A Classifier Based Approximation of the Pareto Frontier

Tomi Haanpää

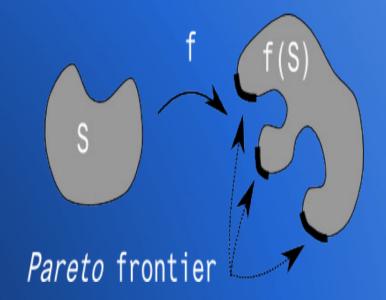
Department of Mathematical Information Technology University of Jyväskylä Finland

Postgraduate Seminar in Information Technology Jyväskylä 26th March 2009

Outline

- Multi-Objective Optimization and Classifiers
 - Pareto Frontier
 - Binary Classifier
 - Meta Models
- PF + BC + MM = Classifier Based Approximation of the Pareto Frontier
 - Construction
 - Future

Multi-Objective Optimization and Classifiers


Pareto Frontier

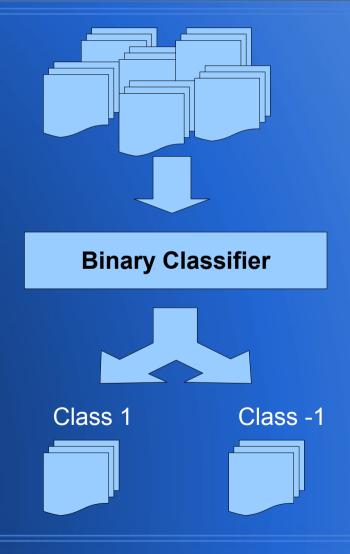
$$S \subset \mathbb{R}^{n}$$

$$f: S \to \mathbb{R}^{m},$$

$$f(x) = (f_{1}(x), f_{2}(x), \dots, f_{m}(x))^{T},$$

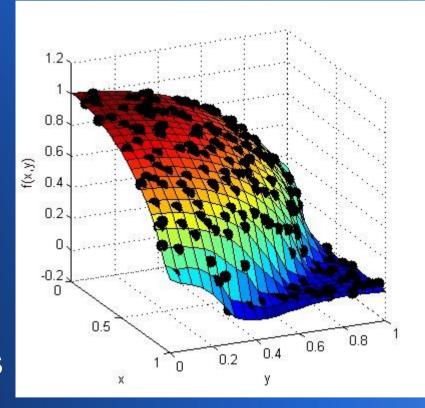
$$f_{i}: S \to \mathbb{R}, i = 1, 2, \dots, m.$$

Optimal solution set


۲

Multi-Objective Optimization and Classifiers

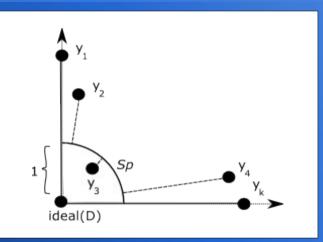
Binary Classifier

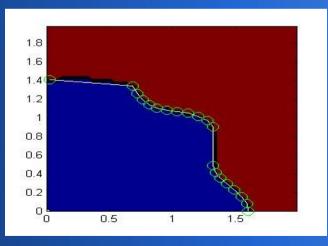

 $f: \mathbb{R}^m \to \{-1, 1\}$

- A Binary classifier divides the space into two different subsets.
- Subsets are classes -1 and 1

Multi-Objective Optimization and Classifiers

- Meta Models
 - Approximations
 - Based on training data
 - Polynomial
 - Radial Basis Functions
 - DACE models (Kriging)
 - Support Vector Regressions

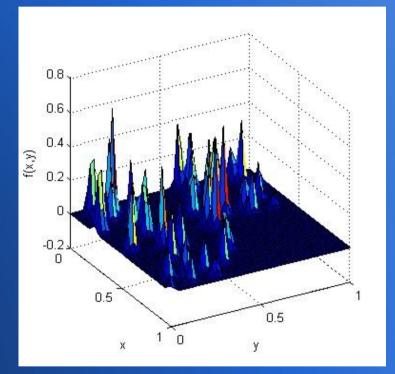



PF + BC + MM = Classifier Based Approximation of the Pareto Frontier

Construction

- $y_i \in PF$
- Approximation of the distances
 - Meta model $f_M: Sp \to \mathbb{R}$
- Classifier

•
$$c(y) = sign(\langle y, y^p \rangle - 1 - f_M(y^p))$$
• $c(y) = 1 \Rightarrow y \in f(S)$
• $c(y) = -1 \Rightarrow y \notin f(S)$



PF + BC + MM = Classifier Based Approximation of the Pareto Frontier

Future

- Full of problems to solve
 - There are space for my ideas :)
 - Overlearning
 - Model validation
- Rebuild some of the current meta models to understand the *Pareto* optimality

Starting the modeling without training data

Thank you for your attention! Questions?