Quasiconformal mappings in the plane, Exercise set 2 Due 30.9. 2016

Let $\varphi : \mathbb{C} \to [0, \infty)$ be the smoothing kernel in Theorem 7.1 of the lectures, $u \in L^1_{\text{loc}}(\Omega)$, and $u^{\epsilon} = u \star \varphi_{\epsilon}, \epsilon > 0$.

- 1. Apply Dominated Convergence to show that u^{ϵ} has partial derivatives that satisfy $\partial_j u^{\epsilon} = u \star \partial_j \varphi_{\epsilon}$. Similarly, show that $u^{\epsilon} \in C^{\infty}$.
- **2.** Let $V \subset \subset \Omega$.
 - (i) Change variables to show that $u^{\epsilon}(z) = \int_{\mathbb{D}} \varphi(w) u(z \epsilon w) dA(w)$ for all $z \in V$ and $\epsilon > 0$ small enough.
 - (ii) Let u be continuous. Apply (i) and continuity to show that $u^{\epsilon} \to u$ uniformly in V.
- **3.** Let $u \in L^p(\Omega)$ and $V \subset \subset \Omega$.
 - (i) Apply Exercise 2(i) and Hölder's inequality to show

$$|u^{\epsilon}(z)| \leq \left(\int_{\mathbb{D}} \varphi(w)|u(z-\epsilon w)|^p \, dA(w)\right)^{1/p} \tag{1}$$

for all $z \in V$ and $\epsilon > 0$ small enough.

- (ii) Apply (1) to conclude that $||u^{\epsilon}||_{p,V} \leq ||u||_{p,\Omega}$.
- (iii) Real analysis fact: For every $\delta > 0$ there exists a continuous $v : \Omega \to \mathbb{R}$ such that

$$\int_{\Omega} |u - v|^p \, dA < \delta.$$

Combine with (ii) and Exercise 2(i) to show that $u^{\epsilon} \to u$ in $L^{p}(V)$.

- 4. Let $u \in W^{1,p}_{\text{loc}}(\Omega)$.
 - (i) Let $z \in \Omega$, $d(z, \partial \Omega) \ge \epsilon$. Apply Exercise 1 to show that the weak derivatives of u satisfy $\partial_j u^{\epsilon} = \varphi_{\epsilon} \star D_j u$.
 - (ii) Apply (i) and Exercise 3 to show that $u^{\epsilon} \to u$ in $W^{1,p}_{\text{loc}}(\Omega)$.
- 5. Another real analysis fact (Lebesgue differentiation theorem): Let $u \in L^1_{loc}(\Omega)$. Then

$$\lim_{r \to 0} r^{-2} \int_{\mathbb{D}(z,r)} u(z) - u(w) \, dA(w) = 0$$

for almost every $z \in \Omega$. Show that $u^{\epsilon}(z) \to u(z)$ for almost every $z \in \Omega$.