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Abstract. We give a negative answer to the rigidity conjecture of
He and Schramm by constructing a rigid circle domain Ω on the Rie-

mann sphere Ĉ with conformally non-removable boundary. Here rigidity
means that every conformal map from Ω onto another circle domain is
a Möbius transformation, and non-removability means that there is a

homeomorphism of Ĉ which is conformal on Ĉ \∂Ω but not everywhere.
Our construction is based on a theorem of Wu, which states that

the product of any Cantor set E with a sufficiently thick Cantor set F
is non-removable. We show that one can choose E and F so that the
complement of the union of E × F and suitably placed disks is rigid.

The proof of rigidity involves a metric characterization of conformal
maps, which was recently proved by Ntalampekos. The other direction
of the rigidity conjecture, i.e., whether removability of the boundary
implies rigidity, remains open.

1. Introduction

A subdomain Ω of the Riemann sphere Ĉ is a circle domain if every
connected component of ∂Ω is a circle or a point. The long-standing Koebe
conjecture [Koe08] asserts that every subdomain of Ĉ admits a conformal
map f onto a circle domain. Koebe proved that every finitely connected
domain satisfies the conjecture and that f is unique up to postcomposition
by a Möbius transformation.

Uniqueness is equivalent to ridigity : a circle domain Ω is (conformally)
rigid, if every conformal map f : Ω → Ω′ onto another circle domain is
the restriction of a Möbius transformation. Complements of Cantor sets K
with positive area are basic examples of non-rigid circle domains; solving
the Beltrami equation (see e.g. [Ahl66], [AIM09]) with coefficient µ = 1

2χK

yields a quasiconformal homeomorphism which is conformal only in Ĉ \K.
In a breakthrough work [HS93], He and Schramm applied the rigidity

of countably connected circle domains to verify Koebe’s conjecture for all
countably connected domains. In [HS94], they moreover proved the rigidity
of circle domains whose boundary has σ-finite length. Further sufficient con-
ditions for rigidity were established by Ntalampekos and Younsi in [NY20],
[You16], and [Nta23] (see also [BKM09], [Bon11], [Mer12]).
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Towards a characterization of rigid circle domains Ω, He and Schramm
[HS94] pointed out connections to conformal removability, and conjectured
that rigidity of Ω is equivalent to the conformal removability of ∂Ω. Here
a compact K ⊂ Ĉ is conformally removable (or CH-removable), if every

homeomorphism h : Ĉ → Ĉ, which is conformal on Ĉ \ K, is a Möbius
transformation. Our main result gives a negative answer.

THEOREM 1.1. There is a rigid circle domain Ω ⊂ Ĉ such that ∂Ω is

conformally non-removable.

The proof below shows that the answer to another version of the rigidity
conjecture given in [HS94], which asks if rigidity is equivalent to the confor-
mal removability of every Cantor set contained in ∂Ω, is also negative.

It follows from the definitions that if the boundary of a rigid circle domain
is a Cantor set K, then K is conformally removable. The other direction of
the rigidity conjecture, which asks if circle domains with removable bound-
aries are rigid, remains open even for domains with Cantor set boundaries.

Conformal removability is an active and challenging research topic, see
e.g. [JS00], [You15], [Nta19], [Nta24a], [Nta24c], and the references therein.
A major difficulty is that constructing non-trivial conformal maps f out-
side exceptional sets becomes considerably harder if one also requires the
existence of a homeomorphic extension of f to Ĉ.

A basic example of a non-removable set isK = E×[0, 1] for any Cantor set
E: one can apply an essentially 1-dimensional construction, starting with a
continuous measure on E, to produce a non-trivial homeomorphism which is
conformal off K. Much more involved constructions of non-removable sets
were given by Kaufman [Kau84], Bishop [Bis94], and Wu [Wu98], whose
result is an important ingredient of the proof of Theorem 1.1. Here cap is
the logarithmic capacity, see e.g. [Pom92, Ch. 9].

THEOREM 1.2 ([Wu98]). Let E and F be two Cantor sets in R. If

(1.1) cap([a, b] \ F ) < cap([a, b])

for some interval [a, b], then E × F is conformally non-removable.

Although the proof of Theorem 1.2 is subtle, the rough idea is similar to
the case E×[0, 1] above. Namely, by Ahlfors and Beurling [AB50], Condition

(1.1) yields a non-trivial conformal embedding f : Ĉ \ ({0}×F ) → Ĉ. Such
an f cannot admit a continuous extension to Ĉ. However, given a continuous
probability measure µ on E, one can produce a global homeomorphism that
is conformal off E × F , by considering averages of the map f with respect
to µ in the real variable. Thus, E × F is non-removable.

To prove Theorem 1.1 we choose a thick Cantor set F satisfying (1.1), a

thin Cantor set E, and closed disks Dj . We let Ω = Ĉ \ ((E×F )∪ (∪jDj)),
and show that disks Dj can be placed so that every conformal map f : Ω →
Ω′ between circle domains must have bounded eccentric distortion. There-
fore we can, after extending f to a homeomorphism of Ĉ using a familiar
reflection (Schottky group) method, apply a recent result of Ntalampekos
[Nta24b] to prove that f is a Möbius transformation. Thus Ω is rigid. But
since ∂Ω ⊃ E×F , Theorem 1.2 shows that ∂Ω is conformally non-removable.
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2. Proof of Theorem 1.1: Construction of Ω

To start the proof of Theorem 1.1, we construct the complement of a
circle domain Ω by using the basic building block in Section 2.1 followed by
an iteration procedure in Section 2.2.

2.1. Basic building block. We fix an even integer N ⩾ 2 and let In∗ ,
n ∈ {1, . . . , N}, be closed segments with equal length ℓ(In∗ ) =: 2s obtained
by removing N − 1 open segments of length a from [0, 1]. The segments are
ordered so that I1∗ contains 0 and IN∗ contains 1.

We remove another open segment of length a from the middle of each In∗
to obtain segments Jn

∗ (Do) and Jn
∗ (Up) of equal length s − a

2 , containing
the left, respectively right, endpoint of In∗ .

Next, we fix ϵ > 0 and define the following subsets of C for n ∈ {1, . . . , N}:

In(Le) = −ϵ+ iIn∗ , I
n(Ri) = ϵ+ iIn∗ ,

Jn(Le,Do) = −ϵ+ iJn
∗ (Do), Jn(Le,Up) = −ϵ+ iJn

∗ (Up),

Jn(Ri,Do) = ϵ+ iJn
∗ (Do), Jn(Ri,Up) = ϵ+ iJn

∗ (Up).

We denote by Rn the closed rectangle whose vertical sides are the segments
In(Le) and In(Ri), and by iyn the center of Rn. Finally, let Dn(Le) and
Dn(Ri) be the closed disks with radius s and centers −2ϵ − s + iyn and
2ϵ+ s+ iyn, respectively.

2.2. Iteration. Given the sequence of integers Nj defined below, we denote
by Nk the collection of words of length k with letters nj ∈ {1, . . . , Nj}, i.e.,

Nk =
{
ñ = n1n2 · · ·nk : nj ∈ {1, . . . , Nj} for all j ∈ {1, . . . , k}

}
.

We also denote Wk = Mk ×Nk, where

Mk =
{
m̃ = m1m2 · · ·mk : mj ∈ {Le,Ri} for all j ∈ {1, . . . , k}

}
.

We apply the construction in Section 2.1 with parameters N = N1, a =
a1, s = s1, ϵ = ϵ1 satisfying

(2.1) N1 = 2, ϵ1 =
a1
100

=
s1
105

.

We obtain rectangles R1, R2, as well as the other sets defined above. We
complete the first step of the construction by “duplicating”, i.e., if n1 ∈
{1, 2} we define

Rw =

{
−2 +Rn1 , w = (Le, n1) ∈ W1,
2 +Rn1 , w = (Ri, n1) ∈ W1,

and use similar notation for the other sets constructed. Altogether, after
the first step we have two copies of the sets constructed in Section 2.1;
one on the left half-plane and another one on the right half-plane, e.g.,
J (Le,2)(Le,Up) = J2(Le,Up) − 2 and J (Ri,2)(Le,Up) = J2(Le,Up) + 2. See
Figure 1 for an illustration.

We then assume that rectangles

(2.2) Rw = [xm̃ − tk−1, x
m̃ + tk−1]× [yñ − rk−1, y

ñ + rk−1]
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Figure 1. First step of the construction.

and disks Dw(Le), Dw(Ri) with radius rk−1 and centers

(2.3) xm̃ ± (2tk−1 + rk−1) + iyñ

have been constructed for all w = (m̃, ñ) ∈ Wk−1, k ⩾ 2. The coordinate
xm̃ does not depend on ñ, and the coordinate yñ does not depend on m̃. By
the first step above we have r1 = s1, x

Le = −2, xRi = 2, and t1 = ϵ1.
Intervals Jw(·,Do) and Jw(·,Up) are obtained by removing an open in-

terval of length δk−1 from Iw(·);

Iw(·) = xm̃ ± tk−1 + i[yñ − rk−1, y
ñ + rk−1],

Jw(·,Do) = xm̃ ± tk−1 + i

[
yñ − rk−1, y

ñ − δk−1

2

]
,(2.4)

Jw(·,Up) = xm̃ ± tk−1 + i

[
yñ +

δk−1

2
, yñ + rk−1

]
.

We fix such a w. Our goal is to construct the segments, rectangles and
disks corresponding to all the “children” w′ = (m̃mk, ñnk) ∈ Wk of w. We
denote by ϕw

Do and ϕw
Up the homotheties (i.e., maps z 7→ αz+β, where α > 0

and β ∈ C) for which

ϕw
Do

(
xm̃ + i(yñ − rk−1)

)
= 0 and ϕw

Do

(
xm̃ + i(yñ − δk−1

2
)
)
= i,

ϕw
Up

(
xm̃ + i(yñ +

δk−1

2
)
)
= 0 and ϕw

Up

(
xm̃ + i(yñ + rk−1)

)
= i.

Then there is ϵ̂k−1 > 0 so that

ϕw
Do(J

w(Le,Do)) = ϕw
Up(J

w(Le,Up)) = −ϵ̂k−1 + i[0, 1] and

ϕw
Do(J

w(Ri,Do)) = ϕw
Up(J

w(Ri,Up)) = ϵ̂k−1 + i[0, 1].

Let N = Nk and a = ak, s = sk, ϵ = ϵk > 0 be the numbers for which

(2.5) Nk = 2

⌈
100

ϵ̂k−1

⌉
,

ak
sk

=
1

exp((2Nk)2k)
, ϵk = min

{
ϵ̂k−1

100
,
ak
100

}
.

The idea behind the construction of Ω is that we can first choose Nk (number

of new rectangles Rw′
) to be as large as we wish, then ak

sk
(relative size of

removed segments) as small as we wish, and finally ϵk (relative width) as
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Figure 2. The next generation inside a rectangle Rw. The

figure is rotated by 90 degrees, and the parameters in the

actual construction are different.

small as we wish. The requirement on Nk and the first upper bound on ϵk
in (2.5) guarantee that the sets defined below are disjoint subsets of Rw.

The requirement on ak
sk

guarantees that the holes between the vertical

segments are thin. Such thinness will lead to a thick Cantor set F (on the
imaginary axis) satisfying Condition (1.1), and to the non-removability of
∂Ω. The second upper bound on ϵk will lead to a Cantor set E (on the
real axis), which “is thinner than F is thick”. The precise meaning of such
thinness will be given in terms of conformal modulus estimates in Section
3.3, which will be applied to prove the ridigity of Ω.

Applying the construction in Section 2.1 with the parameters Nk
2 , ak, sk, ϵk

defined in (2.5) yields rectangles R∗ := Rñnk
∗ and disks Dñnk

∗ (Le), Dñnk
∗ (Ri)

for all nk ∈ {1, . . . , Nk
2 }. Finally, given w′ = (m̃mk, ñnk), we define

Rw′
= (ϕw

κ )
−1(R∗ + λ),

where

λ =

{
−ϵ̂k−1

2 mk = Le,
ϵ̂k−1

2 , mk = Ri,

and

κ =

{
Do, nk ∈ {1, . . . , Nk

2 },
Up, nk ∈ {Nk

2 + 1, . . . , Nk}.

Disks Dw′
(·) and segments Iw

′
(·), Jw′

(·, ·) are defined in a similar manner.
See Figure 2 for an illustration.

As discussed above, one can apply (2.5) to check that all the sets lie in Rw.
The sets can be represented as in (2.2), (2.3), (2.4) above, changing w with
w′ and lengths tk−1, rk−1, δk−1 with tk, rk, δk. We record some consequences
of (2.1) and (2.5) for future reference: if k ∈ N, then

(2.6) tk ⩽
δk
100

⩽
1

100
and δk ⩽ exp(−(2Nk)

2k)rk ⩽ exp(−(2Nk)
2k).
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If moreover k ⩾ 2, then

(2.7) Nk ⩾ 20Nk−1 ⩾ 20N1 = 40, rk ⩽
δk−1

100
⩽ 1 and tk ⩽

tk−1

100
.

The last inequality in (2.7) follows from (2.5) by noticing that tk
tk−1

= ϵk
ϵ̂k−1

.

2.3. Definition of Ω. We carry out the above construction for every w ∈
W := ∪kWk, and define a circle domain Ω as follows:

Ĉ \ Ω =
( ⋃

w∈W
(Dw(Le) ∪Dw(Ri))

)
∪

∞⋂
k=1

( ⋃
w∈Wk

Rw
)

=
( ⋃

w∈W
(Dw(Le) ∪Dw(Ri))

)
∪
(
E × F

)
,

where E × F is the product of Cantor sets E ⊂ [−3, 3] and F ⊂ [0, 1].

Lemma 2.1. The set

E × F =

∞⋂
k=1

( ⋃
w∈Wk

Rw
)

has Lebesgue measure zero.

Proof. Given k ∈ N, the Cantor set E is covered by 2k intervals of length

2tk. By (2.6) we have t1 ⩽ 1
100 , and by (2.7) we have tk+1 ⩽ tk

100 for all

k ∈ N. Since 2k+1100−k → 0 as k → ∞, E has zero length. The claim

follows by Fubini’s theorem. □

2.4. Non-removability of ∂Ω. In this section we apply Theorem 1.2 to
show that ∂Ω is conformally non-removable.

THEOREM 2.2. The boundary of Ω is conformally non-removable.

Proof. We will prove Condition (1.1) for set F and [a, b] = [0, 1], i.e.,

cap([0, 1] \ F ) < cap([0, 1]).

Theorem 1.2 then gives the desired conclusion. The construction of Ω can in

fact be carried out so that cap([0, 1] \F ) is smaller than any predetermined

ϵ > 0, so crude estimates are sufficient below.

Recall the following properties of the logarithmic capacity:

(i) For intervals [c, d] ⊂ R we have

(2.8) cap([c, d]) =
d− c

4
(see [Pom92, p. 207]).

(ii) If Eℓ are Borel sets and if E = ∪∞
ℓ=1Eℓ satisfies diamE < δ, then

(2.9)
1

log δ
cap(E)

⩽
∞∑
ℓ=1

1

log δ
cap(Eℓ)

(see [Pom92, Cor. 9.13]).



RIGID CIRCLE DOMAINS WITH NON-REMOVABLE BOUNDARIES 7

The set [0, 1] \ F is the union of the removed intervals:

[0, 1] \ F =
(
∪3
ℓ=1 ∆(ℓ)

)
∪
( ∞⋃

k=2

( ⋃
ñ∈Nk

2Nk−2⋃
ℓ=1

∆(ñ, ℓ)
))

.

Here ∆(ℓ) is the projection to the imaginary axis of one of the three

intervals removed from −2− ϵ1 + i[0, 1] in the first step of the construction,

and ∆(ñ, ℓ) is the projection to the imaginary axis of one of the 2Nk − 2

intervals removed from Iw(Le) in the k:th step, for any w = (m̃, ñ). The

combined cardinality of segments ∆(ñ, ℓ), ñ ∈ Nk, is

#k = 2(Nk − 1)Πk−1
j=1Nj .

Since Nj ⩽ Nk for all j ⩽ k by (2.7), it follows that #k ⩽ 2Nk
k . By (2.6),

the length δk such segments is bounded from above by exp(−(2Nk)
2k).

We recall that diam([0, 1] \ F ) = 1. Since Nk ⩾ 20Nk−1 and N1 = 2

by (2.7), we can apply the above estimates together with (2.8) and (2.9) to

conclude that

(2.10)
1

log 2
cap([0,1]\F )

⩽
∞∑
k=1

2Nk
k

log(8 exp((2Nk)2k)
⩽

1

4
.

Combining (2.8) and (2.10) yields

cap([0, 1] \ F ) ⩽ 2 exp(−4) <
1

4
= cap([0, 1]),

as desired. The proof is complete. □

3. Proof of Theorem 1.1: Rigidity of Ω

In this section we prove the rigidity of Ω.

THEOREM 3.1. Domain Ω is rigid; every conformal map f : Ω → Ω′

onto another circle domain Ω′ is the restriction of a Möbius transformation.

Theorem 1.1 follows from Theorems 2.2 and 3.1. The key property to-
wards Theorem 3.1 is that we can surround every z ∈ E × F with unions
of nearby disks and families of paths in Ω of large conformal modulus, see
Section 3.3. It follows (see Section 3.4) that there is a sequence of disks
Dw(z) whose relative distances to z are small both in the domain and af-
ter mapping with any conformal map from Ω onto another circle domain.
Combining with the extension procedure in Sections 3.5 and 3.6, and with
Ntalampekos’ metric characterization of conformal maps (see Section 3.7)
shows that f must be the restriction of a Möbius transformation.

3.1. Conformal modulus. The conformal modulus mod(Γ) of a family of
paths Γ in C is

mod(Γ) = inf

∫
C
ρ2 dA,

where the infimum is over all admissible functions, i.e., Borel functions ρ :
C → [0,∞] satisfying

∫
γ ρ ds ⩾ 1 for all locally rectifiable γ ∈ Γ. We will

apply the following basic properties, see e.g. [Ahl66, Ch. I]:
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(i) A sense-preserving homemorphism f : U → V between subdomains

of Ĉ is conformal if and only if every path family Γ on U ∩C satisfies

(3.1) mod(fΓ) = mod(Γ).

(ii) If Γ1 and Γ2 are path families so that for every γ1 ∈ Γ1 there is a
γ2 ∈ Γ2 which is a restriction of γ1, then

(3.2) mod(Γ2) ⩾ mod(Γ1).

(iii) If Γ is the family of horizontal (vertical) segments connecting the
vertical (horizontal) edges of rectangle (ζ, ζ + t)× (ξ, ξ + s), then

(3.3) mod(Γ) =
s

t

(
mod(Γ) =

t

s

)
.

(iv) If Γ is the family of circles S(z0, s), s1 < s < s2, then

(3.4) mod(Γ) =
log s2

s1

2π
.

If Λ is the family of paths joining S(z0, s1) and S(z0, s2), then

(3.5) mod(Λ) =
2π

log s2
s1

.

3.2. Neighboring disks. We say that w = (m̃, ñnk) ∈ Wk is a bottom if

nk = 1 or nk = Nk
2 + 1, and a top if nk = Nk

2 or nk = Nk. Given l = ±1, we
denote

w + l = (m̃, ñ(nk + l)).

We fix z ∈ E × F and k ∈ N, and let w = (m̃, ñnk) be the element of Wk

for which z ∈ Rw. The ordered collection of the k:th level neighbors of z is
(3.6)
Nk(z) = {Dw−1(Ri), Dw(Ri), Dw+1(Ri), Dw+1(Le), Dw(Le), Dw−1(Le)}

if w is not a top or a bottom,

(3.7) Nk(z) = {Dw(Ri), Dw+1(Ri), Dw+1(Le), Dw(Le)}

if w is a bottom, and

Nk(z) = {Dw−1(Ri), Dw(Ri), Dw(Le), Dw−1(Le)}

if w is a top. We determine a cyclic ordering: if Nk(z) = {D1, . . . , Dℓ}, then

(3.8) Dj < Dj+1 for j ∈ {1, . . . , ℓ− 1}, and Dℓ < D1.

We use the notation τD := D(z0, τr) for a disk D = D(z0, r) and τ > 0.

Lemma 3.2. If D ∈ Nk(z), then z ∈ 4D.

Proof. Recall that the height ofRw and radius of eachD ∈ Nk(z) are 2rk and

rk, respectively. We assume that w is not a bottom and D = Dw−1(Le); the

other cases are proved similarly. The width of Rw−1 (and Rw) and distance

between D and Rw−1 are 2tk and tk, respectively. Thus, if the center of D is

z0, then the distance between z0 and the center p0 of the right vertical edge

Iw−1(Ri) of Rw−1 is rk + 3tk. The distance between p0 and the top right
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Figure 3. The neighboring disks when w is not a bottom or

a top. The figure is rotated by 90 degrees, and the surround-

ing “chain” consisting of the neighboring disks and segments

γj ∈ Γj is illustrated by a dashed rectangle.

corner q0 of Rw is 3rk +
δk
2 . Since max{tk, δk} ⩽ rk

100 by (2.6), we conclude

from the Pythagorean theorem that

|z0 − z| ⩽ |z0 − q0| ⩽
(
(rk + 3tk)

2 + (3rk +
δk
2
)2
)1/2

< 4rk.

The proof is complete. □

3.3. Surrounding path families on Ω. If A1, A2 ⊂ C and if U ⊂ C is
a domain, we say that a path γ : [α, β] → U connects A1 and A2 in U , if
γ(α) ∈ A1, γ(β) ∈ A2, and γ(t) ∈ U for all α < t < β. In the following,
|γ| refers to the image of γ. We apply the notation of Section 3.2 for the
collection Nk(z) of k:th level neighbors.

Proposition 3.3. For every z ∈ E × F and k ∈ N there are families Γj,

j ∈ {1, . . . , ℓ}, of paths connecting Dj and Dj+1 ∈ Nk(z) in Ω \ {∞} so that

(i) mod(Γj) ⩾ 1
10 for every j ∈ {1, . . . , ℓ}, and

(ii) if γj ∈ Γj then ∪ℓ
j=1(|γj | ∪Dj) separates z from ∞.

Proof. Fix z ∈ Rw, where w = (m̃, ñ) ∈ Wk. Suppose first that w is

not a top or a bottom, and recall the cyclic order (3.8) of elements in Nk(z)

(defined in (3.6)). See Figure 3 for an illustration of the path families defined

below. By (2.6), the distance δk between Dw−1(Ri) and Dw(Ri) is less than
rk
100 , where rk is their radius. Recalling the coordinates of the centers of the

disks from (2.3), we thus conclude that every vertical segment connecting

the horizontal sides of square(
xm̃ + 2tk +

9rk
10

, xm̃ + 2tk +
11rk
10

)
×
(
yñ − rk

10
, yñ +

rk
10

)
contains a subsegment joining Dw−1(Ri) and Dw(Ri) in Ω \ {∞}. For the

family Γ1 of such subsegments, (3.2) and (3.3) yield

(3.9) mod(Γ1) ⩾ 1 ⩾
1

10
.
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We define families Γ2, Γ4 and Γ5 of vertical segments in a similar manner,

and apply the argument above to show that (3.9) also holds for such families.

We next define family Γ3 of horizontal segments connecting Dw+1(Ri) and

Dw+1(Le). We recall from (2.3) that the points minimizing the distance of

these disks are

xm̃ ± 2tk + i(yñ + 2rk + δk) =: xm̃ ± 2tk + iy+.

In particular, by (2.6) we have that

dist(Dw+1(Ri), Dw+1(Le)) = 4tk ⩽
δk
25

.

Recalling that the set

T ñ+1 :=
{
x+ iy : y+ − δk

2
< y < y+ +

δk
2

}
does not intersect E × F , we conclude that every horizontal segment con-

necting the vertical sides of square

(xm̃ − 10tk, x
m̃ + 10tk)× (y+ − 10tk, y

+ + 10tk) ⊂ T ñ+1

contains a subsegment connecting Dw+1(Ri) and Dw+1(Le) in Ω \ {∞}.
Applying (3.2) and (3.3), we see that (3.9) holds for the family Γ3 of all

such subsegments. The same argument applies to Γ6. We conclude that the

desired modulus bounds (i) hold. Condition (ii) follows directly from the

definitions of families Γj . We have established the proposition when w is

not a top or a bottom.

We now assume that w is a bottom, and recall the cyclic order (3.8) of

elements in Nk(z) (defined in (3.7)). We can define families Γ1,Γ2 of vertical

segments and Γ3 of horizontal segments as above so that (3.9) holds. See

Figure 4 for an illustration.

We define the final family Γ4 of circular arcs as follows: Since 100tk ⩽

rk by (2.6), for every circle Sr, with radius 3rk
4 < r < 3rk

2 centered at

xm̃ + i(yñ − rk), there is a connected component of Sr \ (Dw(Le)∪Dw(Ri))

whose closure η(r) contains the lower semicircle of Sr and connects Dw(Le)

and Dw(Ri). Moreover, since w is a bottom and 100rk ⩽ δk−1 by (2.7), η(r)

does not intersect any other complementary components of Ω.

We conclude that each η(r) connects Dw(Le) and Dw(Ri) in Ω \ {∞}.
Applying (3.2) and (3.4) shows that the family Γ4 of such arcs satisfies

mod(Γ4) ⩾
log 2

2π
⩾

1

10
.

We have proved the desired modulus bounds (i) for bottoms. Tops are

treated similarly. Condition (ii) follows again from the definitions of families

Γj . The proof is complete. □
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Figure 4. The neighboring disks when w is a bottom. The

figure is rotated by 90 degrees, and the surrounding “chain”

consisting of the neighboring disks and paths γj ∈ Γj is il-

lustrated by a dashed loop.

3.4. Distortion estimate. Given a domain G ⊂ Ĉ, we denote by C(G) the

collection of connected components of Ĉ \ G and by Ĝ the quotient space

Ĉ/ ∼, where

x ∼ y if either x = y ∈ G or x, y ∈ p for some p ∈ C(G).

The corresponding quotient map is πG : Ĉ → Ĝ. Identifying each x ∈ G
and p ∈ C(G) with πG(x) and πG(p), respectively, we have Ĝ = G ∪ C(G).

A homeomorphism f : G → G′ has a homeomorphic extension f̂ : Ĝ → Ĝ′;
see e.g. [NY20, Section 3] for a detailed discussion.

Let f : Ω → Ω′ be a conformal map onto a circle domain Ω′. We eventually
want to conclude that f is a Möbius transformation. Post-composing f with
another Möbius transformation does not affect the conclusion, so we may
assume that f(∞) = ∞. Recall the notation τD := D(z0, τr) for a disk
D = D(z0, r) and τ > 0. We denote the radius of a disk D by r(D).

We continue to apply the notation of Section 3.2 for the collection Nk(z)
of k:th level neighbors.

Proposition 3.4. For every z ∈ E × F and k ∈ N there is

(3.10) Dk
z ∈ Nk(z) so that z ∈ 4Dk

z and f̂({z}) ⊂ 1030f̂(Dk
z ).

Proof. Suppose z ∈ Rw, where w = (m̃, ñ) ∈ Wk. We recall that the first

inclusion in (3.10) holds for all Dj ∈ Nk(z) by Lemma 3.2.

Given j ∈ {1, . . . , ℓ}, we denote D′
j = f̂(Dj) and Γ′

j = f(Γj). Here Γj

is the path family in Proposition 3.3, which together with the conformal

invariance of modulus (see (3.1)) yields

(3.11) mod(Γ′
j) ⩾

1

10
for every j ∈ {1, . . . , ℓ}.

We now claim that for every j ∈ {1, . . . , ℓ} there is a γ′j ∈ Γ′
j for which

(3.12) diam(|γ′j |) ⩽ 2 · (exp(20π) + 1)r(D′
j) ⩽ 2 · (exp(20π) + 1)r′,
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where r′ = max
{
r(D′

j) : j ∈ {1, . . . , ℓ}
}
. The second inequality is trivial.

To prove the first inequality, recall that every γ ∈ Γ′
j intersects D′

j by the

definition of Γ′
j . If the first inequality in (3.12) fails then every γ ∈ Γ′

j also

intersects the boundary of (exp(20π) + 1)D′
j . Combining (3.11) with the

modulus identity (3.5) and monotonicity property (3.2), we see that

1

10
⩽ mod(Γ′

j) ⩽
2π

log(exp(20π) + 1)
,

which is a contradiction. We have proved (3.12).

Let γ′j , j ∈ {1, . . . , ℓ}, be the paths in (3.12). Part (ii) of Proposition 3.3

shows that

T := ∪ℓ
j=1(D

′
j ∪ |γ′j |) separates f̂({z}) from infinity.

In particular, the distance between D′
j and any point z′ ∈ f̂({z}) is bounded

from above by the diameter of T (we will soon show that z′ is unique).

Applying (3.12) and triangle inequality, we conclude that if D ∈ Nk(z) is

one of the neighbors satisfying r(D′) = r′, where D′ = f̂(D), then

dist(D′, z′) ⩽ diam(T ) ⩽
ℓ∑

j=1

(2r(D′
j) + diam(|γ′j |))

⩽ 12 · (2 + exp(20π))r′ ⩽ 1029r′;

recall that the cardinality ℓ of Nk(z) is at most 6. We conclude that also

the second inclusion in (3.10) holds if Dk
z = D′. The proof is complete. □

3.5. Boundary extension of f . We continue to investigate a conformal
map f : Ω → Ω′ onto a circle domain Ω′ satisfying f(∞) = ∞. We prove
that f extends to a homeomorphism between the closures of Ω and Ω′.

Lemma 3.5. The map f extends to a homeomorphism f̃ : Ω → Ω′.

Proof. Since the disk components D of Ĉ \ Ω are isolated in πΩ(C(Ω)), Ca-
rathéodory’s theorem shows that f has a homeomorphic extension ∂D →
∂f̂(D). Hence it suffices to show that diam(f̂({z})) = 0 for every z ∈ E×F .

Notice that the preimage of f̂(C(Ω)) under π−1
Ω′ is bounded in C since

∞ ∈ Ω′. Consequently, the sequence of disks Dk
z in Proposition 3.4 satisfies

r(f̂(Dk
z )) → 0 as z → ∞. Combining with (3.10), we have

diam(f̂({z})) ⩽ 2 · 1030 lim
k→∞

r(f̂(Dk
z )) = 0.

The proof is complete. □

We now apply the distortion bounds in Proposition 3.4 towards regularity
of the extension f̃ on E×F . Recall that the 1-dimensional Hausdorff content
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H1
∞(A) and Hausdorff measure H1(A) of A ⊂ C are defined by

H1
δ(A) = inf


∞∑
j=1

diam(Vj) : A ⊂
⋃
j

Vj , diam(Vj) < δ

 , 0 < δ ⩽ ∞,

H1(A) = lim
δ→0

H1
δ(A) = sup

δ>0
H1

δ(A).

We say that a property holds for almost every path in C, if the family of
paths for which the property does not hold has zero modulus.

Proposition 3.6. Let f̃ be the extension in Lemma 3.5. Then almost every

path γ in C satisfies

(3.13) H1
(
f̃
(
|γ| ∩ (E × F )

))
= 0.

We will not apply Proposition 3.6 later in this paper, and it could be
proved by applying [Nta24b, Theorem 1.2] to the extension f∗ in Proposition
3.7 below. We give a proof of the proposition for the reader’s convenience,
since it is short and contains the basic idea on how distortion bounds are ap-
plied to prove the regularity properties which eventually lead to the rigidity
of Ω. See Remark 3.9 for further discussion. We denote

Dk =
{
D = Dw(Le) or Dw(Ri) : w ∈ Wk

}
, D =

∞⋃
k=1

Dk.

Proof of Proposition 3.6. Recall that ∞ ∈ Ω′. We notice that if

ρ(z) =

{
r(f̂(D))
r(D) , z ∈ D for some D ∈ D,

0, otherwise,

then ρ ∈ L2(C). We fix k ∈ N and a rectifiable path γ in C, and denote

|γ| ∩ (E × F ) =: G. Then Proposition 3.4 guarantees that if τ = 1030 and

Gk = {D ∈ Dk : 4D ∩G ̸= ∅} = {D1, . . . , Dp},

then ∪p
j=1(τ f̂(Dj)) covers f̃(G). Thus, denoting D′

j = f̂(Dj) we have

(3.14) H1
∞(f̃(G)) ⩽ 2τ

p∑
j=1

r(D′
j).

Increasing k if necessary, we may assume that diam(|γ|) ⩾ rk, where rk is

the common radius of disks Dj ∈ Gk. It then follows from the definition of

Gk that we have H1(|γ| ∩ 5Dj) ⩾ rk, so that

(3.15) r(D′
j) ⩽ 25rk inf{M(ρ)(z) : z ∈ |γ| ∩ 5Dj} ⩽ 25

∫
|γ|

χ5DjM(ρ) dH1

for every 1 ⩽ j ⩽ p, where M(ρ) is the non-centered maximal function of ρ

(see e.g. [Hei01, Ch. 2]). Combining (3.14) and (3.15), we conclude that

(3.16)

H1
∞(f̃(G)) ⩽ 50τ

∫
|γ|

M(ρ)

p∑
j=1

χ5Dj dH1 ⩽ 50τ

∫
γ
M(ρ)

p∑
j=1

χ5Dj ds.
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Since disks Dj are disjoint we have
∑p

j=1 χ5Dj (z) ⩽ 36 for every z ∈ C.
Thus (3.16) yields

(3.17) H1
∞(f̃(G)) ⩽ 1800τ

∫
γ
χN9rk

(E×F )M(ρ) ds,

where Ns(U) is the closed s-neighborhood of U ⊂ C.
Recall that M(ρ) ∈ L2(C) by the L2-boundedness of maximal functions.

By the definition of conformal modulus it then follows that M(ρ) is in-

tegrable over almost every path γ in C. Thus, we can apply (3.17) and

monotone convergence with k → ∞ to show that

(3.18) H1
∞(f̃(G)) ⩽ 1800τ

∫
γ
χE×FM(ρ) ds

for almost every path γ in C. On the other hand, since E×F has Lebesgue

measure zero by Lemma 2.1, we have that
∫
C χE×FM(ρ) dA = 0. In par-

ticular,
∫
γ g ds = 0 for almost every γ in C, again by the definition of

conformal modulus. Since H1(f̃(G)) = 0 precisely when H1
∞(f̃(G)) = 0 (see

e.g. [Hei01, Ch. 8.3]), our claim (3.13) follows from (3.18). □

3.6. Global extension of f . In this section we apply Lemma 3.5 and
repeated reflections across the boundary circles of Ω and Ω′ to extend f to
all of Ĉ. The method has been applied to prove rigidity of circle domains
and Schottky sets e.g. in [HS94], [BKM09], [You16], [NY20], [NR23]. We
refer to [NY20, Section 7.1] for the details of the following construction and
the proof of Proposition 3.7 below.

As before, we assume that f(∞) = ∞. Given D ∈ D, let RD be the
reflection across the circle ∂D. The Schottky group S(Ω) is the free discrete
group generated by {RD : D ∈ D}. Every non-identity element g of S(Ω)
can be uniquely written as

(3.19) g = RD1 ◦ · · · ◦RDℓ
, where Dj+1 ̸= Dj for all 1 ⩽ j ⩽ ℓ− 1.

Denoting D′ = f̂(D), the map f admits a conformal extension

f∗ : Ω ∪
⋃
D∈D

(RD(Ω) ∪ ∂D) → Ω′ ∪
⋃
D∈D

(RD′(Ω′) ∪ ∂D′) :

we set f∗(z) = (RD′ ◦ f ◦ RD)(z) for z ∈ RD(Ω) and apply Lemma 3.5 and
the Schwarz reflection principle to extend f∗ across the boundary circle ∂D.
Continuing inductively, we see that f∗ can be further extended to the union
Ω∗ of sets g(Ω) ∪ g(∂Dℓ), g ∈ S(Ω). Here Dℓ is the disk in (3.19).

Thus, we have a conformal homeomorphism f∗ : Ω∗ → Ω′
∗, where Ω′

∗ is
defined as Ω∗ but using elements g′ = S(Ω′) instead of elements g = S(Ω).
The boundary satisfies ∂Ω∗ = Ĉ \ Ω∗ = X ∪ Y , where

(3.20) X =
⋃

g∈S(Ω)

g(E × F ),

and for every z ∈ Y there are disks Dj ∈ D so that if B0 = D0 then

(3.21) {z} = ∩∞
j=0Bj , where Bj+1 = RD1 ◦ · · · ◦RDj (Dj+1) ⊂ Bj .
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Given z ∈ Y , the intersection of the disks B′
j bounded by circles f∗(∂Bj)

is a point z′ ∈ ∂Ω′
∗. Applying Lemma 3.5 to X and setting f∗(z) = z′ for

z ∈ Y shows that f∗ has a homeomorphic extension to Ĉ, see [NY20, Lemma
7.5]. The following proposition summarizes our discussion.

Proposition 3.7. The map f∗ : Ĉ → Ĉ is a homeomorphism, and conformal

on Ω∗ = Ĉ \ (X ∪Y ). Here X and Y satisfy (3.20) and (3.21), respectively.

3.7. Eccentric distortion and conformality. The final step in the proof
of the rigidity of Ω is showing that the homeomorphic extension f∗ : Ĉ →
Ĉ of f (see Proposition 3.7) is conformal on Ĉ, and therefore a Möbius
transformation. We now show how conformality follows from Proposition 3.4
and a recent characterization of conformal maps by Ntalampekos [Nta24b].

Recall that a sense-preserving homemorphism h : G → G′ between subdo-
mains of Ĉ is K-quasiconformal, K ⩾ 1, if the conformal modulus of every
path family Γ in G ∩ C satisfies

(3.22)
1

K
mod(Γ) ⩽ mod(hΓ) ⩽ Kmod(Γ).

By (3.1), 1-quasiconformality is equivalent with conformality.
The classical metric definition of quasiconformality (see e.g. [Väi71, Ch.

4]) is given in terms of the metric distortion, which at a point z0 measures
the distortion of images under h of small disks centered at z0. We apply a
more flexible notion of metric distortion which was recently introduced by
Ntalampekos: We say that the eccentricity of a bounded open set A ⊂ C is

E(A) = inf{M ⩾ 1 : there exists an open disk B such that B ⊂ A ⊂ MB}.

The eccentric distortion of a topological embedding h : G → Ĉ of an open
G ⊂ Ĉ at z0 ∈ G \ ({∞, h−1(∞)}) is
Eh(z0) = inf{M ⩾ 1 : there exists a sequence of open sets Ak ⊂ G,

k ∈ N, with z0 ∈ Ak, k ∈ N, and diam(Ak) → 0 as k → ∞
such that E(Ak) ⩽ M and E(h(Ak)) ⩽ M for all k ∈ N}.

The definition can be extended to {∞, h−1(∞)} by composing h with Möbius
transformations.

THEOREM 3.8. Let G ⊂ Ĉ be open and h : G → Ĉ a sense-preserving

topological embedding. If there is H ⩾ 1 so that

(3.23) Eh(z0) ⩽ H for all z0 ∈ G,

then h is quasiconformal on G. If in addition to (3.23) also Eh(z0) = 1 for

almost every z0 ∈ G, then h is conformal on G.

Proof. The first claim is [Nta24b, Theorem 1.2], and the second claim is

[Nta23, Lemma 2.5]. □

We can now finish the proof of Theorem 3.1. We need to prove that the
map f∗ in Proposition 3.7 is conformal on Ĉ. Conformality of f∗ in Ω∗
shows that Ef∗(z0) = 1 for every z0 ∈ Ω∗. We also have Ef∗(z0) = 1 for
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every z0 ∈ Y , since we can apply the interiors of the disks Bj in (3.21) to
test the definition of the eccentric distortion.

Finally, we claim that

(3.24) Ef∗(z0) ⩽ 1030 for every z0 ∈ X.

If z0 ∈ E × F , we can test the definition of eccentric distortion with arbi-
trarily small open neighborhoods of the unions of z0 and the neighbors Dk

z

in Proposition 3.4 to prove (3.24).
If g ∈ S(Ω) is a non-identity element, then every z0 ∈ g(E × F ) has an

open neighborhood U so that

f∗(z) = (g′ ◦ f∗ ◦ g−1)(z) for all z ∈ U,

where g′ ∈ S(Ω′). The eccentric distortion is not affected by compositions
with g′ and g−1, because they are (anti)conformal. Since Ef∗(g

−1(z0)) ⩽
1030 by the previous paragraph, we conclude that (3.24) holds for all z0 ∈ X.
The proofs of Theorem 3.1 and Theorem 1.1 are complete.

Remark 3.9. The main issue in proving Theorem 3.8 is the Sobolev regularity

of the map h. In our setting this amounts to proving absolute continuity

of f∗ on almost every path across the exceptional sets X and Y . Set X

could be handled using Proposition 3.6 (see also [NR23, Theorem 4.1]). A

similar approach can also be applied to Y , but the arguments are much more

involved and include the covering theorems introduced in [Nta24b].
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