Quasiconformal mappings in the plane, Exercise set 7
 Due 4.11. 2016

1. Show that the complex derivatives satisfy

$$
\overline{\left(f_{z}\right)}=(\bar{f})_{\bar{z}}, \quad \overline{\left(f_{\bar{z}}\right)}=(\bar{f})_{z} .
$$

2. Show that the complex derivatives satisfy

$$
(g \circ f)_{z}=\left(g_{\zeta} \circ f\right) f_{z}+\left(g_{\bar{\zeta}} \circ f\right) \overline{\left(f_{\bar{z}}\right)}, \quad(g \circ f)_{\bar{z}}=\left(g_{\zeta} \circ f\right) f_{\bar{z}}+\left(g_{\bar{\zeta}} \circ f\right) \overline{\left(f_{z}\right)}
$$

(hint: Express $\left.D f(z) h=f_{z}(z) h+f_{\bar{z}}(z) \bar{h}, D g(w) k=g_{w}(w) k+g_{\bar{w}}(w) \bar{k}\right)$.
3. Show that the complex integrals satisfy

$$
\int_{\gamma} f d z=\int_{\gamma} f d x+i \int_{\gamma} f d y, \quad \int_{\gamma} f d \bar{z}=\int_{\gamma} f d x-i \int_{\gamma} f d y .
$$

4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be continuous. Show that for every $z \in \mathbb{C}$

$$
\lim _{\epsilon \rightarrow 0} \int_{T(z, \epsilon)} \frac{f(w) d w}{w-z}=2 \pi i f(z), \quad \lim _{\epsilon \rightarrow 0} \int_{T(z, \epsilon)} \frac{f(w) d \bar{w}}{w-z}=0
$$

(the circles are positively oriented).
5. Let Ω be a bounded Jordan domain. Prove the isoperimetric inequality

$$
|\Omega| \leq \frac{\ell(\partial \Omega)^{2}}{4 \pi}
$$

as follows: Use Green's formula to conclude

$$
\int_{\partial \Omega} \int_{\partial \Omega} \frac{\bar{w}-\bar{z}}{w-z} d z d w=-2 i \int_{\partial \Omega} \int_{\Omega} \frac{1}{w-z} d A(z) d w
$$

then apply winding numbers on the right.
6. Let $\Omega=(0,1)^{2} \subset \mathbb{C}$, and $g \in W^{1,1}(\Omega, \mathbb{C}) \cap C(\bar{\Omega})$. Prove one part of Green's formula (see the proof of Theorem 2.1):

$$
\int_{\Omega} g_{\bar{z}} d A=\frac{-i}{2} \int_{\partial \Omega} g d z
$$

