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Thesis

•Working title: Approximating the Pareto Front with Meta Models

• Supervisors: Kaisa Miettinen and Jussi Hakanen

•Monograph, 2012

• Contribution: To approximate the Pareto Front so that the decision maker
can “move” on it.

• Relation to this presentation: The approach will be modified to approxi-
mate holes on the front.
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Global Optimization (1/3)

• A considered Global Optimization Problem (GOP) is

min
x∈S

f (x),

where

− S ⊂ Rn is compact,
− f is a computationally expensive continuous function from S into R.

• In other words, the problem is to find out x∗ ∈ S so that

f (x∗) ≤ f (x) for all x ∈ S
with a small number of function evaluations.
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Global Optimization (2/3)

Solving techniques for computationally expensive objective functions, based
on a given data

D = {(x1, y1), . . . , (xi, yi = f (xi)), . . . , (xk, yk)} ⊂ S × R,

• Support vector regression [Vapnik, 1998]

• A radial basis function method [Gutmann, 2001]

• The EGO algorithm [Jones et al., 1998]
However, each of the above methods requires a global optimization sub prob-
lem to be solved.
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Global Optimization (3/3)

The goal and motivation of this study:

• Let us assume that we have an algorithm, which produce a solution can-
didate xc to the GOP.

• If xc is close to a vector xj for which the corresponding yj is far from the
so-far best known minimum of f , that is,

y∗ = min
i=1,...,k

yi,

then f (xc) is close to yj, because f has been assumed to be continuous.

•We can save computation time by rejecting the evaluation of f (xc).

•We want a computationally efficient approach to decide whether to eval-
uate f (xc) or not.
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Lipschitzian (1/3)

Function f is said to be Lipschitzian, if there exists a Lipschitz constant
l > 0 so that

|f (x)− f (y)| ≤ l‖x− y‖ for all x, y ∈ S,
where ‖ · ‖ is a norm on Rn (for example Euclidean norm).

• Function f from R into R, f (x) = 2x, is Lipschitzian.

|f (x)− f (y)| = |2x− 2y| ≤ 2|x− y|.

• A differentiable function f from Rn into R is Lipschitzian, if there exists
l > 0 so that ‖∇f (z)‖ ≤ l for all z ∈ Rn.

|f (x)− f (y)| ≤ sup
z∈Rn

‖∇f (z)‖‖x− y‖ ≤ l‖x− y‖.
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Lipschitzian (2/3)

Global optimization solving algorithms based on the Lipschitzian property

• The DIRECT algorithm [Jones et al., 1993]

• Partition methods [Pintér, 1996]

− Lower and upper approximations based on l and D

fl(x) = max
i=1,...,k

(
yi − l‖x− xi‖

)
,

fu(x) = min
i=1,...,k

(
yi + l‖x− xi‖

)
.

− However, the Lipschitz constant l must be known or approximated.
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Lipschitzian (3/3)
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Radial Basis Functions (1/3)

A basic Radial Basis Function [Buhmann, 2003] (RBF) g from S into R,
based on D, is

g(x) =

k∑
i=1

λiφ(‖x− xi‖),

where

• coefficients λi are solution of a system of linear equationsφ(‖x1 − x1‖) · · · φ(‖x1 − xk‖)
... . . . ...

φ(‖xk − x1‖) · · · φ(‖xk − xk‖)


λ1

...
λk

 =

y1

...
yk

 ,
• function φ from R into R is a given basis function.
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Radial Basis Functions (2/3)

The given basis function can be, for example,

• a polyharmonic spline: φ(r) = rd, d = 1, 3, 5, . . .

• thin plate spline: φ(r) = rd ln r, d = 2, 4, 6, . . .

• multiquadric: φ(r) =
√
r2 + ε2, ε > 0

• Gaussian: φ(r) = e−εr
2
, ε > 0

We consider an RBF with a polyharmonic spline of third degree (d = 3),
because it is smooth and Lipschitzian on S. Let such an RBF be denoted by
fRBF and let the Lipschitz constant be lRBF .

•We have an approximation lRBF for l.

•We have lower and upper approximations for f .
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Radial Basis Functions (3/3)

•Michalewicz function: f (x) = −
∑2
i=1 sin(xi)

(
sin

(
ix2
i
π

))20

• fRBF with 50 Hammersley points [Kalagnanam and Diwekar, 1997]
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The Approach (1/3)

By using the Lipschitzian property (Partition methods), lRBF and D, we
can separate S into two regions:

• The most promising region A1 is a region where x∗ of the GOP may exists.

− A1 = {x ∈ S : fl(x) ≤ y∗}
• The region A−1, which is out of interest, is a region where x∗ does not
exists.

− A−1 = {x ∈ S : fl(x) > y∗}
In this way, we

• can reject the costly evaluation of f (xc), in the case that xc ∈ A−1,

• and try to focus on evaluations on A1.
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The Approach (2/3)
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The Approach (3/3)

However,

• the approach does not produce solution candidates

• it only approximates whether to evaluate or not.

This is based on how well fRBF approximates f .

• It is possible that fRBF fails to approximate f , that is, lRBF < l caused
by the lack of given information of f in D.
• In this case, the most promising region A1 may loose the track to the true
minimum of the GOP.
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Numerical Examples (1/2)

Test functions:

• Rosenbrock:
f (x) = 100(x2

1 − x2)
2 + (x1 − 1)2

•Michalewicz:

f (x) = −
2∑
i=1

sin(xi)

(
sin

(
ix2
i

π

))20

• Ackley:

f (x) = 20 + e− 20e
−
√

1
5

∑2
i=1 x

2
i − e−

1
2

∑2
i=1 cos(2πxi)

Postgraduate Seminar
16

8.3.2009
Jyväskylä

Tomi Haanpää



  

Numerical Examples (2/2)
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Conclusion

• A computationally efficient approach has been constructed to approximate
the most promising region where the true minimum of the GOP may
exists.

− The approach is based on lower and upper approximations and a re-
quired approximation for the Lipschitz constant is derived from a radial
basis function.

• The approach is able to decide whether to evaluate the computationally
expensive objective function or not.

− One can save computation time by rejecting the function evaluation for
which an approximated value is not going to be smaller than the known
minimum value of GOP.
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Thank you!
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