologies, since genres highlight information concepts that are modeled in domain ontologies.
Genre example

Diagonal matrix of producers & users of information modeled in PROMI project (Process & information flow modeling in Faculty of Information Technology), 2001.
Instead of placing information (architecture) on the hard side with applications and technologies as in Business Application Architecture (Pienimäki, 2005), it should be placed on the soft side with business architecture. This kind of architecture taxonomy implies business information (requirements) that are not necessarily expressed in explicit formats, i.e. in digital documents.

Applications and technologies are supportive elements of business operations.
IDEA: To express an in-depth state of the most important aspects of key business processes and related information, as well as their management, so that the extensive use of the business information can be assured in the organizational scale. The direction of emphasis is, first, on business, second, on information necessary to operate the business, and, third, on applications and technologies necessary to support business operations.
GOBIA Development Method

- Phases
 - Genre analysis
 - Information needs interviews
 - Ontology development
 - BIA development

- In practice, the process is iterative and phases overlap.
A domain-specific concept that is used here to instruct the receiver to act in the way the producer wants through a communicative action. However, the concept itself includes information that is not communicated because, first, it is tacit for both PUI entities, and, second, it is not necessary in terms of successful outcome of the action. Even though, the concept is, in reality, related to the total organizational information ontology that is of especial interest in our case.
Business Process Model Level

Sub-process 1 (SP 1): Preparation & specification
Sub-process 2 (SP 2): Production
Sub-process 3 (SP 3): Reporting

Diagonal matrix contrived in genre sessions is elaborated to a process model (e.g. a sequence diagram) where genre instances represent activities related to specific sequence of events.

Process models are semiformal. Executable models (e.g. BPEL) are not required.
Information Management Level

The analysis of the present and target state of information management principles through semistructured and open information need interviews

- Business personnel (information users)
 - Definition of the essential information to be integrated
 - What (more) should be (digitally) managed?
 - How information is wanted to be used?

- IT personnel (ICT maintenance)
 - Identifies applications, information systems, databases (schemas), and technologies etc. underneath
 - Interoperability and/or integration needs

- Based on genre analysis, but deepens the results to a technical direction
IDEA: To link a specific timestamp of a business process (genre instance) to information describing it as well as to explicate its relation to the total organizational information resource. Thus, genre instances describe progression of a business process in Enterprise ontology. In Information ontology, a fundamental "constraints" of information (flows) as well as competencies different interest groups may have over the informational entities are presented. Domain ontology describes a relationship between information content of a genre instance and the other information entities within organization in a conceptual level.
Data Layers in Ontology Level

<table>
<thead>
<tr>
<th>Knowledge Base</th>
<th>Enterprise ontology</th>
<th>Information ontology</th>
<th>Domain Ontology (process industry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontology layer</td>
<td>Metamodel for process models</td>
<td>Metamodel for information categories in organizational communication</td>
<td>Informational concepts for a given domain</td>
</tr>
<tr>
<td>(classes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metadata layer</td>
<td>Process model specifications</td>
<td>Lists of genre instances, creation and utilization contexts</td>
<td>Machine configurations and field (property) information used in measurements</td>
</tr>
<tr>
<td>(instances)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource layer (data)</td>
<td>Execution logs from a workflow management system</td>
<td>Document contents and database transactions related to a genre instance</td>
<td>Measurement and machine configuration data</td>
</tr>
</tbody>
</table>

Domain Ontology
- Metamodel for information categories in organizational communication
- Informational concepts for a given domain
- Machine configurations and field (property) information used in measurements
- Measurement and machine configuration data
Architecture Level

<table>
<thead>
<tr>
<th>Views/ dimensions</th>
<th>Levels</th>
<th>ENTERPRISE ARCHITECTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Business Information Architecture</td>
</tr>
<tr>
<td>Business Architecture</td>
<td>- Aggregated business requirements from corporate and enterprise perspectives</td>
<td>- A list of aggregated business assets in which the enterprise is interested</td>
</tr>
<tr>
<td></td>
<td>- Requirements for strategic, enterprise-level ICT usage</td>
<td>- Strategic information management decisions</td>
</tr>
<tr>
<td></td>
<td>- List of main business processes, functions, and actions that the enterprise performs</td>
<td>- Common information structures</td>
</tr>
<tr>
<td>Information Architecture</td>
<td>- The relation (information ontology) between business processes (enterprise ontology) and significant informational assets (domain ontology) presented in ontology level descriptions (semantic model based on genre and information management level analysis)</td>
<td>- Application map per each application domain</td>
</tr>
<tr>
<td>Application Architecture</td>
<td>- Applications and their relations (interoperability etc. requirements) based on overlaps in the semantic model</td>
<td>- Domain-level technology decisions</td>
</tr>
<tr>
<td>Technology Architecture</td>
<td>- A model of the logical representation of the business assets about which it records information (data storages)</td>
<td>- Integration architecture</td>
</tr>
<tr>
<td></td>
<td>- A model may include aspects that should be digitally managed (tacit knowledge)</td>
<td>- Product line architecture</td>
</tr>
<tr>
<td>Enterprise level</td>
<td>- A model of the actual business processes that the enterprise performs, independent of any system or implementation considerations and organizational constraints.</td>
<td>- Application architecture principles and patterns</td>
</tr>
<tr>
<td></td>
<td>- Presented as sequential diagrams that are derived from genre analysis</td>
<td>- Integration architecture</td>
</tr>
<tr>
<td></td>
<td>- Targeted business requirements (needs) from BU perspective</td>
<td>- Technology & application architecture</td>
</tr>
<tr>
<td>Domain level</td>
<td>- A model of the logical state of business operations and their relation to the operational requirements (development proposals in genre analysis)</td>
<td>- Product line architecture</td>
</tr>
<tr>
<td></td>
<td>- Information need interviews</td>
<td>- Technology alternatives and choices</td>
</tr>
<tr>
<td>Information System/operative level</td>
<td>- A model of the logical state of business operations and their relation to the operational requirements (development proposals in genre analysis)</td>
<td>- A model of the logical systems implementation supporting the business processes</td>
</tr>
<tr>
<td></td>
<td>- Information need interviews</td>
<td></td>
</tr>
</tbody>
</table>
Abstractions of Architectural Dimensions

<table>
<thead>
<tr>
<th>ENTERPRISE ARCHITECTURE</th>
<th>ENTERPRISE ARCHITECTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Information Architecture</td>
<td>Systems Architecture</td>
</tr>
<tr>
<td>Enterprise level</td>
<td>Enterprise level</td>
</tr>
<tr>
<td>Domain level</td>
<td>Domain level</td>
</tr>
<tr>
<td>Information System/operative level</td>
<td>Information System/operative level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENTERPRISE ARCHITECTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Information Architecture</td>
</tr>
<tr>
<td>Enterprise level</td>
</tr>
<tr>
<td>Domain level</td>
</tr>
<tr>
<td>Information System/operative level</td>
</tr>
</tbody>
</table>
GOBIAF As a Knowledge Cube

Aggregation/Architecture Views
(queries, transformations and annotations applied to knowledge base)

Knowledge Base
(abstraction, references to operational systems)

Decision Scope
(constraints and composition)

Ontology
Metadata
Data
System
Domain
Enterprise

BIA / Systems Architecture
Business/Information/Application/Technology Architecture
EA