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Improving
Convergence

of
Evolutionary

Multi-
Objective

Optimization
with Local
search - A

Concurrent-
Hybrid

Algorithm.

Karthik
Sindhya

Outline

Myself

Introduction

Survey

ASF

Hybrid
algorithm

Results

Conclusion

Myself

Visiting Research Student at Helsinki School of Economics.

Doctoral student at University of Jyväskylä.
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Introduction

Evolutionary algorithm have been a widely used approach
to solve multi-objective optimization problems for a
decade.
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Introduction

Evolutionary algorithm have been a widely used approach
to solve multi-objective optimization problems for a
decade.

Evolutionary multi-objective optimization (EMO) deals
with a population of points and yields a set of solutions
which are non-dominated and near Pareto-optimal.

Idea is to generate an approximate non-dominated set
which represents the Pareto-optimal front.
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Introduction

Evolutionary algorithm have been a widely used approach
to solve multi-objective optimization problems for a
decade.

Evolutionary multi-objective optimization (EMO) deals
with a population of points and yields a set of solutions
which are non-dominated and near Pareto-optimal.

Idea is to generate an approximate non-dominated set
which represents the Pareto-optimal front.

In EMO, there are clearly two important goals:
Convergence to the Pareto-optimal front.
Diverse set of solutions in the non-dominated front.
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Introduction

Evolutionary algorithm have been a widely used approach
to solve multi-objective optimization problems for a
decade.

Evolutionary multi-objective optimization (EMO) deals
with a population of points and yields a set of solutions
which are non-dominated and near Pareto-optimal.

Idea is to generate an approximate non-dominated set
which represents the Pareto-optimal front.

In EMO, there are clearly two important goals:
Convergence to the Pareto-optimal front.
Diverse set of solutions in the non-dominated front.

Main advantages of EMO algorithms:-
Obtaining a set of non-dominated solutions in a single run.
Ease in handling multiple local Pareto-optimal fronts.
Flexibilities in handling of discrete, nonlinear, multi-modal
and large-scale problems.
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Introduction

EMO approaches are often criticized for their lack of
theoretical convergence proof to the Pareto-optimal front.
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Introduction

EMO approaches are often criticized for their lack of
theoretical convergence proof to the Pareto-optimal front.

Multiple criteria decision-making (MCDM) techniques are
also commonly used to deal with multi-objective
optimization problems.

Have theoretical convergence proofs.
Multi-objective problem → Single-objective problem and
solved by any mathematical programming technique.
Typically a single Pareto-optimal solution.
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Introduction

EMO approaches are often criticized for their lack of
theoretical convergence proof to the Pareto-optimal front.

Multiple criteria decision-making (MCDM) techniques are
also commonly used to deal with multi-objective
optimization problems.

Have theoretical convergence proofs.
Multi-objective problem → Single-objective problem and
solved by any mathematical programming technique.
Typically a single Pareto-optimal solution.

EMO criticism can be bridged by incorporating MCDM
approaches into EMO.
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Introduction

EMO approaches are often criticized for their lack of
theoretical convergence proof to the Pareto-optimal front.

Multiple criteria decision-making (MCDM) techniques are
also commonly used to deal with multi-objective
optimization problems.

Have theoretical convergence proofs.
Multi-objective problem → Single-objective problem and
solved by any mathematical programming technique.
Typically a single Pareto-optimal solution.

EMO criticism can be bridged by incorporating MCDM
approaches into EMO.

Integration of MCDM in EMO is not straightforward.
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Introduction

EMO approaches are often criticized for their lack of
theoretical convergence proof to the Pareto-optimal front.

Multiple criteria decision-making (MCDM) techniques are
also commonly used to deal with multi-objective
optimization problems.

Have theoretical convergence proofs.
Multi-objective problem → Single-objective problem and
solved by any mathematical programming technique.
Typically a single Pareto-optimal solution.

EMO criticism can be bridged by incorporating MCDM
approaches into EMO.

Integration of MCDM in EMO is not straightforward.

One way: EMO as a global optimizer and MCDM
approach as a local optimizer.
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Serial Approach

Hybrid Algorithms have been broadly classified into serial
and concurrent approaches.

Pareto frontEMO Local Search

Figure: Serial approach.

E.g. MSGA-(LS1, LS2, LS3), Goel and Deb etc.,



Improving
Convergence

of
Evolutionary

Multi-
Objective

Optimization
with Local
search - A

Concurrent-
Hybrid

Algorithm.

Karthik
Sindhya

Outline

Myself

Introduction

Survey

ASF

Hybrid
algorithm

Results

Conclusion

Serial Approach

Hybrid Algorithms have been broadly classified into serial
and concurrent approaches.

Pareto frontEMO Local Search

Figure: Serial approach.

E.g. MSGA-(LS1, LS2, LS3), Goel and Deb etc.,

Adv: Convergence to Pareto-optimal front.
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Serial Approach

Hybrid Algorithms have been broadly classified into serial
and concurrent approaches.

Pareto frontEMO Local Search

Figure: Serial approach.

E.g. MSGA-(LS1, LS2, LS3), Goel and Deb etc.,

Adv: Convergence to Pareto-optimal front.

Shortcoming: Switchover from global to local search.
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Concurrent Approach

EMO Pareto front

Local search

Figure: Concurrent approach.

E.g. MOGA by Ishibuchi, MOGLS by Jaszkiewicz etc.,
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Concurrent Approach

EMO Pareto front

Local search

Figure: Concurrent approach.

E.g. MOGA by Ishibuchi, MOGLS by Jaszkiewicz etc.,
Advantages:

Convergence to Pareto-optimal front.
Faster convergence.
No switchover problem.
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Concurrent Approach

EMO Pareto front

Local search

Figure: Concurrent approach.

E.g. MOGA by Ishibuchi, MOGLS by Jaszkiewicz etc.,
Advantages:

Convergence to Pareto-optimal front.
Faster convergence.
No switchover problem.

Shortcoming: Which and frequency of the EMO
individuals to be local searched?
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Summary of Literature Survey

Weighted sum of objectives is the most common
scalarizing procedure.
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Summary of Literature Survey

Weighted sum of objectives is the most common
scalarizing procedure.

All points on the Pareto-optimal front is impossible unless
the Pareto-optimal front is convex.
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Summary of Literature Survey

Weighted sum of objectives is the most common
scalarizing procedure.

All points on the Pareto-optimal front is impossible unless
the Pareto-optimal front is convex.

No clear winner.

Every algorithm is applied on a different set of test
functions and performance criteria.
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Summary of Literature Survey

Weighted sum of objectives is the most common
scalarizing procedure.

All points on the Pareto-optimal front is impossible unless
the Pareto-optimal front is convex.

No clear winner.

Every algorithm is applied on a different set of test
functions and performance criteria.

We chose Concurrent approach and better scalarizing
function called achievement scalarizing function (ASF).
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Achievement Scalarizing Function

We consider a multi-objective optimization problem of the
form:

minimize {f1(x), f2(x), ....., fk (x)}
subject to x ∈ S,

(1)



Improving
Convergence

of
Evolutionary

Multi-
Objective

Optimization
with Local
search - A

Concurrent-
Hybrid

Algorithm.

Karthik
Sindhya

Outline

Myself

Introduction

Survey

ASF

Hybrid
algorithm

Results

Conclusion

Achievement Scalarizing Function

We consider a multi-objective optimization problem of the
form:

minimize {f1(x), f2(x), ....., fk (x)}
subject to x ∈ S,

(1)

An example of an augmented achievement scalarizing
function is given by:

minimize
k

max
i=1

fi (x)−z̄i

zmax
i −zmin

i

+ ρ
∑k

i=1
fi (x)−z̄i

zmax
i −zmin

i

,

subject to x ∈ S,
(2)
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Achievement Scalarizing Function

We consider a multi-objective optimization problem of the
form:

minimize {f1(x), f2(x), ....., fk (x)}
subject to x ∈ S,

(1)

An example of an augmented achievement scalarizing
function is given by:

minimize
k

max
i=1

fi (x)−z̄i

zmax
i −zmin

i

+ ρ
∑k

i=1
fi (x)−z̄i

zmax
i −zmin

i

,

subject to x ∈ S,
(2)

1
zmax
i −zmin

i
is a weight factor assigned to each objective

function fi .
The weighing factors are used to normalize the values of
each objective function fi .
z̄ ∈ Rk is a reference point.
ρ > 0, binds the trade-offs called an augmentation
coefficient.
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Achievement Scalarizing Function

Advantages:

The optimal solution of an ASF is always Pareto-optimal.
Any Pareto-optimal solution can be obtained by changing
the reference point.
The optimal value of an ASF is zero, when the reference
point is Pareto-optimal.
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A concurrent-Hybrid Algorithm
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Local search

Figure: Concurrent-hybrid
algorithm.
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Probability of Local Search-P local
t

0.01

25(n−1)0

n = Number of objectives

Generations

P
lo

ca
l

Figure: Probability of local
search.

To maintain exploration-exploitation balance.
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Termination criteria

Till date EMO algorithms are usually terminated in any of
the following ways:

A pre-specified number of generations.
No new solutions have entered the non-dominated set after
a prefixed number of generations.
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Termination criteria

Till date EMO algorithms are usually terminated in any of
the following ways:

A pre-specified number of generations.
No new solutions have entered the non-dominated set after
a prefixed number of generations.

We utilize the slack variable α for a new convergence
criterion.
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Termination criteria

Till date EMO algorithms are usually terminated in any of
the following ways:

A pre-specified number of generations.
No new solutions have entered the non-dominated set after
a prefixed number of generations.

We utilize the slack variable α for a new convergence
criterion.

α indicates closeness of reference point from the
Pareto-optimal front.
The value of running average of α over a prefixed number
of generations to be close to zero.
Automatic and ensures an adequate convergence property.
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Test Setting

We compare our concurrent-hybrid NSGA-II with
serial-hybrid NSGA-II.
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Test Setting

We compare our concurrent-hybrid NSGA-II with
serial-hybrid NSGA-II.

Test problems ranging from ZDT and DTLZ test suites
and two practical problems: the welded beam design and
the water resources planning problems.
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Test Setting

We compare our concurrent-hybrid NSGA-II with
serial-hybrid NSGA-II.

Test problems ranging from ZDT and DTLZ test suites
and two practical problems: the welded beam design and
the water resources planning problems.

Executed ten times with different seeds and best, median
and worst values of performance metrics (function
evaluations and hypervolume) noted.

Termination criteria based on max function evaluations
and error metric used.

Diversity checked using hypervolume measure.
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Function Evaluation comparison

Test Serial approach Concurrent approach
Problem Best Median Worst Best Median Worst
ZDT1 30,083 31,043 33,468 13,328 14,518 16,991

(0.9289) (0.9283) (0.9285) (0.9214) (0.9285) (0.9286)
ZDT2 29,384 31,760 32,344 1,861 13,748 15,716

(0.6526) (0.6530) (0.6532) (0.2100) (0.6513) (0.6510)
ZDT3 33,691 37,325 38,545 16,595 20,866 29,628

(0.7738) (0.7742) (0.7742) (0.7155) (0.7744) (0.7744)
ZDT4 35,006 54,214 63,584 34,459 37,724 43,142

(0.9274) (0.9284) (0.9286) (0.9286) (0.8982) (0.9286)

3-DTLZ1 201,957 252,952 351,954 66,369 146,506 290,792
(1.664) (1.1965) (1.1964) (1.1995) (1.1931) (1.2002)

3-DTLZ2 35,757 43,722 70,606 26,665 31,604 36,006
(0.8694) (0.8813) (0.8687) (0.8705) (0.8765) (0.8803)

4-DTLZ2 69,449 93,835 128,794 61,028 74,187 194,581
(1.0861) (1.0701) (1.0750) (1.0960) (1.0834) (1.0782)
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Function Evaluation Comparison- Exact Vs
Approximate gradients

Not obvious that in some real world engineering problems
even such a high number is allowed.

Test Exact gradient Approximate gradient
Problem Best Median Worst Best Median Worst

ZDT1 3,751 4,354 5,189 13,328 14,518 16,991
ZDT2 1,706 4,510 5,721 1,861 13,748 15,716
ZDT3 14,879 17,340 23,687 16,595 20,886 29,628
ZDT4 18,763 21,975 26,148 34,459 37,724 43,142

3-DTLZ1 40,031 85,763 120,964 66,369 146,506 290,792
3-DTLZ2 15,017 19,230 24,380 26,665 31,604 36,006

4-DTLZ2 26,672 48,330 56,887 61,128 74,187 194,581
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Function Evaluation Comparison- Exact Vs
Approximate gradients

Not obvious that in some real world engineering problems
even such a high number is allowed.

Test Exact gradient Approximate gradient
Problem Best Median Worst Best Median Worst

ZDT1 3,751 4,354 5,189 13,328 14,518 16,991
ZDT2 1,706 4,510 5,721 1,861 13,748 15,716
ZDT3 14,879 17,340 23,687 16,595 20,886 29,628
ZDT4 18,763 21,975 26,148 34,459 37,724 43,142

3-DTLZ1 40,031 85,763 120,964 66,369 146,506 290,792
3-DTLZ2 15,017 19,230 24,380 26,665 31,604 36,006

4-DTLZ2 26,672 48,330 56,887 61,128 74,187 194,581

Drastic reduction in function evaluations.
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Diversity Comparison with Hypervolume

Test Serial approach Concurrent approach
Problem Best Median Worst Best Median Worst

ZDT1 0.9291 0.9287 0.9283 0.9289 0.9276 0.9214
ZDT2 0.6534 0.6530 0.6526 0.6531 0.6518 0.2100
ZDT3 0.7743 0.7742 0.7738 0.7744 0.7737 0.7155
ZDT4 0.9287 0.9286 0.9274 0.9287 0.9280 0.7758

3-DTLZ1 1.1981 1.1947 1.1664 1.2040 1.1994 1.1931
3-DTLZ2 0.8813 0.8694 0.8615 0.8850 0.8765 0.8645

4-DTLZ2 1.0983 1.0765 1.0602 1.0993 1.0857 1.0691

WRP 0.5703 0.5647 0.5635 0.5706 0.5660 0.5644
WELD 1.4196 1.4193 1.4082 1.4198 1.4188 1.4143

HV values reached in 25,000 function evaluations for all
test and practical problems.
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Effect of the Local Search on Convergence

f1

Generation=8
Generation=13

Local search points
Pareto front
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Figure: Populations approach the
Pareto-optimal front faster in the
concurrent-hybrid NSGA-II -
ZDT1.
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Figure: Populations approach the
Pareto-optimal front slowly in the
serial hybrid NSGA-II - ZDT1.
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A concurrent-hybrid algorithm is proposed.

Convergence objective achieved using ASF.

Enhanced diversity preservation to be incorporated.
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Steady state hybrid EMO.
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Steady state hybrid EMO.

Self adaptive P local
t .

Clustering concurrent-hybrid NSGA-II.
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approximation of the points, which we have now
generated.
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Tomi would provide you with ideas in generating an
approximation of the points, which we have now
generated.

Questions ?


