Multiobjective Optimization Applied to Industrial Plant Design

Sauli Ruuska

Postgraduate Seminar in Information Technology May 28, 2009

(ロ)、(型)、(E)、(E)、 E) の(の)

Outline

Motivation

Industrial plant design

Background

Multiobjective optimization Bilevel optimization Multiobjective bilevel optimization

Industrial plant design problem

Problem formulation Future challenges

Industrial Plant Design

Simultaneous design of

Production system structure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Process control system

Industrial Plant Design

Simultaneous design of

- Production system structure
- Process control system
- Potential benefits
 - Better controllability
 - Lowered capital cost
 - Improved production efficiency

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Industrial Plant Design

Simultaneous design of

- Production system structure
- Process control system
- Potential benefits
 - Better controllability
 - Lowered capital cost
 - Improved production efficiency
- Difficulties involved
 - Computational complexity
 - Limited modeling accuracy
 - Uncertainty about future events

Multiobjective Optimization

General multiobjective optimization problem:

min
$$F(x) = [f_1(x), \dots, f_k(x)]^T$$

subject to $x \in A$,

where $F: A \rightarrow \mathbb{R}^k$ is the objective function

Multiobjective Optimization

General multiobjective optimization problem:

min
$$F(x) = [f_1(x), \dots, f_k(x)]^{\top}$$

subject to $x \in A$,

where $F: A \rightarrow \mathbb{R}^k$ is the objective function

Solution x is called Pareto optimal, if

$$end f_i(x') < f_j(x) \land f_i(x) \leq f_i(x) \forall i = 1, \dots, k$$

Bilevel Optimization

General bilevel optimization problem:

$$\min_{x} \quad f_{U}(x, y^{*})$$
subject to $f_{L}(x, y^{*}) = \min_{y} f_{L}(x, y),$
 $x \in A, \quad y, y^{*} \in B$

Functions f_U: A × B → ℝ and f_L: A × B → ℝ are the objective functions of the upper-level and lower-level problems, respectively

Bilevel Optimization

General bilevel optimization problem:

$$\begin{array}{ll} \min_{x} & f_{U}(x,y^{*})\\ \text{subject to} & f_{L}(x,y^{*}) = \min_{y} f_{L}(x,y),\\ & x \in A, \quad y, \ y^{*} \in B \end{array}$$

- Functions f_U: A × B → ℝ and f_L: A × B → ℝ are the objective functions of the upper-level and lower-level problems, respectively
- Lower-level feasible set B may depend on x, i.e. B = B(x) ∀ x ∈ A

Multiobjective Bilevel Optimization

General multiobjective bilevel optimization problem:

$$\min_{x} F_{U}(x, y^{*})$$
subject to
$$F_{L}(x, y^{*}) = \min_{y} F_{L}(x, y),$$

$$x \in A, \quad y, y^{*} \in B$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Multiobjective Bilevel Optimization

General multiobjective bilevel optimization problem:

$$\min_{x} \quad F_{U}(x, y^{*})$$
subject to
$$F_{L}(x, y^{*}) = \min_{y} F_{L}(x, y),$$

$$x \in A, \quad y, y^{*} \in B$$

- Solutions x ∈ A to the upper-level problem can be compared based on
 - $F_U(x, y^*)$, where y^* is the most preferred by decision maker
 - $F_U(x, P_y)$, where P_y is the Pareto set of lower-level problem

Bilevel design optimization problem

$$\min_{d} F_{U}(w, x, d, u^{*})$$
subject to
$$F_{L}(w, x, d, u^{*}) = \min_{u} F_{L}(w, x, d, u),$$

$$d \in D, \quad u, u^{*} \in U$$

Bilevel design optimization problem

$$\min_{d} F_{U}(w, x, d, u^{*})$$
subject to
$$F_{L}(w, x, d, u^{*}) = \min_{u} F_{L}(w, x, d, u),$$

$$d \in D, \quad u, u^{*} \in U$$

Multiobjective optimization problem at both levels

- Decomposition of cost function
- Trade-off between risk and expectation

Bilevel design optimization problem

$$\min_{d} F_{U}(w, x, d, u^{*})$$
subject to
$$F_{L}(w, x, d, u^{*}) = \min_{u} F_{L}(w, x, d, u),$$

$$d \in D, \quad u, u^{*} \in U$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Multiobjective optimization problem at both levels
 - Decomposition of cost function
 - Trade-off between risk and expectation
- Uncertainties modeled by scenarios w

Bilevel design optimization problem

$$\min_{d} F_{U}(w, x, d, u^{*})$$
subject to
$$F_{L}(w, x, d, u^{*}) = \min_{u} F_{L}(w, x, d, u),$$

$$d \in D, \quad u, u^{*} \in U$$

- Multiobjective optimization problem at both levels
 - Decomposition of cost function
 - Trade-off between risk and expectation
- Uncertainties modeled by scenarios w
- State variable x governed by differential equation

Future Challenges

- Interaction with decision maker
 - Informative representation of the problem
 - Generalization of elicited preferences
- Computational complexity
 - Limiting the number of simulator calls
 - Avoiding wasted effort in lower-level problem