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A Multiobjective Optimization Problem

A Multiobjective optimization problem (MOP)

Objective functions

minimize ( f1(x), . . . , fk(x) )

so that x ∈ S

Decision variable
Decision space
The set f (S), where f (x) = (f1(x), . . . , fk(x)) for all x ∈ S, is called the
outcome space.
A vector z ∈ f (S) is called an outcome.
An outcome z1 is said to dominate another outcome z2 if z1

i ≤ z2
i for all

i = 1, . . . , k and z1
j ≤ z2

j for some j = 1, . . . , k.
A decision variable x ∈ S is called a Pareto optimal (PO) solution if there
does not exist an outcome z ∈ f (S) that dominates f (x) and the outcome
f (x) given by a PO solution x is called a PO outcome.
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A Computationally Expensive MOP

A Computationally Expensive MOP

Calculation of objective functions is computationally expensive.

Calculating PO solutions is time consuming.
The computational expense for getting a ”good representation” of PO
solutions is unacceptable.
Interactive methods fail because the decision maker (DM) gets anxious
while waiting for new solutions to be computed according to his/her
preferences.

Our approach:

1 Construct an approximation of the Pareto front (PF) based on a small set
of PO outcomes.

2 Use interactive multiobjective optimization (MO) methods (see e.g.,
[Miettinen, 1999]) for finding the preferred outcome on the approximation.

3 Find the PO solution that is closest to the preferred point by means of an
achievement scalarizing function [Wierzbicki, 1986].
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Inherent Nondominance

A Pareto front approximation⇒ inherent nondominance

Definition

A set A ⊂ Rk is called inherently nondominated (IND) if there does not exist
z1, z2 ∈ A so that z1 dominates z2. An IND set A is called an IND PF approximation
based on P, if P ⊂ Rk is a finite set of PO outcomes and P ⊂ A.

An IND PF approximation

can be searched with interactive MO methods for a preferred
solution.

See [Hartikainen et al., 2010]

avoids misleading the DM in what is attainable and what not.

Also the (actual) PF is by definition an IND PF approximation based on
any set of PO outcomes P.
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Constructing IND Complexes

Constructing Inherently Nondominated Complexes: Basic
Definitions

Polytope

Vertices

Faces

A collection of polytopes is a complex if

1 every face of a polytope in the collection is also in the collection and
2 an intersection of two polytopes in the collection is a face of each of them.

A complex D is a Delaunay triangulation of a finite set P ⊂ Rk if
∪K∈DK = conv(P) and the complex only contains ”polytopes with
neighbouring vertices” (see [Edelsbrunner, 1987]).
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Constructing IND Complexes

Constructing an Inherently Nondominated Complex

A complex K is said to be IND if the set ∪K∈KK is IND.

A polytope K1 is said to dominate another polytope K2 if there exists
s1 ∈ K1 and s2 ∈ K2 so that s1 dominates s2.

Theorem: A complex K is IND if and only if there does not exist
K1,K2 ∈ K so that K1 dominates K2.

We aim to construct a complex that is an IND PF approximation.

The aim is thus to construct such a complex K that {p} ∈ K for all p ∈ P
and there does not exist K1,K2 ∈ K so that K1 dominates K2.

With minor extra conventions, this can be seen as a shape reconstruction
problem as defined in [Edelsbrunner, 1998].
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Constructing IND Complexes

Constructing an Inherently Nondominated Complex
(continued)

Theorem: A polytope K1 dominates another polytope K2 if and only if
either

1 the optimal value in optimization problem

min max
i=1,...,k

(s1
i − s2

i )

s.t. s1 ∈ K1, s2 ∈ K2
(1)

is less than 0 or
2 optimal value in problem (1) is 0 and the optimal value in optimization

problem

min
k∑

i=1

(s1
i − s2

i )

s.t. s1 ∈ K1, s2 ∈ K2

s1
i ≤ s2

i for all i = 1, . . . , k.

(2)

is less than zero.
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Constructing an IND PF Approximation

Constructing an IND PF Approximation

So we have

a way to compute a finite set of PO solutions to computationally expensive
MOP (a suitable a posteriori method),
a way to construct all the polytopes given by neighboring vertices
(Delaunay triangulation of the PO outcomes) and
a way to find out all the dominations between polytopes (by solving
problems (1) and (2)).

We want to remove polytopes from the Delaunay triangulation so that
there are no polytopes in the resulting collection of polytopes (which can
be shown to be a complex) that dominate each other.

In a paper that we aim to submit ”any day now” we propose a set of rules
for doing the above.
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Properties of the Constructed IND PF Approximation

Properties of the Constructed IND PF Approximation

The constructed approximation K is a complex.

The singleton {p} is in the approximation for all p ∈ P.

The constructed approximation is maximal in a way that for all
K ∈ D \ K the collection of polytopes K ∪ {K} is not IND.
Some error estimates for the approximation can be given: For a given
point s in ∪K∈KK we can estimate d(s) ∈ Rk so that

1 there exists an outcome z ∈ f (S) that is at least as good as s + d(s) in all
objectives and

2 there does not exist an outcome z ∈ f (S) that dominates s− d(s).

A preferred point on the approximation can be searched with interactive
multiobjective optimization methods, because the approximation is IND
and the approximation can be parametrized.
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Further Research

Further Research

A Delaunay triangulation of m points in k dimensions contains at most
O(mdk/2e) polytopes. This means that in order to find out all the
dominations between polytopes, one may have to solve O(mk)
optimization problems as described above. For this reason the first
research question is to reduce the computational effort.

The next step is to develop better methods for finding the preferred point
on the approximation.

We have already (in a proceedings paper that has been submitted to a
conference) applied this approach combined with the NIMBUS method
to solving the heat exchanger network synthesis.

Any further applications are welcome. We are ready to try our approach
with real world problems.
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Thank You!

Thank You!

For further details or if you have ideas please contact
Markus Hartikainen (markus.e.hartikainen@jyu.fi)
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