When more is less: the fitness consequences of predators attacking more unpalatable prey when more are presented

Hannah M. Rowland, Elizabeth Wiley, Graeme D. Ruxton, Johanna Mappes and Michael P. Speed

Biol. Lett. 2010 6, 732-735 first published online 5 May 2010
doi: 10.1098/rsbl.2010.0207

Supplementary data
"Data Supplement"
http://rsbl.royalsocietypublishing.org/content/suppl/2010/04/30/rsbl.2010.0207.DC1.html

References
This article cites 12 articles, 2 of which can be accessed free
http://rsbl.royalsocietypublishing.org/content/6/6/732.full.html#ref-list-1

Article cited in:
http://rsbl.royalsocietypublishing.org/content/6/6/732.full.html#related-urls

Subject collections
Articles on similar topics can be found in the following collections

 behaviour (446 articles)
 evolution (469 articles)

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Biol. Lett. go to: http://rsbl.royalsocietypublishing.org/subscriptions

This journal is © 2010 The Royal Society
When more is less: the fitness consequences of predators attacking more unpalatable prey when more are presented

Hannah M. Rowland1,*, Elizabeth Wiley1, Graeme D. Ruxton2, Johanna Mappes3 and Michael P. Speed1

1School of Biological Sciences, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
2Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
3Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, Jyväskylä 40014, Finland

*Author for correspondence (h.m.rowland@liv.ac.uk).

In 1879, Fritz Müller hypothesized that mimetic resemblance in which defended prey display the same warning signal would share the costs of predator education. Although Müller argued that predators would need to ingest a fixed number of prey with a given visual signal when learning to avoid unpalatable prey, this assumption lacks empirical support. We report an experiment which shows that, as the number of unpalatable prey presented to them increased, avian predators attacked higher numbers of those prey. We calculated that, when predators increase attacks, the fitness costs incurred by unpalatable prey can be substantial. This suggests that the survival benefits of mimicry could be lower than Müller proposed. An important finding is, however, that these costs decline in importance as the total number of available prey increases.

Keywords: Müllerian mimicry; Gallus gallus domesticus; fixed n; fitness

1. INTRODUCTION

Müllerian mimicry describes the visual resemblance of two or more sympatric unpalatable prey species that are not closely related (Müller 1879). Though mimicry is taxonomically and ecologically widespread, the theoretical underpinnings of Müllerian mimicry are still the subject of debate (Sherratt 2008). One of the specific assumptions made by Müller remains unresolved: that predators consume a fixed number of unpalatable prey species over a period of time, independent of their density, before learning to avoid that prey’s signal. As it stands, no study exists in which predators are not closely related (Müller 1879). Though mimicry exhibits longer intervals between aversive contacts with unpalatable prey, since a predator might eliminate unpalatable prey from its diet, with the availability of abundant alternatives (see Kakade & Dayan (2002) for review on massed versus spaced learning). Alternatively, an increased density of alternative palatable prey could slow aversion learning, with predators likely to exhibit longer intervals between aversive contacts with unpalatable prey, resulting in an increase in the number of unpalatable prey attacked during learning (see Matthews 1977).

We therefore tested Müller’s assumption of a fixed number of prey being attacked during learning by examining how the number of unpalatable prey attacked was affected by the absolute number of alternative palatable prey. We used fixed populations of aposematic prey; though see Rowe et al. (2004) who investigated the effect of prey density on predator learning rates.

An experiment by Lindström et al. (2001) found that predators (great tits, Parus major) attacked a greater number of unpalatable prey as more were presented over a range of values. However, the total number of prey was kept constant, so that as the abundance of defended prey increased, the number of alternative visually distinct edible prey decreased. It is therefore not possible to determine whether increased attack frequency on unpalatable prey is because the absolute number of edible prey decreased or because the absolute number of unpalatable prey increased (experiments by Greenwood et al. (1981, 1989) and Beatty et al. (2004) showed evidence that predation is higher on more abundant prey, but also used fixed populations of aposematic prey; though see Rowe et al. (2004) who investigated the effect of prey density on predator learning rates).

Furthermore, Müller’s quantitative model of mimicry does not take into account the abundance of alternative prey (see Kokko et al. (2003) and Lindström et al. (2004) which do take into account the effects of alternative prey abundance). We can form two predictions of the effect of alternative edible prey abundance on predatory behaviour. First, that the number of unpalatable prey attacked during learning would decrease with the addition of alternative palatable prey, since a predator might eliminate unpalatable prey from its diet, with the availability of abundant alternatives (see Kakade & Dayan (2002) for review on massed versus spaced learning). Alternatively, an increased density of alternative palatable prey could slow aversion learning, with predators likely to exhibit longer intervals between aversive contacts with unpalatable prey, resulting in an increase in the number of unpalatable prey attacked during learning (see Matthews 1977).

2. MATERIAL AND METHODS

(a) Subjects and housing

Three batches of male chicks (Gallus gallus domesticus), totalling 110 individuals, were obtained from a commercial hatchery on the day of hatching and were randomly assigned to either the experimental group (65 animals) or the buddy group (individuals not used for the learning experiment). Experimental and buddy chicks were housed in separate cages measuring 120 × 50 × 50 cm. All subjects were marked on their heads with non-toxic coloured marker pens for identification. Water was provided ad libitum, as were brown chick starter crumbs, except during training and participation in the experimental task when food deprivation was necessary. All deprivation periods were in accordance with Home Office regulations and guidelines (never longer than 1.5 h). One chick died for reasons unrelated to the experiment.

(b) Artificial prey

Palatable and unpalatable crumbs were produced by spraying 150 g of chick starter crumbs with either 100 ml of water or 6 g of chloroquine phosphate dissolved in 100 ml of water. Crumbs were coloured either green (edible) or red (unpalatable) by spraying 150 g of the crumbs with 0.5 ml of Sugarflair spruce green diluted
Table 1. Details of numbers and proportions taken plus values of revised per capita attack rates.

<table>
<thead>
<tr>
<th>treatment number</th>
<th>unpalat. prey per treatment</th>
<th>number of edible prey</th>
<th>mean total number taken</th>
<th>total presented over 8 trials</th>
<th>observed per capita (pc) attack</th>
<th>revised pc value</th>
<th>increase in pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>20</td>
<td>21.27</td>
<td>40</td>
<td>0.532</td>
<td>0.177</td>
<td>0.061</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>20</td>
<td>28.56</td>
<td>100</td>
<td>0.142</td>
<td>0.089</td>
<td>0.053</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>20</td>
<td>34.00</td>
<td>240</td>
<td>0.263</td>
<td>0.182</td>
<td>0.081</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>30</td>
<td>21.82</td>
<td>40</td>
<td>0.546</td>
<td>0.091</td>
<td>0.055</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>30</td>
<td>31.60</td>
<td>120</td>
<td>0.238</td>
<td>0.123</td>
<td>0.045</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>30</td>
<td>35.12</td>
<td>240</td>
<td>0.146</td>
<td>0.091</td>
<td>0.055</td>
</tr>
</tbody>
</table>

Chicks attacked significantly more unpalatable red prey as greater numbers were presented ($F_{2,65} = 13.89$, $p < 0.001$; figure 1), and this effect was independent of the number of edible prey available ($F_{1,65} = 0.59$, $p = 0.444$; the interaction term was also non-significant, $F_{2,65} = 0.13$, $p = 0.878$).

Mean per capita attack rates (total attacked/total presented) of unpalatable prey, decreased as the number of unpalatable prey in the population increased ($F_{2,65} = 69.95$, $p < 0.001$; see figure 2). This effect was independent of the number of edible prey available ($F_{1,65} = 0.150$, $p = 0.70$) and there was no interaction between the number of unpalatable and the number of edible prey on the per capita attack rate of unpalatable prey ($F_{2,65} = 0.11$, $p = 0.896$).

We also assessed the effect of differences in prey numbers on the birds’ preferences for palatable over unpalatable prey by comparing predation relative to that which would be expected if birds were foraging randomly (see the electronic supplementary material and also Rowland et al. (2007)). We term this 'relative predation risk'. We found that, for unpalatable prey, relative predation risk decreased with increasing abundance of unpalatable prey (the electronic supplementary material, figure S3; $F_{2,65} = 50.04$, $p < 0.001$). There was a significant main effect of the abundance of alternative edible prey ($F_{1,65} = 16.38$, $p < 0.001$), such that predation risk was higher, in all cases, when there were 30 alternative edible prey as opposed to 20 edible prey. There was no interaction between the number of unpalatable and number of edible prey on predation risk ($F_{2,65} = 1.72$, $p = 0.188$). Bonferroni corrected EMM pairwise comparisons showed that predation risk was higher when there were 30 alternative edible prey, than when there were 20 alternative edible prey, when there were five and 15 unpalatable prey ($p < 0.001$ and $p = 0.031$, respectively), but not when there were 30 unpalatable prey ($p = 0.277$).

3. RESULTS

Chicks in all treatment groups readily learned to discriminate between quinine-coated red prey and water-coated green prey. The birds increased their attacks on green prey in all treatments from trial 1 to trial 8 (see the electronic supplementary material, figure S1). Birds in all treatments learned to reduce the number of quinine-coated red prey attacked from trial 1 to trial 8 (paired sample t-test, all $p < 0.05$; see the electronic supplementary material for individual p-values and also figure S2).

(a) Implications for prey fitness

If the birds did not attack greater numbers of unpalatable prey when greater numbers were presented, the fitness of individual prey would be higher. We evaluated this by comparing the observed per capita attack rate to a ‘revised per capita attack rate’ based on the minimum number of prey required for learning (see the electronic supplementary material for detailed methods and also table 1). From this we determined how per capita mortality would be affected if the birds did not attack greater numbers of unpalatable...
Figure 1. The mean total number (+s.e.m.) of unpalatable red prey attacked, calculated as the sum of unpalatable prey attacked in trials 1–8. Dark grey bars, 20 edible alternative prey; light grey bars, 30 edible prey.

Figure 2. The mean total per capita attack rate (+s.e.m.) on unpalatable prey, calculated by dividing the total number of unpalatable prey attacked across all eight trials, by the total number presented during the eight trials. Dark grey bars, 20 edible alternative prey; light grey bars, 30 edible prey.

prey when greater numbers were presented. The difference between the observed and the revised per capita mortality shows that the mortality costs to the prey of increased attacks when greater numbers are presented is substantial (e.g. if a bird attacked unpalatable prey according to the minimum number of prey required for learning i.e. 21.27, then the reduction in mortality for 15 and 30 unpalatable prey would be 0.061 and 0.053, respectively; column 8, table 1). We did find though, that as the unpalatable prey number doubled from 15 to 30 presented, the size of the increase in per capita attack was reduced.

4. DISCUSSION
There are four clear results from our experiment. First, we found that during learning, chicks attacked a greater number of unpalatable prey as the number of unpalatable prey available increased. This finding does not support Müller’s assumption of a fixed number (n) of attacks during learning. We kept the number of edible prey constant within each treatment, so we could be sure that the result was due to the increase in absolute number of unpalatable prey, and not because the edible prey became scarcer in absolute numbers (as happens in Lindström et al. (2001)). A possible explanation for this predatory behaviour is that, if the unpalatable prey form is numerous then the cost to a predator of excluding them from their diet is higher if some of them turn out to be palatable (Beatty et al. 2004; Ruxton et al. 2004).

Second, judged in terms of per capita attack rates, mortality declined as the number of unpalatable prey increased, even though the number of prey attacked increased (see also Greenwood et al. 1981, 1989; Lindström et al. 2001; Beatty et al. 2004). Because the total density of prey increased with the addition of unpalatable prey, the probability of attack for a member of the population of unpalatable prey decreased. Therefore this reduction in mortality can be explained by density-dependent dilution (see also Rowland et al. 2007).

Third, to our knowledge, this study provides the first evidence that availability of alternative edible prey may not modify the per capita mortality levels of the unpalatable prey (though see Lindström et al. 2004). Although per capita mortality was not affected, the relative preferences of the birds were affected by increases in numbers of prey. Relative predation risk for unpalatable prey increased with higher abundance of edible alternative prey, suggesting higher densities of alternative palatable prey slows aversion learning. This is possibly due to predators experiencing longer intervals between aversive contacts with unpalatable prey (see Matthews 1977). Overall, however, this effect was more than compensated for through density-dependent dilution, so the availability of alternative edible prey did not modify the per capita mortality levels of the unpalatable prey.

Fourth, we were able to estimate the additional per capita mortality cost incurred because predators attacked greater numbers of unpalatable prey when greater numbers were presented. This cost was large in our experiment (table 1). Crucially though, the size of this cost diminished as the prey population size increased, so the cost to prey fitness is likely to be less affected as population sizes increase.

5. CONCLUSIONS
Our findings do not support Müller’s assumption of a fixed number (n) of attacks during learning. Rather, predators attack more unpalatable prey when more are presented. A consequence is that the benefits of mimicry are probably smaller than those estimated by/using Müller’s theory. As abundances become large, however, increased attacks become relatively less important, and the data will probably tend to converge towards Müller’s predictions.

We thank four anonymous reviewers for their comments. HMR, MPS, JM & GDR were funded by NERC grant NE/D010667/1.

