Quasiconformal mappings in the plane, Exercise set 3
 Due 7.10. 2016

You will prove the following Theorem: Let $f: \mathbb{C} \rightarrow \Omega$ be K-quasiconformal. Then $\Omega=\mathbb{C}$, and f is weakly H-quasisymmetric with H depending only on K.
Recall: $T\left(z_{0}, t\right)$ is the circle with center z_{0} and radius t.

1. Fix $\mathbb{D}\left(z_{0}, r\right)$ and $a>1$. Denote $E=\left\{z \in \mathbb{D}\left(z_{0}, a r\right): m<|f(z)|<M\right\}$, and assume $[m, M] \subset|f|\left(T\left(z_{0}, t\right)\right)$ for every $r<t<a r$. Show that

$$
\begin{equation*}
(a-1) r \log \frac{M}{m} \leq \int_{E} \frac{\|D f\|}{|f|} d A \tag{1}
\end{equation*}
$$

(hint: apply the fundamental theorem of calculus to $\log |f|$).
2. Apply (1), Hölder's inequality, and change of variables to show

$$
\begin{equation*}
\log \frac{M}{m} \leq \frac{2 \pi^{2} K a^{2}}{(a-1)^{2}} \tag{2}
\end{equation*}
$$

3. Fix $s>0$. Let a, b be distinct points in $T(0, s)$. Show that there exist $z_{0} \in \mathbb{D}(0, s)$ and $0<r \leq s / 2$ such that, for every $r<t<\sqrt{3} r$, either
(i) $0, b \in \mathbb{D}\left(z_{0}, t\right)$ and $a \notin \mathbb{D}\left(z_{0}, t\right)$, or
(ii) $a, b \in \mathbb{D}\left(z_{0}, t\right)$ and $0 \notin \mathbb{D}\left(z_{0}, t\right)$
(hint: Draw a triangle with vertices $0, a, b$. Divide to two cases depending on whether or not $|a-b| \leq s=|b|)$.
4. Let s, a, b, z_{0} and r be as above. Let E be connected set joining 0 to a, and F a connected set joining b to $T(0,2 s)$. Show that, for every $r<t<\sqrt{3} r, T\left(z_{0}, t\right)$ intersects both E and F (it suffices to give an intuitive argument).
5. Show that there exists $H=H(K)$ such that $H_{f}(z, s) \leq H$ for every $z \in \mathbb{C}$ and $s>0$ (hint: You may assume $z=0=f(z)$. Draw the smallest disc D_{M} centered at 0 containing $f(\mathbb{D}(0, s))$, and similarly the largest disc D_{m} contained in it. Choose $E=f^{-1} \bar{D}_{m}, F=\mathbb{C} \backslash f^{-1}\left(D_{M}\right)$, and apply Problems 2 and 4).
6. Show that $\Omega=\mathbb{C}$ (hint: If not, there exists a $w \in \partial f(\mathbb{C})$. Apply weak quasisymmetry of f to a suitable disc to get a contradiction).
