Quasiconformal mappings in the plane, Exercise set 10 Due 25.11. 2016

Let Γ be a family of rectifiable paths in \mathbb{C}. The conformal $\operatorname{modulus} \bmod (\Gamma)$ of Γ is $\bmod (\Gamma)=\inf _{\rho \in X(\Gamma)} \int_{\mathbb{C}} \rho^{2} d A$, where

$$
X(\Gamma)=\left\{\rho: \mathbb{C} \rightarrow[0, \infty] \text { Borel measurable : } \int_{\gamma} \rho d s \geq 1 \quad \forall \gamma \in \Gamma\right\} .
$$

1. Let $f: \Omega \rightarrow \Omega^{\prime}$ be conformal. Show that $\bmod (\Gamma)=\bmod (f \Gamma)$ for all families
Γ of paths in Ω, where $f \Gamma=\{f \circ \gamma: \gamma \in \Gamma\}$ (hint: since the inverse of f is also conformal, it suffices to show " \leq ". Given $\rho \in X(f \Gamma)$), show that $\left.\rho^{\prime}=\|D f\|(\rho \circ f) \in X(\Gamma)\right)$.

Let $A \subset \hat{\mathbb{C}}$ be a domain homeomorphic to $A(r, R)=\mathbb{D}(0, R) \backslash \overline{\mathbb{D}}(0, r)$ and bounded by Jordan curves η_{1} and η_{2}. We denote $\bmod (A):=\bmod \left(\Gamma_{A}\right)$, where

$$
\Gamma_{A}=\left\{\gamma:[a, b] \rightarrow A \text { rectifiable : } \gamma(a) \in \eta_{1}, \gamma(b) \in \eta_{2}\right\}
$$

2. Show that $\rho(z)=|z|^{-1} \log ^{-1}(R / r) \chi_{A(r, R)} \in X\left(\Gamma_{A(r, R)}\right)$, and

$$
\begin{equation*}
\bmod (A(r, R)) \leq \int_{\mathbb{C}} \rho^{2} d A=2 \pi\left(\log \frac{R}{r}\right)^{-1} \tag{1}
\end{equation*}
$$

(hint: For the first claim, reparametrize $\gamma \in \Gamma_{A(r, R)}$ by arc length to get $\tilde{\gamma}$: $[r, r+\ell(\gamma)] \rightarrow A(r, R)$. Notice that $\ell(\gamma) \geq R-r$ and $|\tilde{\gamma}(t)| \leq t$ for every $t)$.
3. Show that (1) is an equality (hint: Fix $\rho \in X(A(r, R))$. Then $1 \leq \int_{I(\theta)} \rho d s$ for all radial segments $I(\theta)$. Apply polar coordinates and Fubini's theorem).
4. Let $0<a<1$ and \mathbb{H}_{+}the upper half plane. Show that

$$
\bmod \left(\mathbb{H}_{+} \backslash \overline{\mathbb{D}}(i, a)\right)=2 \pi\left(\log \frac{1+a+\sqrt{1-a^{2}}}{1+a-\sqrt{1-a^{2}}}\right)^{-1}
$$

(hint: Find a Möbius transformation of form $T(z)=(z-b i) /(z+b i)$ mapping $\mathbb{H}_{+} \backslash \overline{\mathbb{D}}(i, a)$ onto a concentric annulus. Then apply Problems 1 and 3$)$.

Fact: A homeomorphism f is K-quasiconformal if and only if $K^{-1} \bmod (\Gamma) \leq$ $\bmod (f \Gamma) \leq K \bmod (\Gamma)$ for all Γ (one direction is basically Problem 1, the other direction is proved using the methods in Exercise Set 3 and II. 5 of Lectures).
5. Does there exist a 2-quasiconformal $f: A(1,2) \rightarrow \mathbb{H}_{+} \backslash \overline{\mathbb{D}}(i, 1 / 2)$?
6. Show that there exists a conformal map $f: A \rightarrow A(1, R)$ if (and only if) $\bmod (A)=2 \pi \log ^{-1}(R)$ (hint: after translating the origin, you can map A onto a "vertical strip" V with the multivalued complex logarithm. Apply the Riemann mapping theorem to map V onto $(a, b) \times \mathbb{R}$, then show that composing with the exponential function gives a conformal map).

