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Principle Background:

Use MCDM techniques to speed up EMO 
algorithms without compromising on 
diversity.

Contribution/Outcome:
Hybrid EMO algorithm

Enhanced convergence
Good lateral diversity preservation
Stopping criteria
Wide applicability

Hybrid Algorithm:

Efficient operators
Good diversity 
preservation
Efficient local search 
procedure



Background



Background

Evolutionary Multi-objective Optimization (EMO) algorithms - widely used in 
multi-objective optimization.

Numerous versions of  different EMO algorithms have been proposed.

Fewer research on operators for EMO algorithms.

Single objective operators usually borrowed as such in multi-objective 
algorithms.

EMO Algorithm:
Initialize population
Fitness evaluations

Recombination
Mutation
Selection



Background

Evolutionary Multi-objective Optimization (EMO) algorithms - widely used in 
multi-objective optimization.

Numerous versions of  different EMO algorithms have been proposed.

Fewer research on operators for EMO algorithms.

Single objective operators usually borrowed as such in multi-objective 
algorithms.

EMO Algorithm:
Initialize population
Fitness evaluations

Recombination
Mutation
Selection



Background

EMO algorithm - Differential Evolution

Widely used algorithm in the field of  single and 
multi-objective optimization.

Simple, self-adapting mutation operator.

Trial vector is generated by adding scaled random 
vector difference to a third vector.

Exploits linear dependencies between decision 
variables.

Real-life multi-objective problems may not necessarily 
have linear dependencies in decision variables.



y

x

Linear

Nonlinear

Background

EMO algorithm - Differential Evolution

Widely used algorithm in the field of  single and 
multi-objective optimization.

Simple, self-adapting mutation operator.

Trial vector is generated by adding scaled random 
vector difference to a third vector.

Exploits linear dependencies between decision 
variables.

Real-life multi-objective problems may not necessarily 
have linear dependencies in decision variables.



Background

EMO algorithm - Differential Evolution

Widely used algorithm in the field of  single and 
multi-objective optimization.

Simple, self-adapting mutation operator.

Trial vector is generated by adding scaled random 
vector difference to a third vector.

Exploits linear dependencies between decision 
variables.

Real-life multi-objective problems may not necessarily 
have linear dependencies in decision variables.



Polynomial Mutation Operator (POMO)

P1

P2

C1

C2 − Trial vector from polynomial mutation

Linear mutation

Polynomial mutation

C2

P3

x2

x1

P1,P2,P3 − Chosen set of vectors
C1 − Trial vector from linear mutation

Decision space
Pareto set

Operator based on 
polynomials:

Original DE mutation 
operator:
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True Pareto set
F = 0.1
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F = 0.6
F = 0.7
F = 0.8
F = 0.9
F = 1.0

EMO algorithm - GDE3

Test problems - OKA2

Bi-objective, 3 variables

Polynomial mutation

Linear mutation
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Linear mutation works better on problems with linear dependencies.

Polynomial mutation handles problems with nonlinear dependencies better.

Tests
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Conclusion

Polynomial operator demonstrates the need for a 
better operator to handle non-linear variable 
dependencies.

Future Work

Choice of  t-value requires further study.

Hybrid algorithm of  linear and non-linear mutation 
operators.
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