Computationally Complex Multiobjective Problems: Experiences on Industrial Optimization

Vesa Ojalehto

Research Group in Industrial Optimization Department of Mathematical Information Technology University of Jyväskylä

Postgraduate Seminar in Information Technology 26.11.2011

Outline

- Background
- Experiences on Industrial Optimization
- IND-NIMBUS Optimization Framework
- Future Directions

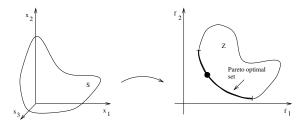
Background

- I've been involved with industrial optimization since 1999
- MSc, Information Technology, University of Jyväskylä, 2008
- Currently as Researcher
 - Strategic Development of Multiobjective Optimization:
 Theory and Software, Academy of Finland
 - 2009–2012

PhD Thesis

- Optimization framework for computationally complex multiobjective problems
 - Collection of papers
- Supervisor: prof. Kaisa Miettinen
- Area: Multiobjective optimization
- One published article
 - Laukkanen, T.; Tveit, T.-M.; Ojalehto, V.; Miettinen, K. & Fogelholm, C.-J. An interactive multi-objective approach to heat exchanger network synthesis Computers & Chemical Engineering, 2010, 34, 943-952
- Four articles under progress
 - GAMS-NIMBUS Tool for Multiobjective Optimization in the GAMS Modeling Environment Ojalehto, V. et al
 - Solving a Computationally Expensive Multiobjective Wastewater Treatment Plant Desing and Operation Problem with a Novel PAINT Method and the Interactive Method NIMBUS Hartikainen, M.; Ojalehto, V.
- Two articles under consideration
 - Testing framework for multi/single objective optimization

Multiobjective Optimization


In multiobjective Optimization we consider a problem of the form

$$\begin{array}{ll} \text{minimize} & \{f_1(x),...,f_k(x)\} \\ & Ax \leq b \\ & g_1(\mathbf{x}) \leq 0 \\ & \text{subject to} & \vdots \\ & g_m(\mathbf{x}) \leq 0 \\ & x^l \leq \mathbf{x} \leq x^u \end{array} \right\} \quad \text{linear constraints} \quad \begin{cases} \mathbf{x} \in S. \\ & \text{subject to} \\ & \text{subject to} \end{cases}$$

 (Objective functions f can be either minimized or maximized)

Pareto Optimality

- We consider several conflicting objective functions
- Concept of optimality Pareto optimality

 Other concepts: ideal vector (z*), nadir vector (z^{nad}), objective vector (z**).

NIMBUS method

- Classification is the central idea of the NIMBUS method
- The decision maker is asked to divide the functions into up to five different classes:
 - < objective value should be improved,
 - objective value should be improved till some aspiration level,
 - objective value is satisfactory at the moment,
 - objective value is allowed to impair up till some bound,
 - objective value is allowed to change freely.
- Upto four single objective subproblems

Experiences on Industrial Optimization

- 1997 2001: DECISION, EU
 - Heterogeneous optimization oriented integration platform
 - Participants
 - End User: Dassault Aviation, Messet, Nokka Tume
 - Software Developer: NAG
 - Researchers: Inria, University of Jyväskylä, VTT
 - Main results
 - DEEP Platform IRIS Explorer with PBEXPE
 - Optimal Design of the Structure of Grapple Loader
- 2001 2002: Methodological and Implementational Challenges in Nonlinear Multiobjective Optimization and Decision Support, Academy of Finland
 - WWW-NIMBUS Development

Experiences on Industrial Optimization with TEKES, I

- 2002 2005: Multiobjective Optimization in Product Development
 - The NIMBUS method for industry, that is, for non-academic use
 - Participants
 - End User: Metso Paper, Jyväskylän Teknologiakeskus Oy,(Liqum Oy,)
 - Software Developer: Numerola Oy
 - Researchers: University of Jyväskylä, VTT Prosessit
 - Results
 - IND-NIMBUS Software for multiobjective optimization
 - NIMBalas multiobjective optimization for BALAS Process Simulation Software
 - MOP Multiobjective process line optimization for paper making

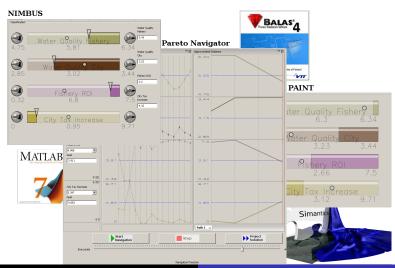
Experiences on Industrial Optimization with TEKES, II

- 2005–2008: Multiobjective Optimization and Multidisciplinary Decision Support
 - Developing a new intelligent decision support system and apply it to new application areas
 - Participants
 - End User: Andritz Oy, Foster Wheeler Energia Oy, Kuopio University Hospital, Kvaerner Power Oy, M-real Oyj, Patria Aerostructures Oy, Varian Medical Systems Finland Oy, Wärtsilä Finland Ov
 - Researchers: University of Jyväskylä, Helsinki School of Economics, Helsinki University of Technology, Tampere University of Technology, University of Kuopio
 - Results:
 - Pareto Navigator Interactive approximation method for nonlinear multiobjective optimization
 - SynHEAT Multiobjective optimization of heat exchanger network synthesis

Research Projects
Obstacles encountered
IND-NIMBUS Software framework
Challenges

And Others

- MCDM Cases
 - Continuous Casting of Steel, Timo Männikkö
 - Heuristic Solution Methods for Housing Location Models, Michael P. Johnson
 - Multiobjective Optimization of an Ultrasonic Transducer using NIMBUS, Paavo Nieminen et al.
 - Optimization of Internal Combustion Engine, Timo Aittokoski
 - Simulated moving bed processes, Jussi Hakanen
 - Engine control system optimization, Markus Inkeroinen et al.
 - Wastewater Treatment, Kristian Sahlstedt
 - Multi-criteria model for intensity modeled radiotherapy planning, Henri Ruotsalainen
 - And more
- Coworkers
 Tommi Ronkainen, Tommi Myöhänen, Jari Huikari, Ville Tirronen, Timo Tarvainen, Antoine Le Hyaric,
 Juha-Pekka Koskinen, Aki Järvinen, Kirsi Holopainen, Heikki Maaranen, Tero Oravasaari, and many more


Major obstacles encountered

- Research project buy-in
 - Management engineer
- Black-box optimization
 - Are current methods sufficiently robust?
 - Wider set of methods
 - Testing
- Computationally demanding problems
 - Parallel computing
 - Methods based on Pareto Frontier approximation
- Problem formulation
 - Different formulation for different methods
 - Not difficult, but time consuming
- Knowledge domain differences

Proposed Solution

- Software framework for multiobjective optimization: IND-NIMBUS
- Different multiobjective methods
 - Interactive methods: NIMBUS, Nautilus
 - Approximation Methods: Pareto Navigator, PAINT
 - EMO Methods: Hybrid NSGAII, UPS-EMO
- General interface for problem formulation
 - Programming languages
 - Simulator: Matlab, Balas
 - Problem Modelling: GAMS, CPLEX
 - Simulator Platforms: Simantics, CapeOpen

IND-NIMBUS Software framework

Future Challenges

- Closed source NIMBUS development
 - Set restrictions on usable tool set
 - Framework future?
- Black-box problem pre-analysis
 - DM Agent with an utility function?
- Platform implementation
 - Resources?
 - Motivation?

Research Projects
Obstacles encountered
IND-NIMBUS Software framework
Challenges

Thank You!

vesa.ojalehto@jyu.fi

```
http://www.mit.jyu.fi/optgroup/
http://ind-nimbus.it.jyu.fi/
```

References

Miettinen, K., Mäkelä, M.M., Synchronous Approach in Interactive Multiobjective Optimization, European Journal of Operational Research. 170(3), 909-922. 2006.

Eskelinen, P., Miettinen, K., Klamroth, K., Hakanen, J., *Pareto Navigator for Interactive Nonlinear Multiobjective Optimization*, OR Spectrum, 23, 211-227, 2010.

Laukkanen, T.; Tveit, T.-M.; Ojalehto, V.; Miettinen, K. & Fogelholm, C.-J. *An interactive multi-objective approach to heat exchanger network synthesis* Computers & Chemical Engineering, 2010, 34, 943-952

Hartikainen, M., Miettinen, K., Wiecek, M.M., Constructing a Pareto Front Approximation for Decision Making, Mathematical Methods of Operations Reserach, 73(2), 209-234, 2011.