TIEJ601, Postgraduate Seminar in Information Technology

New Mutation Operator for Multiobjective Optimization with Differential Evolution

by Karthik Sindhya Doctoral Student Industrial Optimization Group

http://users.jyu.fi/~kasindhy/Welcome.html

08-03-2010

Overview

Status of my PhD * Thesis in a nutshell Background Polynomial mutation operator * Tests Conclusion and future work

 Guaranteed Convergence and Distribution in Evolutionary Multiobjective Optimization via Achievement Scalarizing Function.

 Guaranteed Convergence and Distribution in Evolutionary Multiobjective Optimization via Achievement Scalarizing Function.

 Guaranteed Convergence and Distribution in Evolutionary Multiobjective Optimization via Achievement Scalarizing Function.

Collection of Papers

Status of my PhD Collection of Papers Guaranteed Convergence and ** Distribution in Evolutionary Multiobjective Optimization via Achievement Scalarizing Function.

CONTRACTOR OF STREET

Principle Background:

 Use MCDM techniques to speed up EMO algorithms without compromising on diversity.

Principle Background:

 Use MCDM techniques to speed up EMO algorithms without compromising on diversity.

Principle Background:

 Use MCDM techniques to speed up EMO algorithms without compromising on diversity.

Contribution/Outcome:

* Hybrid EMO algorithm

•

- ***** Enhanced convergence
- Good lateral diversity preservation
- * Stopping criteria
- Wide applicability

Principle Background:

 Use MCDM techniques to speed up EMO algorithms without compromising on diversity.

Contribution/Outcome:

- Hybrid EMO algorithm
- * Enhanced convergence
- * Good lateral diversity preservation
- * Stopping criteria
- * Wide applicability

Hybrid Algorithm:

- Efficient operators
- * Good diversity preservation
- * Efficient local search procedure

- Contribution/Outcome:
- * Hybrid EMO algorithm
 - * Enhanced convergence
 - * Good lateral diversity preservation
- * Stopping criteria
- * Wide applicability

a top of the second second second

- Numerous versions of different EMO algorithms have been proposed.
 - Fewer research on operators for EMO algorithms.
 - Single objective operators usually borrowed as such in multi-objective algorithms.

- Evolutionary Multi-objective Optimization (EMO) algorithms widely used in multi-objective optimization.
- Numerous versions of different EMO algorithms have been proposed.
 - Fewer research on operators for EMO algorithms.
 - Single objective operators usually borrowed as such in multi-objective algorithms.

Background

- EMO algorithm Differential Evolution
 - Widely used algorithm in the field of single and multi-objective optimization.
 - * Simple, self-adapting mutation operator.
 - Trial vector is generated by adding scaled random vector difference to a third vector.
 - Exploits linear dependencies between decision variables.
- Real-life multi-objective problems may not necessarily have linear dependencies in decision variables.

Background

- EMO algorithm Differential Evolution
 - Widely used algorithm in the field of single and multi-objective optimization.
 - * Simple, self-adapting mutation operator.
 - Trial vector is generated by adding scaled random vector difference to a third vector.
 - Exploits linear dependencies between decision variables.
- Real-life multi-objective problems may not necessarily have linear dependencies in decision variables.

Background

- EMO algorithm Differential Evolution
 - Widely used algorithm in the field of single and multi-objective optimization.
 - * Simple, self-adapting mutation operator.
 - Trial vector is generated by adding scaled random vector difference to a third vector.
 - Exploits linear dependencies between decision variables.
- Real-life multi-objective problems may not necessarily have linear dependencies in decision variables.

Polynomial Mutation Operator (POMO)

* Operator based on polynomials: P1,P2,P3 – Chosen set of vectors C1 – Trial vector from linear mutation $p_i(t) = c_{m-1}^i t^{m-1} + c_{m-2}^i t^{m-2} + \ldots + c_0^i$ C2 – Trial vector from polynomial mutation coefficients degree name **Decision space** $c_0^i = x_i^1$ 0 constant Pareto set $\begin{array}{c} c_{0}^{i} = x_{i}^{1} \\ c_{1}^{i} = x_{i}^{2} - x_{i}^{1} \end{array}$ **C1** linear x2 **P1** $c_0^i = x_i^1$ $c_1^i = \frac{1}{2}(-3x_i^1 + 4x_i^2 - x_i^3)$ **Linear mutation** quadratic 2 **C**2 $c_2^i = \frac{1}{2}(x_i^1 - 2x_i^2 + x_i^3)$ $c_0^i = x_1^i$ $\vec{c_1^i} = \frac{1}{6}(-11x_i^1 + 18x_i^2 - 9x_i^3 + 2x_i^4)$ cubic 3 $c_{2}^{i} = \frac{1}{2}(2x_{i}^{1} - 5x_{i}^{2} + 4x_{i}^{3} - x_{i}^{4})$ $c_{3}^{i} = \frac{1}{6}(-x_{i}^{1} + 3x_{i}^{2} - 3x_{i}^{3} + x_{i}^{4})$ **P**3 **P2** Original DE mutation **Polynomial mutation x1** operator: $V_{i,G+1} = X_{r_3,G} + F \cdot (X_{r_1,G} - X_{r_2,G})$

COMPARISON OF THE HYPERVOLUMES FOR THE ORIGINAL AND POLYNOMIAL MUTATION APPROACHES (LARGER VALUE IS BETTER).

Test	Starting population for comparison			Original mutation operator			Polynomial mutation operator		
Problem	Best	Median	Worst	Best	Median	Worst	Best	Median	Worst
ZDT3	0.5552	0.5514	0.5491	0.5671	0.5659	0.5631	0.5573	0.5548	0.5524
ZDT4	0.7623	0.6554	0.1661	0.7651	0.7631	0.16666	0.7638	0.7560	0.1661
OKA1	0.7024	0.6970	0.6847	0.7038	0.6992	0.6922	0.7024	0.6978	0.6899
OKA2	0.6668	0.4907	0.4112	0.6676	0.4944	0.4144	0.6701	0.5115	0.4286
WFG9	0.4232	0.4216	0.4216	0.4236	0.4224	0.4198	0.4239	0.4220	0.4192
UF2	0.7511	0.7472	0.7450	0.7516	0.7472	0.7450	0.7516	0.7490	0.7468
UF4	0.4852	0.4840	0.4819	0.4872	0.4862	0.4841	0.48832	0.4871	0.4846

COMPARISON OF	THE HYPERVOLUMES	S FOR THE	ORIGINAL	AND POL	YN
---------------	------------------	-----------	----------	---------	----

									the second s
Test	Starting	population	for comparison	Origina	al mutation	operator			tor
Problem	Best	Median	Worst	Best	Median	Worst	Þ		orst
ZDT3	0.5552	0.5514	0.5491	0.5671	0.5659	0.5631	0.5573		524
ZDT4	0.7623	0.6554	0.1661	0.7651	0.7631	0.16666	0.7638	0.750	561
OKA1	0.7024	0.6970	0.6847	0.7038	0.6992	0.6922	0.7024	0.6978	0.0399
OKA2	0.6668	0.4907	0.4112	0.6676	0.4944	0.4144	0.6701	0.5115	0.4286
WFG9	0.4232	0.4216	0.4216	0.4236	0.4224	0.4198	0.4239	0.4220	0.4192
UF2	0.7511	0.7472	0.7450	0.7516	0.7472	0.7450	0.7516	0.7490	0.7468
UF4	0.4852	0.4840	0.4819	0.4872	0.4862	0.4841	0.48832	0.4871	0.4846

E IS BETTER).

COMPARISON OF THE HYPERVOLUMES FOR THE ORIGINAL AND POLYNOMIAL MUTATION APPROACHES (LARGER VALUE IS BETTER).

Test	Starting population for comparison			Original mutation operator			Polynomial mutation operator		
Problem	Best	Median	Worst	Best	Median	Worst	Best	Median	Worst
ZDT3	0.5552	0.5514	0.5491	0.5671	0.5659	0.5631	0.5573	0.5548	0.5524
ZDT4	0.7623	0.6554	0.1661	0.7651	0.7631	0.16666	0.7638	0.7560	0.1661
OKA1	0.7024	0.6970	0.6847	0.7038	0.6992	0.6922	0.7024	0.6978	0.6899
OKA2	0.6668	0.4907	0.4112	0.6676	0.4944	0.4144	0.6701	0.5115	0.4286
WFG9	0.4232	0.4216	0.4216	0.4236	0.4224	0.4198	0.4239	0.4220	0.4192
UF2	0.7511	0.7472	0.7450	0.7516	0.7472	0.7450	0.7516	0.7490	0.7468
UF4	0.4852	0.4840	0.4819	0.4872	0.4862	0.4841	0.48832	0.4871	0.4846

COMPARISON OF THE HYPERVOLUMES FOR THE ORIGINAL AND POLYNOMIAL MUTATION APPROACHES (LARGER VALUE IS BETTER).

Test	Starting population for comparison			Original mutation operator			Polynomial mutation operator		
Problem	Best	Median	Worst	Best	Median	Worst	Best	Median	Worst
ZDT3	0.5552	0.5514	0.5491	0.5671	0.5659	0.5631	0.5573	0.5548	0.5524
ZDT4	0.7623	0.6554	0.1661	0.7651	0.7631	0.16666	0.7638	0.7560	0.1661
OKA1	0.7024	0.6970	0.6847	0.7038	0.6992	0.6922	0.7024	0.6978	0.6899
OKA2	0.6668	0.4907	0.4112	0.6676	0.4944	0.4144	0.6701	0.5115	0.4286
WFG9	0.4232	0.4216	0.4216	0.4236	0.4224	0.4198	0.4239	0.4220	0.4192
UF2	0.7511	0.7472	0.7450	0.7516	0.7472	0.7450	0.7516	0.7490	0.7468
UF4	0.4852	0.4840	0.4819	0.4872	0.4862	0.4841	0.48832	0.4871	0.4846

- Linear mutation works better on problems with linear dependencies.
- Polynomial mutation handles problems with nonlinear dependencies better.

Conclusion & Future Work

Conclusion

- Polynomial operator demonstrates the need for a better operator to handle non-linear variable dependencies.
- Future Work
 - Choice of t-value requires further study.
 - Hybrid algorithm of linear and non-linear mutation operators.

Colleagues

Tomi HaanpääSauli Ruuska

