Quasiconformal mappings in the plane, Exercise set 9 Due 18.11. 2016

Recall: the winding number of a smooth $\gamma: T(0,1) \rightarrow \mathbb{C}$ around $z_{0} \notin|\gamma|$ is

$$
W_{\gamma}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-z_{0}} \in \mathbb{Z}
$$

1. Extend the definition to continuous paths as follows: Show that there is $n \in \mathbb{Z}$ such that if $\left(\gamma_{j}\right)$ is a sequence of smooth paths converging uniformly to γ, then $W_{\gamma_{j}}\left(z_{0}\right)=n$ for all $z_{0} \notin|\gamma|$ and j large enough (recall the complex logarithm).

Let $f: \Omega \rightarrow \mathbb{C}$ be continuous, $G \subset \subset \Omega$ a positively oriented (see Section III.2) domain bounded by finitely many disjoint Jordan curves γ_{k}, and $w_{0} \notin f(\partial G)$. The degree of f at w_{0} with respect to G is $\operatorname{deg}\left(w_{0}, f, G\right)=\sum_{k} W_{f \circ \gamma_{k}}\left(w_{0}\right)$.
A continuous $f: \Omega \rightarrow \mathbb{C}$ is sense-preserving, if $\operatorname{deg}\left(w_{0}, f, G\right)>0$ for all G and all $w_{0} \in f(G) \backslash f(\partial G)$. The degree has the following properties:
(i) Let $H_{t}: \Omega \times[0,1] \rightarrow \mathbb{C}$ be continuous, and $w_{0} \notin H(\partial G \times[0,1])$. Then $\operatorname{deg}\left(w_{0}, H_{0}, G\right)=\operatorname{deg}\left(w_{0}, H_{1}, G\right)$.
(ii) If $L: \mathbb{C} \rightarrow \mathbb{C}$ is linear and $\operatorname{det}(L) \neq 0$, then for all G and all $w_{0} \in L(G)$, $\operatorname{deg}\left(w_{0}, L, G\right)=\operatorname{det}(L) /|\operatorname{det}(L)|$.
(iii) If $w_{0} \notin f(\bar{G})$, then $\operatorname{deg}\left(w_{0}, f, G\right)=0$.
(iv) If w_{0} and w_{1} belong to the same component of $\mathbb{C} \backslash f(\partial G)$, then $\operatorname{deg}\left(w_{0}, f, G\right)=\operatorname{deg}\left(w_{1}, f, G\right)$
2. Let $f: \Omega \rightarrow \mathbb{C}$ be continuous. Moreover, assume that f is differentiable at z_{0} with $\operatorname{det}\left(D f\left(z_{0}\right)\right)>0$. Show that $\operatorname{deg}\left(f\left(z_{0}\right), f, \mathbb{D}\left(z_{0}, \epsilon\right)\right)=1$ when ϵ is small (hint: Apply (i) and (ii) to $H_{t}(z)=(1-t) f(z)+t\left(D f\left(z_{0}\right)\left(z-z_{0}\right)+f\left(z_{0}\right)\right)$).
3. Give a continuous $f: \mathbb{C} \rightarrow \mathbb{C}$ such that neither f nor \bar{f} is sense-preserving.
4. Let $f: \Omega \rightarrow \Omega^{\prime}$ be quasiconformal. Show that f is sense-preserving (hint: Recall that f is differentiable and $J(z, f)>0$ a.e.. Apply Problem 2, the definition of degree, and properties (iii) and (iv)).
5. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a sense-preserving local homeomorphism. Assume that there exists a constant $M>0$ such that $|f(z)-z| \leq M$ for all $z \in \mathbb{C}$. Show that f is a homeomorphism.

