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Abstract. We investigate basic properties of mappings of finite distor-
tion f : X → R2, where X is any metric surface, i.e., metric space home-
omorphic to a planar domain with locally finite 2-dimensional Haus-
dorff measure. We introduce lower gradients, which complement the
upper gradients of Heinonen and Koskela, to study the distortion of
non-homeomorphic maps on metric spaces.

We extend the Iwaniec-Šverák theorem to metric surfaces: a non-
constant f : X → R2 with locally square integrable upper gradient
and locally integrable distortion is continuous, open and discrete. We
also extend the Hencl-Koskela theorem by showing that if f is moreover
injective then f−1 is a Sobolev map.

1. Introduction

1.1. Background. Let Ω ⊂ R2 be a domain. We say that map f : Ω → R2

in the Sobolev spaceW 1,2
loc (Ω,R

2) has finite distortion if there is a measurable
function K : Ω → [1,∞) so that

(1.1) ||Df(x)||2 ≤ K(x)Jf (x) for a.e. x ∈ Ω.

Here ||Df(x)|| and Jf (x) are the operator norm and determinant of Df(x),
respectively.

If K(x) = 1 for almost every x ∈ Ω, then (1.1) is valid if and only if f is
complex analytic. The basic topological properties of non-constant analytic
functions are continuity, openness and discreteness (the preimage of every
point is discrete in Ω).

By Stöılow factorization (see [AIM09, Chapter 5.5], [LP20]) non-constant
quasiregular maps, i.e., maps f satisfying (1.1) with constant functionK(x) =
K ≥ 1, admit a factorization f = g ◦ h, where h is a quasiconformal homeo-
morphism and g is analytic. In particular, every such f is also continuous,
open and discrete.

In [IŠ93] Iwaniec and Šverák showed that boundedness of K(x) may be
replaced with local integrability.
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Theorem 1.1 (Iwaniec-Šverák theorem). Suppose f ∈W 1,2
loc (Ω,R

2) is non-
constant and satisfies (1.1) for some locally integrable K(x). Then f is
continuous, open and discrete.

The assumption on K(x) is essentially best possible (see [Bal81] and
[HR13]). Since the work of Iwaniec and Šverák [IŠ93], a rich theory of map-
pings of finite distortion has been developed (see [AIM09], [HK14]), with
applications to PDE, complex dynamics, inverse problems and non-linear
elasticity theory, among other fields.

The theory extends toW 1,1
loc -maps with exponentially integrable distortion

and also to higher dimensions, where continuity, openness and discreteness
of quasiregular maps was proved by Reshetnyak already in the 1960s (see
[Reš67]). Reshetnyak’s theorem has been extended to spatial mappings of fi-
nite distortion by several authors (see [VjGd76], [VM98], [KKM01], [IKO01],
[IM01], [KKM+03], [OZ08], [Raj10], [HR13]).

Partially motivated by works of Heinonen-Rickman [HR02], Heinonen-
Sullivan [HS02] and Heinonen-Keith [HK11] on BLD- and bi-Lipschitz para-
metrizations of metric spaces, Kirsilä [Kir16] furthermore extended Reshet-
nyak’s theorem to maps f : X → Rn, where X is a generalized n-manifold
satisfying assumptions such as Ahlfors n-regularity and Poincaré inequality.

In this paper we extend the Iwaniec-Šverák theorem to maps f : X → R2,
where X is a metric surface, i.e., a metric space homeomorphic to a domain
in R2 with locally finite 2-dimensional Hausdorff measure. The novelty of
our results is that we do not impose any additional conditions on X.

Our research is partially inspired by recent advances on the uniformization
problem on metric surfaces (see [BK02], [Raj17], [Iko22], [MW24], [Mei24],
[NR23], [NR22]) and the properties of the associated homeomorphisms, such
as quasiconformal maps f : X → R2. It is desirable to explore the properties
of non-homeomorphic maps on metric surfaces. The aim of our paper is to
provide the first results in this direction.

1.2. Mappings of finite distortion on metric surfaces. A (euclidean)
metric surface X is a metric space homeomorphic to a domain U ⊂ R2 and
with locally finite 2-dimensional Hausdorff measure. Below, H2 will always
be the reference measure on X.

Let X and Y be metric surfaces. We want to establish what it means
for a map f : X → Y to have finite distortion. We first observe that in
the euclidean case every mapping of finite distortion is sense-preserving.
This follows from inequality (1.1) by applying non-negativity of the Jaco-
bian determinant and integration by parts, a method which is not avail-
able in our generality. We call f : X → Y sense-preserving if for any do-
main Ω compactly contained in X so that f |∂Ω is continuous it follows that
deg(y, f,Ω) ≥ 1 for any y ∈ f(Ω) \ f(∂Ω). Here deg is the local topological
degree of f (see [Ric93, I.4]).
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We apply the theory of Sobolev spaces based on upper gradients ([HKST15]).
A Borel function ρu : X → [0,∞] is an upper gradient of f : X → Y , if

(1.2) dY (f(x), f(y)) ≤
ˆ
γ
ρu ds

for all x, y ∈ X and every rectifiable curve γ in X joining x and y. We say
that f belongs to the Sobolev space N1,2

loc (X,Y ) if f has an upper gradient
ρu ∈ L2

loc(X) and if dY (y, f(·)) ∈ L2
loc(X) for some y ∈ Y (see Section 2.3).

It follows from the proof of [EIR23, Theorem 1.4] that a sense-preserving

map f ∈ N1,2
loc (X,R

2) is continuous (see Remark 2.3). Such an f also satisfies
Lusin’s Condition (N): if E ⊂ X and H2(E) = 0, then |f(E)|2 = 0 (see
Remark 2.8). The converse implication does not hold ([Raj17, Section 17]).

In order to define the distortion of f , we introduce lower gradients: a
Borel function ρl : X → [0,∞] is a lower gradient of f ∈ N1,2

loc (X,Y ), if

ρl ≤ ρuf almost everywhere and

(1.3) ℓ(f ◦ γ) ≥
ˆ
γ
ρl ds

for every rectifiable curve γ in X with f ◦γ being continuous. Our definition
is motivated by the observation that the upper gradient inequality (1.2) is
equivalent to the reverse inequality of (1.3) for ρu (see Section 2.3). Every

f ∈ N1,2
loc (X,Y ) has an essentially unique minimal weak upper gradient ρuf

(see Section 2.3). Similarly, we prove in Section 7 that every such f has an
essentially unique maximal weak lower gradient ρlf .

We say that a sense-preserving f ∈ N1,2
loc (X,Y ) has finite distortion (along

paths) and denote f ∈ FDP(X,Y ), if there is a measurable K : X → [1,∞)
such that

(1.4) ρuf (x) ≤ K(x) · ρlf (x) for almost every x ∈ X.

The distortion Kf of f is

Kf (x) :=


ρuf (x)

ρlf (x)
, if ρlf (x) ̸= 0,

1, if ρlf (x) = 0.

Our main result is the following extension of the Iwaniec-Šverák theorem.
Here X is any metric surface.

Theorem 1.2. Let f ∈ FDP(X,R2) be non-constant with Kf ∈ L1
loc(X).

Then f is open and discrete.

Generalizing the euclidean result by Hencl-Koskela (who assumed W 1,1-
regularity, see [HK06]), we show that if f is furthermore a homeomorphism,
then the inverse is also a Sobolev map.

Theorem 1.3. Let f ∈ FDP(X,R2) be injective with Kf ∈ L1
loc(X). Then

f−1 ∈ N1,2
loc (f(X), X).
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Examples in [Bal81] (f0 in Proposition 6.1 below, see also [HR13]) and
[HK06, Example 1.4], respectively, show that condition Kf ∈ L1

loc(X) is
sharp both in Theorem 1.2 and in Theorem 1.3, even if X = R2.

We show in Section 6 that there are metric surfaces X which do not admit
any quasiconformal maps h : X → R2 but do admit maps f : X → R2

satisfying the assumptions of Theorem 1.2. By [MR24, Theorem 1.3], such
surfaces do not exist if we require Kf to be bounded instead of integrable.

Previous approaches to distortion of maps between metric spaces are
mostly based on the analytic definition: We say that a sense-preserving
f ∈ N1,2

loc (X,Y ) has finite analytic distortion and denote f ∈ FDA(X,Y ), if
there is a measurable C : X → [1,∞) such that

(1.5) ρuf (x)
2 ≤ C(x) · Jf (x) for almost every x ∈ X,

where

Jf (x) = lim sup
r→0

H2
Y (f(B(x, r)))

πr2
.

Inequality (1.5) is equivalent to (1.4) in the euclidean setting, and also
provides a rich theory for homeomorphisms between metric spaces. However,
unlike our approach based on lower gradients, the analytic approach is not
convenient for treating non-homeomorphic maps between metric surfaces.
We nevertheless prove the following in [MR24].

Theorem 1.4 ([MR24, Theorem 1.1]). If f ∈ FDA(X,R2), then f ∈
FDP(X,R2). Moreover, for every C(x) in (1.5) we have

Kf (x) ≤ 4
√
2C(x) for almost every x ∈ X.

Theorem 1.2 can be applied to prove the converse of Theorem 1.4 assum-
ing Kf ∈ L1

loc(X,R2), see [MR24]. Combining Theorems 1.2, 1.3 and 1.4
shows that our main results hold under the analytic assumption.

Corollary 1.5. Let f ∈ FDA(X,R2) be non-constant with C(x) ∈ L1
loc(X).

Then f is open and discrete. If f is injective, then f−1 ∈ N1,2
loc (f(X), X).

The definition of a metric surface can be relaxed by requiring X to be
homeomorphic to an oriented topological surface M instead of a domain in
R2. Our definitions and results are local and remain valid under the relaxed
definition. We state them only for euclidean metric surfaces to simplify the
presentation.

This paper is organized as follows. In Section 2 we recall the background
on Analysis in metric spaces needed to prove our main results. In Section
3 we prove an area inequality for maps on the rectifiable part of a metric
surface which involves lower gradients and may be of independent interest.
We prove Theorems 1.2 and 1.3 in Sections 4 and 5, respectively.

The proofs are based on three main tools: the coarea inequality for
Sobolev functions on metric surfaces by Meier-Ntalampekos [MN24] and
Esmayli-Ikonen-Rajala [EIR23], weakly quasiconformal parametrizations of
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metric surfaces by Ntalampekos-Romney [NR22], [NR23] and Meier-Wenger
[MW24], and the area inequality proved in Section 3. In addition, to prove
Theorem 1.2 we apply estimates inspired by the value distribution theory of
quasiregular mappings (see [Ric93]).

In Section 6, we discuss connections between our results and the uni-
formization problem on metric surfaces, as well as different definitions of
mappings with controlled distortion. Finally, in Section 7 we prove the
existence of maximal weak lower gradients.

2. Preliminaries

2.1. Basic definitions and notations. Let (X, d) be a metric space. We
denote the open and closed ball in X of radius r > 0 centered at a point
x ∈ X by B(x, r) and B(x, r), respectively. When X = R2 we use notation
D(x, r) instead of B(x, r).

A set Ω ⊂ X homeomorphic to the unit disc D(0, 1) is a Jordan domain
in X if its boundary ∂Ω ⊂ X is a Jordan curve in X, i.e., a subset of X
homeomorphic to S1. The image of a curve γ in X is indicated by |γ| and
the length by ℓ(γ).

A curve γ is rectifiable if ℓ(γ) < ∞ and locally rectifiable if each of its
compact subcurves is rectifiable. Moreover, a curve γ : [a, b] → X is geodesic
if ℓ(γ) = d(γ(a), γ(b)). A curve γ : [0, ℓ(γ)] → X is parametrized by arclength
if ℓ(γ|I) = |I|1 for every interval I ⊂ [0, ℓ(γ)]. Here, | · |n denotes the n-
dimensional Lebesgue measure.

For s ≥ 0, we denote the s-dimensional Hausdorff measure of A ⊂ X by
Hs(A). The normalizing constant is chosen so that |V |n = Hn(V ) for open
subsets V of Rn.

We equip X with H2. Let Lp(X) (Lploc(X)) denote the space of p-
integrable (locally p-integrable) Borel functions from X to R ∪ {−∞,∞}.
Here locally p-integrable means p-integrable on compact subsets. We say
that a subdomain G of X is compactly contained in X if the closure G is
compact.

2.2. Modulus. Let X be a metric space and Γ be a family of curves in X.
A Borel function g : X → [0,∞] is admissible for Γ if

´
γ g ds ≥ 1 for all

locally rectifiable curves γ ∈ Γ. We define the (2-)modulus of Γ as

ModΓ = inf
g

ˆ
X
g2 dH2,

where the infimum is taken over all admissible functions g for Γ. If there
are no admissible functions for Γ we set ModΓ = ∞. A property is said
to hold for almost every curve in Γ if it holds for every curve in Γ \ Γ0 for
some family Γ0 ⊂ Γ with Mod(Γ0) = 0. In the definition of Mod(Γ), the
infimum can equivalently be taken over all weakly admissible functions, i.e.,
Borel functions g : X → [0,∞] such that

´
γ g ≥ 1 for almost every locally

rectifiable curve γ ∈ Γ.
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2.3. Metric Sobolev spaces. Let f : X → Y be a map between metric
spaces. A Borel function ρu : X → [0,∞] is an upper gradient of f if

dY (f(x), f(y)) ≤
ˆ
γ
ρu ds(2.1)

for all x, y ∈ X and every rectifiable curve γ in X joining x and y. If the
upper gradient inequality (2.1) holds for almost every rectifiable curve γ in
X joining x and y we call ρu weak upper gradient of f .

The Sobolev space N1,2(X,Y ) is the space of Borel maps f : X → Y with
upper gradient ρu ∈ L2(X) such that x 7→ dY (y, f(x)) is in L

2(X) for some

and thus any y ∈ Y . The space N1,2
loc (X,Y ) is defined in the obvious manner.

Each f ∈ N1,2
loc (X,Y ) has a minimal weak upper gradient ρuf , i.e., for any

other weak upper gradient ρu we have ρuf ≤ ρu almost everywhere. Moreover,

ρuf is unique up to a set of measure zero. See monograph [HKST15] for more
background on metric Sobolev spaces.

We apply a notion of “minimal stretching” which compliments the “max-
imal stretching” represented by upper gradients. To motivate the definition,
notice that for continuous maps f ∈ N1,2

loc (X,Y ) the upper gradient inequal-
ity (2.1) is equivalent to

ℓ(f ◦ γ) ≤
ˆ
γ
ρu ds

for almost every rectifiable curve γ in X. We call a Borel function ρl : X →
[0,∞] a lower gradient of f ∈ N1,2

loc (X,Y ), if ρl ≤ ρuf almost everywhere and

ℓ(f ◦ γ) ≥
ˆ
γ
ρl ds(2.2)

for every rectifiable curve γ in X with f ◦ γ being continuous. If the lower
gradient inequality (2.2) holds for almost every rectifiable γ, we call ρl weak
lower gradient of f . Note that 0 is always a lower gradient.

Each f ∈ N1,2
loc (X,Y ) has a maximal weak lower gradient ρlf , i.e., for any

other weak lower gradient ρl we have ρlf ≥ ρl almost everywhere. Moreover,

ρlf is unique up to a set of measure zero. The proof is analogous to the

existence of minimal weak upper gradients, see [HKST15, Theorem 6.3.20].
For completeness, we provide a proof in Section 7.

2.4. Coarea inequality on metric surfaces. We state the following coarea
inequality for Lipschitz functions, which is a consequence of [EHa21, Theo-
rem 1.1] (see [EIR23, Section 5]). Here, Lip(u) denotes the pointwise Lips-
chitz constant of a Lipschitz function u : X → R, defined by

Lip(u)(x) = lim sup
x̸=y→x

|u(y)− u(x)|
d(x, y)

.
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Theorem 2.1 (Lipschitz coarea inequality). Let X be a metric space and
u : X → R a Lipschitz function. Then

∗ˆ

R

ˆ
u−1(t)

g dH1dt ≤ 4

π

ˆ
X
g · Lip(u) dH2

for every Borel measurable g : X → [0,∞].

Here
´ ∗

denotes the upper integral, which is equal to Lebesgue integral
for measurable functions. An important tool throughout this work will be
the following coarea inequality for continuous Sobolev functions on metric
surfaces.

Theorem 2.2 (Sobolev coarea inequality, [MN24, Theorem 1.6]). Let X be

a metric surface and v : X → R be a continuous function in N1,2
loc (X).

(1) If Av denotes the union of all non-degenerate components of the level
sets v−1(t), t ∈ R, of v, then Av is a Borel set.

(2) For every Borel function g : X → [0,∞] we have
∗ˆ ˆ

v−1(t)∩Av

g dH1 dt ≤ 4

π

ˆ
g · ρuv dH2.

Theorem 2.2 generalizes the coarea inequality for monotone Sobolev func-
tions established in [EIR23]. Here v : X → R is called a weakly monotone
function if for every open Ω compactly contained in X

sup
Ω
v ≤ sup

∂Ω
v <∞ and inf

Ω
v ≥ inf

∂Ω
v > −∞.

A continuous weakly monotone function is monotone.

Remark 2.3. In the proof of [EIR23, Theorem 1.4] the coarea inequality for
monotone Sobolev functions is used to show that every weakly monotone
function v ∈ N1,2

loc (X,R) is continuous and hence monotone. Continuity

of a sense-preserving map f ∈ N1,2
loc (X,R

2) now follows by applying the
exact same proof strategy while replacing weak monotonicity with sense-
preservation and the coarea inequality for monotone Sobolev maps with
Theorem 2.2.

2.5. Metric differentiability. Let (Y, d) be a complete metric space and
U ⊂ Rn, n ≥ 1, a domain. We say that h : U → Y is approximately
metrically differentiable at z ∈ U if there exists a seminorm Nz on R2 for
which

ap lim
y→z

d(h(y), h(z))−Nz(y − z)

|y − z|
= 0.

Here, ap lim denotes the approximate limit (see [EG92, Section 1.7.2]). If
such a seminorm exists, it is unique and is called approximate metric de-
rivative of h at z, denoted apmdhz. The following result follows from
[LW18, Lemma 3.1].
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Lemma 2.4. Let X and Y be metric surfaces and f ∈ N1,2
loc (X,Y ). Almost

every curve γ : [a, b] → X parametrized by arclength satisfiesˆ
f◦γ

g ds =

ˆ b

a
g(f(γ(t))) · apmd(f ◦ γ)t dt

for all Borel measurable g : Y → [0,∞].

Lemma 2.4 leads to the following properties of upper and lower gradients
(see [HKST15, Proposition 6.3.3] for a proof involving upper gradients).

Corollary 2.5. Let X and Y be metric surfaces and f ∈ N1,2
loc (X,Y ). Al-

most every curve γ : [a, b] → X parametrized by arclength satisfies the fol-
lowing properties.

(1) f is absolutely continuous on γ,
(2) ρlf (γ(t)) ≤ apmd(f ◦ γ)t ≤ ρuf (γ(t)) for almost every a < t < b,

(3) if g : Y → [0,∞] is Borel measurable, thenˆ
γ
ρlf · (g ◦ f) ds ≤

ˆ
f◦γ

g ds ≤
ˆ
γ
ρuf · (g ◦ f) ds.

2.6. Area formula on euclidean domains. Suppose U ⊂ R2 is a domain
and h ∈ N1,2

loc (U, Y ). Then U can be covered up to a set of measure zero
by countably many disjoint measurable sets Gj , j ∈ N, such that h|Gj is
Lipschitz. In particular, outside a set of measure zero G0 ⊂ U , h satisfies
Lusin’s condition (N) (see [HKST15, Theorem 8.1.49]).

By [LW17, Proposition 4.3], every h ∈ N1,2
loc (U, Y ) is approximately met-

rically differentiable at a.e. z ∈ U . The following area formula follows from
[Kar07, Theorem 3.2]. Here, the Jacobian J(Nz) of a seminorm Nz on R2 is
zero if Nz is not a norm and J(Nz) = π/|{y ∈ R2 : Nz(y) ≤ 1}|2 otherwise.

Theorem 2.6 (Area formula). If h ∈ N1,2
loc (U, Y ), then there exists G0 ⊂ U

with H2(G0) = 0 such that for every measurable set A ⊂ U \G0 we haveˆ
A
J(apmdhz) dH2 =

ˆ
Y
N(y, h,A) dH2.(2.3)

Here, N(y, h,A) denotes the multiplicity of y ∈ Y with respect to h in A:

(2.4) N(y, h,A) := #{z ∈ A : h(z) = y}.

2.7. Weakly quasiconformal parametrizations. A map h : X → Y be-
tween metric surfaces is cell-like if the preimage of each point is a continuum
that is contractible in each of its open neighborhoods. A continuous, sur-
jective, proper and cell-like map h : X → Y is weakly C-quasiconformal if

ModΓ ≤ CModh(Γ)

holds for every family of curves Γ in X. It follows from [Wil12, Theo-
rem 1.1] that every weakly quasiconformal map h : X → Y is contained in

N1,2
loc (X,Y ).
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It was shown in [NR22] that any metric surface admits a weakly quasi-
conformal parametrization, see also [NR23], [MW24], [Mei24].

Theorem 2.7 ([NR22, Theorem 1.2]). Let X be any metric surface. There
is a weakly (4/π)-quasiconformal u : U → X, where U ⊂ R2 is a domain.

Remark 2.8. Condition (N) for sense-preserving maps f ∈ N1,2
loc (X,R

2) can
be proved using the area formula and Theorem 2.7 as follows: suppose
E ⊂ X and H2(E) = 0, and let u : U → X be a (sense-preserving) weakly
(4/π)-quasiconformal parametrization of X provided by Theorem 2.7. De-

fine h : U → R2 by h := f ◦ u. Then u ∈ N1,2
loc (U,X) and h ∈ N1,2

loc (U,R
2),

see [MR24, Theorem 2.5].
By Theorem 2.6 there exists G0 ⊂ U with |G0|2 = 0 and such that

(2.3) holds for u and h and every measurable set A ⊂ U \ G0. We set
X0 := u(G0). Now h is sense-preserving and thus monotone. Therefore, h
satisfies Condition (N) by [MM95]. In particular, with the above notation,

|f(E)|2 ≤
ˆ
u−1(E)

J(apmdhz) dz.

On the other hand, applying Theorem 2.6 to u shows thatˆ
u−1(E)

J(apmduz) dz ≤ H2(E) = 0,

and so J(apmduz) = 0 almost everywhere in u−1(E). Since u is weakly
quasiconformal, it moreover follows that apmduz = 0. Then, by Lemmas
2.9 and 2.10 below, J(apmdhz) = 0 almost everywhere in u−1(E) as well.
We conclude that |f(E)|2 = 0.

2.8. Distortion of Sobolev maps. Let U ⊂ R2 be a domain. We define
the maximal and minimal stretches of h ∈ N1,2

loc (U, Y ) at points of approxi-
mate differentiability by

Lh(z) = max{apmdhz(v) : |v| = 1}, lh(z) = min{apmdhz(v) : |v| = 1}.

Recall that maps h ∈ N1,2
loc (U, Y ) are approximately differentiable almost

everywhere.

Lemma 2.9. Let h ∈ N1,2
loc (U, Y ). Then Lh and lh are representatives of

the minimal weak upper gradient and the maximal weak lower gradient of h,
respectively. Moreover,

(2.5) 2−1Lh(z)lh(z) ≤ J(apmdhz) ≤ 2Lh(z)lh(z)

at points of approximate differentiability.

Proof. The first claim concerning upper gradients is [MN24, Lemma 2.14].
A slight modification of the proof gives the claim concerning lower gradients.

Towards (2.5), we may assume that apmdhz is a norm. Then the unit
ball Bz of apmdhz(v) contains a unique ellipse of maximal area Ez, called
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the John ellipse of Bz, which satisfies

(2.6) Ez ⊂ Bz ⊂
√
2Ez,

see [Bal97, Theorem 3.1]. Let Nz be the norm whose unit ball is Ez, and

Mz = max{Nz(v) : |v| = 1}, mz = min{Nz(v) : |v| = 1}.

Then J(Nz) = π/|Ez|2 =Mzmz, and (2.6) gives

Lh(z)lh(z) ≤Mzmz = J(Nz) = 2π/|
√
2Ez|2 ≤ 2π/|Bz|2 = 2J(apmdhz).

On the other hand, (2.6) also gives

J(apmdhz) ≤ J(Nz) =Mzmz ≤ 2Lh(z)lh(z).

The proof is complete. □

We will apply distortion estimates on composed mappings.

Lemma 2.10. Let X and Y be metric surfaces and U ⊂ R2 a domain,
u : U → X weakly quasiconformal, and f ∈ N1,2

loc (X,Y ). Then

lf◦u(z) ≥ ρlf (u(z)) · lu(z) and Lf◦u(z) ≤ ρuf (u(z)) · Lu(z)

for almost every z ∈ U .

Proof. Let Γ0 be the family of paths γ in U so that lu does not satisfy
the lower gradient inequality (2.2) for u on some subcurve of γ or ρlf does
not satisfy the lower gradient inequality for f on some subcurve of u ◦ γ.
Then, since u is weakly quasiconformal and lu, ρ

l
f are weak lower gradients

(Lemma 2.9), we conclude that Mod(Γ0) = 0. Applying Corollary 2.5, we
have

ℓ(f ◦ u ◦ γ) ≥
ˆ
u◦γ

ρlf ds ≥
ˆ
γ
(ρlf ◦ u) · lu ds

for every γ /∈ Γ0 parametrized by arclength. We conclude that (ρlf ◦u) · lu is
a weak lower gradient of f ◦ u. But lf◦u is a maximal weak lower gradient
of f ◦ u by Lemma 2.9. The first inequality follows. The second inequality
is proved in a similar way. □

3. Area inequality on Metric surfaces

Let X and Y be metric surfaces. In this section we establish Theorem 3.1,
an area inequality for Sobolev maps in N1,2

loc (X,Y ) on measurable subsets of
the rectifiable part of X. We apply Theorem 3.1 in Sections 4 and 5 below
to prove our main results, Theorems 1.2 and 1.3.

As in Remark 2.8, let u : U → X be a weakly (4/π)-quasiconformal
parametrization of X provided by Theorem 2.7, and h : U → Y , h := f ◦ u.
Then u ∈ N1,2

loc (U,X) and h ∈ N1,2
loc (U, Y ). By Theorem 2.6, there exists

G0 ⊂ U with |G0|2 = 0 and such that (2.3) holds for both u and h and every
measurable set A ⊂ U \G0. We set X0 := u(G0).
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Theorem 3.1 (Area inequality). If g : Y → [0,∞] and E ⊂ X \ X0 are
Borel measurable, thenˆ

E
g(f(x)) · ρuf (x)ρlf (x) dH2 ≤ 4

√
2

ˆ
Y
g(y) ·N(y, f, E) dy.

If in addition, the map f satisfies Lusin’s condition (N), thenˆ
E
g(f(x)) · ρuf (x)ρlf (x) dH2 ≥ 1

4
√
2

ˆ
Y
g(y) ·N(y, f, E) dy.

In order to establish Theorem 3.1, we make use of the following proposi-
tion which can be seen as a counterpart to Lemma 2.10.

Proposition 3.2. Let f , u and h = f ◦ u be as above. Then

(3.1) ρuf (u(z)) · lu(z) ≤ Lh(z) and lh(z) ≤ ρlf (u(z)) · Lu(z)

for almost every z ∈ U \G0.

Proof. Fix Borel representatives of the maps z 7→ apmduz and z 7→ apmdhz.
Towards the first inequality in (3.1), we denote

G′
0 = G0 ∪ {z ∈ U : lu(z) = 0},

and notice that it suffices to prove the inequality for almost every z ∈ U \G′
0.

By [LW17, Proposition 4.3], there are pairwise disjoint Borel sets Ki ⊂
U \G′

0, i ∈ N, so that

(3.2) |U \ (G′
0 ∪ (∪iKi))|2 = 0

and so that for every i ∈ N we have

(i) apmduz and apmdhz exist for every z ∈ Ki and
(ii) for every ε > 0 there is ri(ε) > 0 so that

|dX(u(z + v), u(z + w))− apmduz(v − w)| ≤ ε|v − w| and

|dY (h(z + v), h(z + w))− apmdhz(v − w)| ≤ ε|v − w|

for every z ∈ Ki and all v, w ∈ R2 with |v|, |w| ≤ ri(ε) and such that
z + v, z + w ∈ Ki.

We will show that if i ∈ N then almost every curve γ inX parametrized by
arclength has the following property: almost every t ∈ γ−1(u(Ki)) satisfies

(3.3) apmd(f ◦ γ)t ≤
Lh(z)

lu(z)
for all z ∈ u−1(γ(t)) ∩Ki.

We show how to conclude the first inequality in (3.1) from (3.3). By
Lemma 2.4, Corollary 2.5 and (3.3), ρ : X → [0,∞] is a weak upper gradient
of f , where ρ(x) = ρuf (x) for x ∈ X \ u(Ki) and

ρ(x) = inf
z∈Ki, u(z)=x

Lh(z)

lu(z)



12 DAMARIS MEIER AND KAI RAJALA

when x ∈ u(Ki). By the definition of minimal weak upper gradients, we
then have that

(3.4) ρuf (x) ≤ ρ(x) for almost every x ∈ u(Ki).

Since Ki ⊂ U \ G′
0, we have lu > 0 and thus J(apmduz) > 0 in Ki.

Combining (3.4) with the Area formula (Theorem 2.6) for u now yields

ρuf (u(z)) · lu(z) ≤ Lh(z)

for almost every z ∈ Ki. The first inequality in (3.1) follows from (3.2).

We now prove (3.3). Denote by X̂ ⊂ X the set of points x for which

N(x, u, U) = 1. By [NR23, Remark 7.2], H2(X \ X̂) = 0. In particular,
almost every rectifiable curve γ : [0, ℓ(γ)] → X parametrized by arclength

satisfies γ(t) ∈ X̂ for H1-almost every 0 < t < ℓ(γ).

We fix such a γ and a density point t0 ∈ γ−1(u(Ki) ∩ X̂) =: T of T .
By Corollary 2.5, we may moreover assume that f ◦ γ is approximately
metrically differentiable at t0. It suffices to show that (3.3) holds for t0 and
the unique z0 = u−1(γ(t0)) ∈ Ki.

Fix a sequence (tj) of points in T converging to t. Then xj := γ(tj) →
γ(t0) =: x0. Moreover, since x0 ∈ X̂, we have zj := u−1(xj) → z0. We
are now in position to apply Property (ii) above. Denoting yj = f(xj) for
j = 0, 1, . . ., (ii) and triangle inequality yield

dX(xj , x0)

|zj − z0|
≥ apmduz0

( zj − z0
|zj − z0|

)
− o(|zj − z0|) ≥ lu(z0)− o(|zj − z0|),

dY (yj , y0)

|zj − z0|
≤ apmdhz0

( zj − z0
|zj − z0|

)
+ o(|zj − z0|) ≤ Lh(z0) + o(|zj − z0|).

Combining the inequalities, we have

(3.5)
dY (yj , y0)

dX(xj , x0)
=
dY (yj , y0) · |zj − z0|
|zj − z0| · dX(xj , x0)

≤ Lh(z0)

lu(z0)
+ o(|zj − z0|).

Since γ is parametrized by arclength, (3.5) gives (3.3). The first inequality
in (3.1) follows. The second inequality follows in a similar way, namely
showing that instead of (3.3) we have

apmd(f ◦ γ)t ≥
lh(z)

Lu(z)

outside suitable exceptional sets. We leave the details to the reader. □

Proof of Theorem 3.1. We may approximate g with simple functions and
replace E with appropriate subsets to see that it suffices to show the claim

for g ≡ 1. We set E′ = E ∩ X̂, where X̂ is as in the proof of Proposition
3.2, and obtain

N(y, h, u−1(E′)) =
∑

x∈f−1(y)

N(x, u, u−1(E′)) = N(y, f, E′)(3.6)

for every y ∈ f(E′).
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The area formula (Theorem 2.6) impliesˆ
E
ρuf (x)ρ

l
f (x) dH2 =

ˆ
E′
ρuf (x)ρ

l
f (x)N(x, u, u−1(E′)) dH2

=

ˆ
u−1(E′)

ρuf (u(z))ρ
l
f (u(z))J(apmduz) dz.

By Lemma 2.9, J(apmduz) ≤ 2Lu(z) · lu(z) for almost every z ∈ u−1(E′).
Moreover, it follows from the proof of Theorem 2.7 given in [NR22] that we
can choose u so that the John ellipse of apmduz (see (2.6)) is a disk. Then
Lu(z) ≤

√
2lu(z), which leads to

J(apmduz) ≤ 2Lu(z) · lu(z) ≤ 2
√
2 · lu(z)2 for almost every z ∈ u−1(E′).

Combining with Lemma 2.10 and Proposition 3.2, we conclude thatˆ
E
ρuf (x)ρ

l
f (x) dH2 ≤ 2

√
2

ˆ
u−1(E′)

Lh(z)lh(z) dz.

Applying Lemma 2.9 and the area formula (Theorem 2.6) to h, we finally
obtain ˆ

E
ρuf (x)ρ

l
f (x) dH2 ≤ 4

√
2

ˆ
u−1(E′)

J(apmdhz) dz

= 4
√
2

ˆ
f(E′)

N(y, h, u−1(E′)) dy.

The theorem follows by combining with (3.6).
For the second statement we note that f satisfying Lusin’s condition (N)

implies H2(f(E \E′)) = 0 as, by [NR23, Remark 7.2], H2(E \E′) = 0. The
rest of the proof is analogous to the arguments above. □

4. Openness and discreteness

Throughout this section let f be as in Theorem 1.2, i.e., f ∈ N1,2
loc (X,R

2)
is non-constant, sense-preserving and satisfies Kf ∈ L1

loc(X). Recall that f
is continuous by Remark 2.3.

A map f : X → R2 is light if f−1(y) is totally disconnected for every
y ∈ R2. It is well-known that if f is continuous, sense-preserving and light,
then f is open and discrete [TY62], [Ric93, Lemma VI.5.6]. Thus, in order
to prove Theorem 1.2 it suffices to show that f is in fact light. The proof of
this fact relies on the following two propositions involving estimates on the
multiplicity of f (recall notation N(y, h,A) for multiplicity in (2.4)).

Proposition 4.1. Suppose that there are s, r0 > 0 and C > 0 such thatˆ 2π

0
N(f(x0) + reiθ, f, B(x0, s)) dθ ≤ C log

1

r
(4.1)

for all r < r0. Then the x0-component of f−1(f(x0)) either is {x0} or
contains an open neighborhood of x0.
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Recall that X is homeomorphic to a planar domain. In particular, for
every x0 ∈ X there is s > 0 so that B(x0, 2s) is a compact subset of X.

Proposition 4.2. Let x0 ∈ X and s > 0 so that B(x0, 2s) ⊂ X is compact.
Then Condition (4.1) holds with some r0, C > 0.

Theorem 1.2 follows by combining Propositions 4.1 and 4.2: since f is
not constant, for every y0 ∈ f(X) every component F of f−1(y0) contains a
point x0 ∈ X which is a boundary point of F . Combining Propositions 4.1
and 4.2, we see that F = {x0}. We conclude that f is light and therefore
open and discrete.

4.1. Proof of Proposition 4.1. Let f : X → R2 be a map of finite distor-
tion and Γ a curve family in X. We define the weighted modulus

ModK−1 Γ = inf
g

ˆ
X

g(x)2

Kf (x)
dH2,

where the infimum is taken over all weakly admissible functions g for Γ.
Let u : U → X be a weakly (4/π)-quasiconformal parametrization of X as

in Theorem 2.7. Let G0 ⊂ U and X0 = u(G0) ⊂ X be as in the paragraph
preceding Theorem 3.1. Recall that |G0|2 = 0. We set X ′ := X \X0.

Lemma 4.3. Let Γ′ be a family of curves in Ω ⊂ X with H1(|γ| ∩X0) = 0
for every γ ∈ Γ′. Then

ModK−1 Γ′ ≤ 4
√
2

ˆ
R2

g(y)2N(y, f,Ω) dy,

whenever g is admissible for Γ = f(Γ′).

Proof. Fix an admissible g for Γ, and let g′ : X → R,

g′(x) := g(f(x)) · ρuf (x) · χΩ∩X′(x).

Here, χE denotes the indicator function on a set E ⊂ X, i.e., χE(x) = 1
if x ∈ E and χE(x) = 0 else. For almost every γ ∈ Γ′ we have that f is
absolutely continuous on γ, H1(|γ| ∩X0) = 0, andˆ

γ
g′ ds =

ˆ
γ
(g ◦ f) · ρuf ds ≥

ˆ
f◦γ

g ds,

see Corollary 2.5. Since g is admissible for Γ = f(Γ′), it follows that g′ is
weakly admissible for Γ′. Moreover,

ModK−1 Γ′ ≤
ˆ
X

g′(x)2

Kf (x)
dH2 =

ˆ
Ω∩X′

g(f(x))2 · ρuf (x)ρlf (x) dH2

≤ 4
√
2

ˆ
R2

g(y)2 ·N(y, f,Ω) dy,

where the last inequality follows from the area inequality, Theorem 3.1. □
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Lemma 4.4. Let φ ∈ N1,2
loc (X,R), and consider E ⊂ R with |E|1 > 0 and

so that each level set φ−1(t), t ∈ E, contains a non-degenerate continuum
ηt. Then H1(ηt ∩X0) = 0 for almost every t ∈ E.

Proof. Note that φ̂ = φ◦u is inN1,2
loc (U,R). For every t ∈ E, let η̂t = u−1(ηt).

Then, since u is continuous and proper, η̂t is a non-degenerate continuum
for every t ∈ E. Moreover, the coarea inequality for Sobolev functions
(Theorem 2.2) shows that H1(η̂t) < ∞ for almost every t ∈ E. For every
such t, there is a surjective two-to-one 1-Lipschitz curve

γ̂t : [0, 2H1(η̂t)] → η̂t,

cf. [RR19, Proposition 5.1]. Let Γ̂ be the family of the curves γ̂t, and

let g : U → [0,∞] be admissible for Γ̂. We apply the coarea inequality for
Sobolev functions (Theorem 2.2) and Hölder’s inequality to obtain

|E|1 ≤
∗ˆ

E

ˆ
γ̂t

g ds dt ≤ 2

∗ˆ

E

ˆ
η̂t

g dH1 dt ≤ 8

π

ˆ
φ̂−1(E)

g · ρuφ̂ dH
2

≤ 8

π

(ˆ
φ̂−1(E)

g2 dH2

)1/2(ˆ
φ̂−1(E)

(ρuφ̂)
2 dH2

)1/2

.

Since ρuφ̂ ∈ L2
loc(U) and |E|1 > 0 it follows that Mod(Γ̂) > 0. As a Sobolev

function, u is therefore absolutely continuous along γ̂t for almost every t ∈ E,
see e.g. [HKST15, Lemma 6.3.1]. Moreover, for almost every t ∈ E we have
that H1(η̂t ∩ G0) = 0, since |G0|2 = 0. Combining these two facts shows
that H1(ηt ∩X0) = 0 for almost every t ∈ E. □

Lemma 4.5. Let V ⊂ X be open and connected, and I, J ⊂ V disjoint non-
trivial continua. There are E ⊂ R, |E|1 > 0, and a family Γ′ = {γt : t ∈ E}
satisfying

(1) every γt ∈ Γ′ is a non-degenerate curve connecting I and J in V ,

(2) there exists φ ∈ N1,2
loc (V,R) such that for every t ∈ E the curve

γt ∈ Γ′ has image in the level set φ−1(t), and
(3) ModK−1 Γ′ > 0.

Proof. Replacing V with a compactly connected subdomain if necessary, we
may assume that

(4.2)

ˆ
V
Kf (x) dH2(x) = K <∞.

Fix points a ∈ I and b ∈ J and a continuous curve η joining a and b in
V . Define φ : X → R by φ(x) = dist(x, |η|). As described in the proof of
[Raj17, Proposition 3.5], we find ε′ > 0, a set E0 ⊂ (0, ε′) with H1(E0) = 0,
and for every t ∈ E = (0, ε′) \ E0 a rectifiable injective curve γt joining I
and J in V , with image in the level set φ−1(t). We set Γ′ = {γt : t ∈ E}.
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Let g : V → [0,∞] be admissible for Γ′. We apply the coarea inequality
for Lipschitz maps (Theorem 2.1) and Hölder’s inequality to obtain

ε′ ≤
ˆ ε′

0

ˆ
γt

g ds dt ≤ 4

π

ˆ
V
g(x)Kf (x)

−1/2Kf (x)
1/2 dH2(x)

≤ 4

π

(ˆ
V
Kf (x) dH2(x)

)1/2(ˆ
V

g(x)2

Kf (x)
dH2(x)

)1/2

.

Combining with (4.2) gives

ModK−1 Γ′ ≥
(
πε′

4K

)2

> 0,

where we used that the estimate above holds for all admissible functions. □

If Z is a metric surface, G ⊂ Z a domain, and E,F ⊂ G disjoint sets, we
denote by Γ(E,F ;G) the family of curves joining E and F in G.

Lemma 4.6. For any ε > 0 the function gε : R2 → [0,∞) defined by

gε(y) = ε

(
|y| log 1

|y|
log log

1

|y|

)−1

χD(0,e−2)

is admissible for Γ({0}, ∂D(0, e−2);R2) and
ˆ
R2

gε(y)
2 log

1

|y|
dy → 0

as ε→ 0.

Proof. Fix γ ∈ Γ({0}, ∂D(0, e−2);R2). We may assume that γ : [0, ℓ(γ)] →
R2 is parametrized by arclength and γ(0) = 0. Then ℓ(γ) ≥ e−2 and |γ(t)| ≤
t for every 0 ≤ t ≤ ℓ(γ). We compute

ˆ
γ
g1 ds =

ˆ ℓ(γ)

0
g1(γ(t)) dt

=

ˆ ℓ(γ)

0

(
|γ(t)| log 1

|γ(t)|
log log

1

|γ(t)|

)−1

dt

≥
ˆ e−2

0

(
t log

1

t
log log

1

t

)−1

dt = ∞,

where the last equality follows since

d

ds
log log log

1

s
= −

(
s log

1

s
log log

1

s

)−1

.

Thus, gε = ε · g1 is admissible for Γ({0}, ∂D(0, e−2);R2) for any ε > 0.
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In order to prove the second claim we use polar coordinates and compute

ˆ
R2

gε(y)
2 log

1

|y|
dy = ε2

ˆ
R2

(
|y|2 log 1

|y|

(
log log

1

|y|

)2
)−1

χD(0,e−2) dy

= ε2
ˆ 2π

0

ˆ e−2

0

(
r log

1

r

(
log log

1

r

)2
)−1

dr dφ.

The last term converges to 0 as ε→ 0 since

d

ds

(
log log

1

s

)−1

=

(
s log

1

s

(
log log

1

s

)2
)−1

.

The second claim follows. □

We are now able to prove Proposition 4.1. Let V0 be the x0-component of
B(x0, s). Denote the x0-component of f−1(f(x0))∩V0 by J . We may assume
that V0 \f−1(f(x0)) ̸= ∅, since otherwise there is nothing to prove. Towards
contradiction, assume that J is a non-trivial continuum. Fix another non-
trivial continuum I ⊂ V0 \ f−1(f(x0)).

By scaling and translating the target we may assume that f(x0) = 0,
f(I) ∩ D(0, e−2) = ∅, and that the constant r0 in Condition (4.1) satisfies
r0 ≥ e−2. Let Γ′ be the curve family from Lemma 4.5. Note that Γ = f(Γ′)
is a subfamily of Γ({0}, ∂D(0, e−2);R2). Hence, we know from Lemma 4.6
that for any ε > 0 the function gε is admissible for Γ. Lemma 4.4 implies
that Lemma 4.3 can be applied to our setting and thus

ModK−1 Γ′ ≤ 4
√
2

ˆ
R2

gε(y)
2N(y, f,B(x0, s)) dy.

Since gε is symmetric with respect to the origin, combining Assumption
(4.1) with polar coordinates yields

ˆ
R2

gε(y)
2N(y, f,B(x0, s)) dy =

ˆ e−2

0
rgε(r)

2

ˆ 2π

0
N(reiθ, f, B(x0, s)) dθ dr

≤ C

ˆ e−2

0
rgε(r)

2 log
1

r
dr = C

ˆ
R2

gε(y)
2 log

1

|y|
dy.

By the second part of Lemma 4.6, the right hand integral converges to 0
as ε goes to 0. Thus, ModK−1 Γ′ = 0, contradicting Lemma 4.5. The proof
is complete.

4.2. Proof of Proposition 4.2. Let x0 and s be as in the statement. We
may assume that f(x0) = 0. We first show that f−1(y) is totally discon-
nected for most points y ∈ f(X) around 0.

Lemma 4.7. Let β′ be the set of those 0 ≤ θ < 2π for which there is Rθ > 0
so that f−1(Rθe

iθ) contains a non-degenerate continuum. Then |β′|1 = 0.
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Proof. We define

φ : X \ f−1(0) → S1, φ(x) =
f(x)

|f(x)|
,

and note that ρuf/|f | is a weak upper gradient of φ. Towards a contradiction

we assume that |β′|1 > 0. Then there are δ, ε > 0 and a set β′δ ⊂ β′,
|β′δ|1 > 0, such that for every θ ∈ β′δ there exists Rθ ∈ [ε, 1] for which

f−1(Rθe
iθ) contains a continuum Eθ with H1(Eθ) ≥ δ. As in the proof of

Lemma 4.4, we see that almost every θ ∈ β′δ the continuum Eθ is the image
of a rectifiable curve γθ, and the modulus of the family of such curves is
positive. By the definition of lower gradients and since f ◦ γθ is constant by
construction, we then have that ρlf = 0 almost everywhere in

E =
⋃
θ∈β′

δ

Eθ.

Furthermore, since f has finite distortion, also ρuf = 0 almost everywhere in
E. Let

F = {x ∈ X : |f(x)| ≥ ε, ρuf (x) = 0} ⊃ E.

We apply the Sobolev coarea inequality (Theorem 2.2) to compute

0 < δ|β′δ|1 ≤
∗ˆ

β′
δ

H1(Eθ) dθ ≤
4

π

ˆ
F

ρuf
|f |

dH2 = 0,

a contradiction. The proof is complete. □

Lemma 4.8. Let β′ be the set in Lemma 4.7. There exists β ⊃ β′ with
|β|1 = 0, and an open Ω′ ⊂ X, such that

(1) f |Ω′ is a local homeomorphism, and
(2) if V = {teiθ : t > 0, θ ∈ β}, then Ω′ ⊃ X \ f−1(V ).

Proof. Set V ′ = {teiθ : θ ∈ β′, t > 0}. Let y ∈ f(X) \ V ′ and x ∈ f−1(y).

Then, since {x} is a component of f−1(y), there is a Jordan domain Ũx in X

such that x ∈ Ũx and y /∈ f(∂Ũx). LetWx be the y-component of R2\f(∂Ũx)
and Ux the x-component of f−1(Wx). It follows that f(∂Ux) ⊂ ∂Wx. Indeed,
otherwise there is a point a ∈ ∂Ux with f(a) ∈Wx and therefore there exists
a neighbourhood Y of f(a) in Wx, but the a-component of f−1(Y ) is not
contained in Ux, which is a contradiction.

The assumption that f is sense-preserving now implies f(∂Ux) = ∂Wx.
Using basic degree theory, we conclude that f−1(z) has at most deg(y, f, Ux)
components in Ux for every z ∈ Wx. Furthermore, arguing as in the proof
of Lemma 4.7 we see that for almost every such z all of these components
are points. In other words,

N(z, f, Ux) ≤ deg(y, f, Ux) <∞
for almost every z ∈Wx. In particular, every x ∈ Ux satisfies the conditions
in Proposition 4.1, and therefore f |Ux is open and discrete.
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We have established the following.

(i) If y ∈ f(X) \ V ′ and x ∈ f−1(y), then x has a neighbourhood Ux
such that f |Ux is open and discrete.

We define

Ω̂ = {x ∈ X : x-component of f−1(f(x)) is {x}}.

Note that if x ∈ Ω̂, then there exists a neighbourhood Y of f(x) such that
the closure of the x-component of f−1(Y ) is compact. As above, we find a
neighbourhood Ux of x such that f |Ux is open and discrete. In particular,

Ω̂ is open. Moreover, it follows from (i) that Ω̂ ⊃ X \ f−1(V ′). We have
shown that

(ii) Ω̂ is open, f |
Ω̂
is open and discrete, and Ω̂ ⊃ X \ f−1(V ′).

Denote by Bf the branch set of f |
Ω̂
, i.e., the set of points where f |

Ω̂
fails to

be locally invertible, and define

β′′ = {0 ≤ θ < 2π : Reiθ ∈ f(Bf ) for some R > 0}.

Recall that Bf is closed and countable, thus β′′ is countable. It follows from

Lemma 4.7 and (ii) that the sets Ω′ = Ω̂ \ Bf and β = β′ ∪ β′′ possess the
desired properties. □

Lemma 4.9. Let m ∈ N, 0 < r < e−2, and assume that B(x0, 2s) is compact
and satisfies f(B(x0, 2s)) ⊂ D(0, 1). If

Em = {0 ≤ θ < 2π : N(reiθ, f, B(x0, s)) = m},

then

m|Em|1 ≤
64
√
2

πs2

ˆ
Fm

Kf dH2 · log 1

r
,

where Fm = {x ∈ X : arg(f(x)) ∈ Em}.

Proof. We assume |Em|1 > 0, otherwise there is nothing to show. Let β and
Ω′ be as in Lemma 4.8. We set E′

m = Em \ β and note that |E′
m|1 = |Em|1

since |β|1 = 0. We also denote

F ′
m = {x ∈ X : arg(f(x)) ∈ E′

m} ⊂ Fm.

Fix θ ∈ E′
m, then

f−1({teiθ : t ≥ r}) ⊂ Ω′.

We can therefore apply path lifting of local homeomorphisms to curves Iθ =
{teiθ : r ≤ t ≤ 1} as follows: if {x1, ..., xm} = f−1(reiθ) ∩ B(x, s) then

for every j ∈ {1, ...,m} there exists a maximal lift γjθ of Iθ starting at xj ,
see [Ric93, Theorem II.3.2]. Note that if φ : X → [0, 2π) is defined by

φ(x) = arg(f(x)), then the image of each γjθ is contained in the level set
φ−1(θ).
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Since B(x, 2s) is compact and f(B(x, 2s)) ⊂ D(0, 1), every curve γjθ con-

nects B(x, s) and X \ B(x, 2s), and so H1(|γjθ |) ≥ s. Moreover, f ||γjθ | is
injective. It follows that

(4.3) s ·m ≤
m∑
j=1

H1(|γjθ |) ≤ H1({x ∈ X : arg(f(x)) = θ})

for every θ ∈ E′
m.

We combine (4.3) with the Sobolev coarea inequality (Theorem 2.2) and
Hölder’s inequality to compute

s ·m · |Em|1 = s ·m · |E′
m|1

≤
ˆ
E′

m

H1({x ∈ X : arg(f(x)) = θ}) dθ

≤ 4

π

ˆ
Fm

ρuf
|f |

dH2 ≤ 4

π

ˆ
Fm

K
1/2
f ·

(ρuf · ρlf )1/2

|f |
dH2

≤ 4

π

(ˆ
Fm

Kf dH2

)1/2(ˆ
F ′
m

ρuf · ρlf
|f |2

dH2

︸ ︷︷ ︸
=:I

)1/2

.

For each j ∈ {1, ...,m} we define the curve family

Γ′
j = {γjθ : t ∈ E′

m}.

Lemma 4.4 applied to Γ′
j shows that H1(|γjθ | ∩ X0) = 0 for almost every

θ ∈ E′
m and every j ∈ {1, ...,m}, where X0 is as in Theorem 3.1. Hence, if

F ′′
m = {x ∈ X : x ∈ |γjθ | for some θ ∈ E′

m and 1 ≤ j ≤ m} ⊃ F ′
m,

then H2(F ′′
m ∩X0) = 0 and N(y, f, F ′′

m) ≤ m for every y ∈ R2. By the area
inequality (Theorem 3.1) and polar coordinates,

I ≤ 4
√
2

ˆ
Em

ˆ 1

r

N(seiθ, f, F ′′
m)

s
ds dθ ≤ 4

√
2 · |Em|1 ·m · log 1

r
.

The lemma follows by combining the estimates. □

Proposition 4.2 follows from Lemma 4.9: notice that by scaling we may
assume that f(B(x0, 2s)) ⊂ D(0, 1), so that the conditions of Lemma 4.9 are
satisfied. Recall that the sets Fm are pairwise disjoint. Therefore, summing
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the estimate in Lemma 4.9 over m gives
ˆ 2π

0
N(reiθ, f, B(x0, s)) dθ =

∞∑
m=1

m|Em|1

≤ C log
1

r

∞∑
m=1

ˆ
Fm

Kf (x) dH2

≤ C log
1

r

ˆ
X
Kf (x) dH2.

We may replace X with a compactly contained subdomain if necessary to
guarantee that Kf is integrable. Proposition 4.2 follows.

5. Regularity of the inverse

In this section we study the regularity of the inverse of a mapping of finite
distortion and prove Theorem 1.3. Let f ∈ N1,2

loc (X,Ω
′) be a homeomorphism

with Kf ∈ L1
loc(X), where Ω′ ⊂ R2. We set ϕ = f−1 : Ω′ → X and define

ψ : Ω′ → [0,∞] by

ψ(y) =
1

ρlf (ϕ(y))
.

Lemma 5.1. We haveˆ
E
ψ(y)2 dy ≤ 2

ˆ
ϕ(E)

Kf (x) dH2(x)

for every Borel set E ⊂ Ω′. In particular, ψ ∈ L2
loc(Ω

′).

Proof. Again, let u : U → X, U ⊂ R2, be a weakly (4/π)-quasiconformal
parametrization and h = f ◦ u. Then h is locally in N1,2(U,R2) and mono-
tone. Therefore, h satisfies Condition (N) and consequently the euclidean
area formula, see [MM95]. Combining the area formula with distortion es-
timates established in previous sections, we have

ˆ
E
ψ(y)2 dy =

ˆ
h−1(E)

J(apmdhz)

ρlf (u(z))
2
dz =

ˆ
h−1(E)

Lh(z) · lh(z)
ρlf (u(z))

2
dz

≤
ˆ
h−1(E)

ρuf (u(z)) · ρlf (u(z))
ρlf (u(z))

2
Lu(z)

2 dz

≤ 2

ˆ
h−1(E)

Kf (u(z)) · J(apmduz) dz.

Here the second equality holds since both the domain and target of h are
euclidean domains and the first inequality holds by Lemma 2.10 and Propo-
sition 3.2. The second inequality holds by (2.6) and recalling that we can
choose u so that the John ellipses of apmduz are disks for almost every z.
The claim now follows from the area formula for u (Theorem 2.6). □
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Lemma 5.2. Suppose α : X → R is 1-Lipschitz. Then v = α◦ϕ is absolutely
continuous on almost every line parallel to coordinate axes, and |∂jv| ≤
16

√
2

π · ψ almost everywhere for j = 1, 2.

Proof. It suffices to consider horizontal lines. Fix a square Q ⊂ Ω′ with sides
parallel to coordinate axes. By scaling and translating, we may assume that
Q = [0, 1]2.

By Lebesgue’s theorem, there exists a set Φ ⊂ (0, 1) of full measure so
that if s0 ∈ Φ then

(5.1)
1

2ε

ˆ
Fε

ψ(y) dy =
1

2ε

ˆ s0+ε

s0−ε

ˆ t2

t1

ψ(t, s) dt ds→
ˆ t2

t1

ψ(t, s0) dt

as ε→ 0 for every 0 ≤ t1 < t2 ≤ 1, where Fε = [t1, t2]× [s0 − ε, s0 + ε].
Fix s0 ∈ Φ. The claim now follows from Lemma 5.1 if we can show that

(5.2) |ϕ(t2, s0)− ϕ(t1, s0)| ≤
16
√
2

π

ˆ t2

t1

ψ(t, s0) dt

for every 0 ≤ t1 < t2 ≤ 1.
Given 0 < ε < min{s0, 1 − s0} we set Eε = ϕ(Fε). Let φ = π2 ◦ f |Eε ,

where π2 denotes projection to the s-axis on the (t, s)-plane. By continuity
of φ, Lemma 4.4, and the Sobolev coarea inequality (Theorem 2.2) applied
to φ, we have

|ϕ(t2, s0)− ϕ(t1, s0)| ≤ δ(ε) +
1

2ε

ˆ s0+ε

s0−ε
H1(φ−1(s) \X0) ds

≤ δ(ε) +
2

πε

ˆ
Eε\X0

ρuf · ρlf
ρlf

χρlf ̸=0 dH
2,

where X0 is the set in the Area inequality (Theorem 3.1) and δ(ε) → 0 as
ε→ 0. Combining with Theorem 3.1, we obtain

(5.3) |ϕ(t2, s0)− ϕ(t1, s0)| ≤ δ(ε) +
8
√
2

πε

ˆ
Fε

ψ(y) dy.

Now (5.2) follows by combining (5.3) and (5.1). □

We are ready to prove Theorem 1.3. Since ϕ is continuous, dX(ϕ(·), x0) ∈
L2
loc(Ω

′) for every x0 ∈ X. By Lemma 5.1 and the ACL-characterization
of Sobolev functions (see [HKST15, Theorem 6.1.17]), we see that every

v in Lemma 5.2 belongs to W 1,2
loc (Ω

′) and satisfies |∇v| ≤ 32ψ
π almost ev-

erywhere. Furthermore, the characterization of Sobolev maps in terms of
post-compositions with 1-Lipschitz functions, i.e., in terms of the functions
v above (see [HKST15, Theorem 7.1.20 and Proposition 7.1.36]), shows that

ϕ ∈ N1,2
loc (Ω

′, X). The proof is complete.

Remark 5.3. When X ⊂ R2, the N1,2
loc (X,R

2)-regularity assumption in The-

orem 1.3 may be replaced with f ∈ N1,1
loc (X,R

2). Moreover, the conclusion
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on the regularity of f−1 is more precise, see [HK06]. While our results

only concern N1,2
loc -maps, it would be interesting to extend the definition

of finite distortion to N1,1
loc -maps between metric surfaces and develop basic

properties including improvements of Theorem 1.3. One cannot expect the
conclusions of Remarks 2.3 and 2.8 to hold in the N1,1-setting without ad-
ditional assumptions; maps f ∈ N1,1

loc (X,R
2) of finite distortion need not be

continuous or satisfy Condition (N) even when X ⊂ R2 (see e.g. [HK14]).

6. Reciprocal surfaces

Recall the geometric definition of quasiconformality : a homeomorphism
f : X → Y is quasiconformal if there exists C ≥ 1 such that

(6.1) C−1Mod f(Γ) ≤ ModΓ ≤ CMod f(Γ)

for each curve family Γ in X.
We say that metric surface X is reciprocal if there exists κ > 0 such that

for every topological quadrilateral Q ⊂ X and for the families Γ(Q) and
Γ∗(Q) of curves joining opposite sides of Q we have

ModΓ(Q) ·ModΓ∗(Q) ≤ κ.

If X is reciprocal, x ∈ X and R > 0 so that X \ B(x,R) ̸= ∅, then by
[NR22, Theorem 1.8] we have

lim
r→0

ModΓ(B(x, r), X \B(x,R);X) = 0.(6.2)

Recall that Γ(E,F ;G) is the family of curves joining E and F in G.
Reciprocal surfaces are the metric surfaces that admit quasiconformal

parametrizations by euclidean domains, see [Raj17], [Iko22], [NR22]. See
[Raj17], [RR19], [EBPC22], [MW24], [NR23] and [NR22] for further prop-
erties of reciprocal surfaces.

It is desirable to find non-trivial conditions which imply reciprocality. For
instance, one could hope that the existence of maps satisfying the conditions
of Theorem 1.2 forces X to be reciprocal. However, this is not the case.

Proposition 6.1. Given an increasing ϕ : [1,∞) → [1,∞) so that ϕ(t) → ∞
as t→ ∞, there is a non-reciprocal metric surface X and a homeomorphism
f : X → R2 so that f ∈ N1,2

loc (X,R
2) and ϕ(Kf ) is locally integrable.

The map f0 defined in the proof below is known as Ball’s map ([Bal81])
and illustrates that the integrability condition in Theorem 1.2 is sharp.

Proof. Let f0 : R2 → R2 be defined by f0(x, y) = (x, η(x, y)), where

η(x, y) =


|x|y, 0 ≤ |x| ≤ 1, 0 ≤ |y| ≤ 1,
(2(|y| − 1) + |x|(2− |y|)) y|y| , 0 ≤ |x| ≤ 1, 1 ≤ |y| ≤ 2,

y, otherwise.

Note that f0 is not open and discrete since it maps the segment I =
{0}× [−1, 1] to the origin. Also, f0 is the identity outside (−1, 1)× (−2, 2).
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Calculating the Jacobian matrix shows that f0 is sense-preserving and Lip-
schitz, Kf0 is bounded outside (−1, 1)× (−1, 1), and

(6.3) Kf0(x, y) =
1

|x|
for all (x, y) ∈ (−1, 1)× (−1, 1).

It follows that Kf0 is not in L
1
loc(R2) but Kf0 ∈ Lploc(R

2) for every 0 < p < 1.
We change the metric on R2 to obtain the desired metric surface X and

f : X → R2. Define ω : R2 → [0, 1] by ω(z) = 1 when dist(z, I) ≥ 1 and by

(6.4) ω(z) =
1

ϕ(dist(z, I)−1)

otherwise, where I = {0} × [−1, 1]. Moreover, let

dω(x, y) := inf
γ

ˆ
γ
ω ds,

where the infimum is taken over all rectifiable curves γ connecting x, y ∈ R2.
Now X = (R2/I, dω) is homeomorphic to R2 and has locally finite H2-

measure. Let π : R2 → R2/I be the projection map, idω : R2/I → X the
identity, and πω : R2 → X, πω = idω ◦π.

Since modulus is conformally invariant and ω is a conformal change of
metric outside I, the family of curves joining any non-trivial continuum and
the point p := πω(I) in X has positive modulus. By (6.2), it follows that X
is non-reciprocal.

We define f : X → R2 by f := f0 ◦ π−1
ω . Then f is absolutely continuous

on almost every rectifiable curve in X, and ρuf (z) ≤ (ω(z))−1 · L for almost
every z ∈ X, where L is the Lipschitz constant of f0. Therefore,ˆ

E
(ρuf )

2 dH2 ≤ L2|π−1
ω (E)|2

for every Borel set E ⊂ X. We conclude that f ∈ N1,2
loc (X,R

2).
It remains to estimate the integral of ϕ(Kf ). To this end, notice that

since ω is a conformal change of metric, we have

Kf (z) = Kf0(π
−1
ω (z))

for almost every z ∈ X. Therefore, it suffices to check that ϕ(Kf ) is inte-
grable over E = πω((−1, 1)× (−1, 1)). By (6.3) and (6.4), we haveˆ
E
ϕ(Kf (z)) dH2 =

ˆ
(−1,1)2

ϕ(Kf0) · ω2 dx dy ≤
ˆ
(−1,1)2

1

ϕ(|x|−1)
dx dy <∞.

The proof is complete. □

We prove in [MR24, Theorem 1.3] that if there is a non-constant f ∈
FDP(X,R2) (not necessarily a homeomorphism) with bounded distortion,
then X is reciprocal. We also show (see [MR24, Corollary 1.2]) that the
geometric definition (6.1) is quantitatively equivalent with the path defini-
tion (requiringKf to be bounded) of quasiconformality for homeomorphisms
f : X → R2. By Williams’ theorem [Wil12], the equivalence between the



MAPPINGS OF FINITE DISTORTION 25

analytic (requiring C(x) to be bounded in (1.5)) and geometric definitions
of quasiconformality for homeomorphisms holds in even greater generality.

7. Existence of maximal weak lower gradients

Let X and Y be metric surfaces. We now complete the discussion in
Section 2.3 by proving that each f ∈ N1,2

loc (X,Y ) has a maximal weak lower

gradient. Precisely, we claim that there is a weak lower gradient ρlf of f so

that if ρl is another weak lower gradient of f then

ρlf (x) ≥ ρl(x) for almost every x ∈ X.

Moreover, ρlf is unique up to a set of measure zero. The proof of these
facts is analogous to the existence of minimal weak upper gradients, see
[HKST15, Theorem 6.3.20].

First, recall that f is absolutely continuous along almost every curve
[HKST15, Lemma 6.3.1]. It follows from [HKST15, Lemma 5.2.16] that if
ρ is a weak lower gradient of f and σ : X → [0,∞] is a Borel function such
that σ = ρ almost everywhere in X, then σ is a weak lower gradient of f . In
particular, if E ⊂ X is Borel and satisfies H2(E) = 0 then ρχX\E is a weak
lower gradient of u, compare to [HKST15, Lemma 6.2.8]. We conclude that
if there exists a maximal weak lower gradient ρlf of f , it has to be unique
up to sets of measure zero.

To prove existence of ρlf , we may assume without loss of generality that

H2(X) <∞. Arguing exactly as in the proof of [HKST15, Lemma 6.3.8], we
can show that if σ, τ ∈ L2(X) are weak lower gradients of a map f : X → Y
that is absolutely continuous along almost every curve in X and if E is a
measurable subset of X then the function

ρ = σ · χE + τ · χX\E

is a weak lower gradient of f . Now, by choosing E = {x ∈ X : σ > τ}, it
follows that ρ : X → [0,∞] defined by

ρ(x) = max{σ(x), τ(x)}
is a 2-integrable weak lower gradient of f . After applying Fuglede’s lemma,
see e.g. [HKST15, Section 5.1], we established the following lemma.

Lemma 7.1. If f : X → Y is absolutely continuous along almost every
curve, then the collection L of 2-integrable weak lower gradients of f is
closed under pointwise maximum operations.

Let (ρi) ⊂ L be a sequence such that

lim
i→∞

||ρi||L2 = sup{||ρ||L2 : ρ ∈ L}.

By Lemma 7.1, the sequence (ρ′i) given by ρ′i(x) = max1≤j≤i ρj(x) is in L.
Note that (ρ′i) is pointwise increasing. The limit function

ρlf := lim
i→∞

ρ′i
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is Borel by [HKST15, Proposition 3.3.22]. The monotone convergence the-
orem implies that ρ′i → ρlf in L2(X) and by Fuglede’s lemma ρlf ∈ L, see
e.g. [HKST15, Section 5.1]. By construction, ρlf is a maximal weak lower
gradient of f . The proof is complete.
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