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Abstract. We extend Schramm’s cofat uniformization theorem to domains satisfying
conditions involving quasitripods, i.e., quasisymmetric images of the standard tripod. If
the non-point complementary components of domain Ω ⊂ Ĉ contain uniform quasitripods
with large diameters and satisfy a packing condition, then there exists a conformal map
f : Ω → D onto a circle domain D. Moreover, f preserves the classes of point-components
and non-point components. The packing condition is satisfied if Ω is cospread, i.e., if the
complementary components contain uniform quasitripods in all scales.

1. Introduction

Koebe’s conjecture ([Koe08], [HS93]) asserts that every domain in the Riemann sphere
Ĉ is conformally equivalent to a circle domain. In this paper we extend Schramm’s cofat
uniformization theorem [Sch95], which solves Koebe’s conjecture for domains whose com-
plementary components are fat, to domains whose complementary components are spread
and satisfy a packing condition. We give the precise statement of Schramm’s theorem after
fixing some notation.

Given domain G ⊂ Ĉ, we call a connected component p of Ĉ \G non-trivial and denote
p ∈ CN(G) if diam(p ∩ C) > 01. Otherwise we call p a point-component and denote
p ∈ CP (G). Let Ĝ = Ĉ/ ∼, where

z ∼ w if either z = w ∈ G or z, w ∈ p for some p ∈ C(G) := CN(G) ∪ CP (G).

The corresponding quotient map is denoted by πG.

Every homeomorphism f : G → G′ has a unique homeomorphic extension f̂ : Ĝ → Ĝ′.
To simplify notation, we do not make a distinction between p ∈ C(G) and πG(p) ∈ Ĝ.

Recall that A ⊂ Ĉ is τ -fat if for every z0 ∈ A ∩C and every disk D(z0, r) that does not
contain A we have Area(A ∩ D(z0, r)) ≥ τr2. Domain Ω ⊂ Ĉ is cofat if there is τ > 0 so
that every p ∈ CN(Ω) is τ -fat, and a circle domain if every p ∈ CN(Ω) is a disk.

Theorem 1.1 ([Sch95]). Let Ω ⊂ Ĉ be a cofat domain. Then there is a conformal map
f : Ω → D onto a circle domain D. Moreover, f̂(CN(Ω)) = CN(D) and f̂(CP (Ω)) = CP (D).
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Theorem 1.1 and its proof involving Schramm’s transboundary modulus have been ap-
plied to solve a variety of uniformization problems in Euclidean and metric spaces (cf.
[Bon11], [Mer12], [BM13], [NY20], [Nta23a], [Nta23b]). Towards further applications, it is
desirable to find minimal assumptions under which the conclusions of Theorem 1.1 hold.
In this paper we consider conditions involving tripods and quasisymmetries. Recall that
a homeomorphism ϕ : E → F between subsets of C is weakly H-quasisymmetric, where H
is a constant, if

|ϕ(z2)− ϕ(z1)| ≤ H|ϕ(z3)− ϕ(z1)| for all z1, z2, z3 ∈ E satisfying |z2 − z1| ≤ |z3 − z1|.
The standard tripod T0 ⊂ C is the union of segments [0, ei·2jπ/3], j = 0, 1, 2.

Definition 1.2. We call T ⊂ C an H-quasitripod if there is a weakly H-quasisymmetric
homeomorphism ϕ : T0 → T .

Our main result reads as follows.

Theorem 1.3. Let Ω ⊂ Ĉ be a domain containing ∞. Assume there are H,N ≥ 1 so that

(i) every p ∈ CN(Ω) contains an H-quasitripod T with diam(T ) ≥ diam(p)/H, and
(ii) card{p ∈ CN(Ω) : diam(p) ≥ r, p ∩ D(z0, r) ̸= ∅} ≤ N for every z0 ∈ C and r > 0.

Then there is a conformal homeomorphism f : Ω → D onto a circle domain D. Moreover,

f̂(CN(Ω)) = CN(D) and f̂(CP (Ω)) = CP (D). (1)

The proof of Theorem 1.3 is based on transboundary modulus estimates which are much
more involved than the corresponding estimates on cofat domains. The main difficulty is
that unlike cofatness, Conditions (i) and (ii) do not imply ℓ2-summability bounds for the
diameters of elements in CN(Ω). Condition (i) alone does not guarantee (1), see Section 6.
We next introduce a local version of Condition (i) which leads to a Möbius invariant class
of domains that satisfy the conclusions of Theorem 1.3.

Definition 1.4. We call A ⊂ Ĉ H-spread if for every z0 ∈ A ∩ C and r < diam(A ∩ C)
there is an H-quasitripod T ⊂ A ∩ D(z0, r) with diam(T ) ≥ r/H. Domain Ω ⊂ Ĉ is
H-cospread if every p ∈ CN(Ω) is H-spread, and cospread if Ω is H-cospread for some H.

The class of cospread domains includes the continuum self-similar trees and uniformly
branching trees considered by Bonk-Tran [BT21] and Bonk-Meyer [BM22], respectively.

Proposition 1.5. Let Ω ⊂ Ĉ be an H-cospread domain. Then Conditions (i) and (ii) in
Theorem 1.3 hold with H and N = N(H). Moreover, if ϕ : Ĉ → Ĉ is α-quasi-Möbius then
ϕ(Ω) is H ′-cospread, where H ′ depends only on H and α.

The class of quasi-Möbius maps, which is defined in Section 7, contains all Möbius
transformations. By Theorem 1.3 and Proposition 1.5, cospread domains admit conformal
maps onto circle domains.

Corollary 1.6. If Ω ⊂ Ĉ is a cospread domain, then there is a conformal homeomorphism
f : Ω → D onto a circle domain D. Moreover, f̂(CN(Ω)) = CN(D) and f̂(CP (Ω)) = CP (D).
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We finish the introduction by discussing possible extensions. First, our methods can be
adapted to show that if every p ∈ CN(Ω) in Theorem 1.3 or Corollary 1.6 is the closure of
a Jordan domain, then f admits a homeomorphic extension f̄ : Ω → D.

Another extension concerns versions of the Brandt-Harrington theorem for infinitely con-
nected domains, see [Bra80], [Har82], [Sch95], [Sch96]. Although our results only concern
circle domain targets, the estimates below and in the proof of [Sch95, Theorem 4.2] sug-
gest that they can be replaced in Theorem 1.3 and Corollary 1.6 with targets D so that if
p ∈ CN(Ω) then f̂(p) ∈ C(D) is homothetic to a predetermined fat or spread set qp.

There are fat sets that are not spread and do not even satisfy Quasitripod Condition
(i) above. The proof below can be modified to show that Condition (i) can be replaced
with “every p ∈ CN(Ω) is uniformly fat or satisfies Condition (i)” in Theorem 1.3. It would
be interesting to find natural geometric conditions definining a class of domains which
includes both cofat domains and the domains in Theorem 1.3. The proof below shows that
it would suffice for such domains to satisfy Packing Condition (ii) and a condition on the
“cost of a detour” which is strong enough to imply a version of Proposition 4.1.

This paper is organized as follows. In Section 2 we recall the definition of Schramm’s
transboundary modulus. In Section 3 we state our main modulus estimate, Theorem 3.1,
for finitely connected domains satisfying the conditions of Theorem 1.3. We proceed to
give the proof of Theorem 1.3, assuming Theorem 3.1 as well as the necessary modulus
estimates on circle domains (Proposition 3.2).

We prove Theorem 1.3 by approximating Ω with a decreasing sequence of finitely con-
nected domains Ωj ⊃ Ω satisfying C(Ωj) ⊂ CN(Ω). Such an approach is standard and was
also used by Schramm [Sch95]. Our new innovation and the main difficulty in the proof of
Theorem 1.3 is establishing Theorem 3.1. The proof is given in Section 4.

Section 5 contains the proof of Proposition 3.2, modulus estimates on circle domains.
See e.g. [Sch95], [Bon11], [Raj] for similar estimates. In Section 6 we construct an example
showing that Packing Condition (ii) cannot be removed in Theorem 1.3. Finally, we prove
Proposition 1.5 in Section 7.

2. Transboundary modulus

We denote the open Euclidean disk with center a ∈ C and radius r > 0 by D(a, r), and
its boundary circle by S(a, r).

We apply the following definition due to Schramm [Sch95]. Fix a domain G ⊂ Ĉ. The
transboundary modulus mod(Γ) of a family Γ of paths in Ĝ is

mod(Γ) = inf
ρ∈X(Γ)

ˆ

G∩C

ρ2 dA+
∑

p∈C(G)

ρ(p)2,
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where X(Γ) is the collection of admissible functions for Γ, i.e., Borel functions ρ : Ĝ →
[0,∞] for which

1 ≤
ˆ

γ

ρ ds+
∑

p∈C(G)∩|γ|

ρ(p) for all γ ∈ Γ.

Here |γ| denotes the image of the path γ and
´
γ
ρ ds is the path integral of the restriction

of γ to G. More precisely, the restriction is a countable union of disjoint paths γj, each of
which maps onto a component of |γ| \ C(G), and we defineˆ

γ

ρ ds =
∑
j

ˆ

γj

ρ ds.

Schramm worked with transboundary extremal length of Γ, which equals 1
mod(Γ)

, and
noticed that the proof of conformal invariance of classical conformal modulus can be gen-
eralized to transboundary modulus in a straightforward manner.

Lemma 2.1 ([Sch95], Lemma 1.1). Suppose f : G → G′ is conformal. Then for every path
family Γ, we have mod(Γ) = mod(f̂(Γ)), where f̂(Γ) := {f̂ ◦ γ : γ ∈ Γ}.

We will apply the following characterization of path families of non-zero modulus in
Section 6. The proof follows directly from definitions and appropriate scalar multiplications
of the admissible functions.

Lemma 2.2. A family Γ of paths satisfies mod(Γ) > 0 if and only if there exists an M > 0
such that for every admissible function ρ for Γ that satisfiesˆ

G∩C

ρ2 dA+
∑

p∈C(G)

ρ(p)2 = 1,

we have ˆ

γ

ρ ds+
∑

p∈C(G)∩|γ|

ρ(p) ≤ M for some γ ∈ Γ.

3. Proof of the main result, Theorem 1.3

The proof of our main result, Theorem 1.3, is based on the following estimate. Here we
denote by πΩ the quotient map Ĉ → Ω̂, and by A(a,R) the annulus D(a, 4R) \D(a,R/2).

Theorem 3.1. Let Ω ⊂ Ĉ be a finitely connected domain that satisfies Conditions (i) and
(ii) in Theorem 1.3 with some constants H and N . Then, there is M > 0, depending only
on H and N , so that if a ∈ p̄ ∩ C for some p̄ ∈ Ω̂ and R > 0, then modΓ ≤ M , where

Γ = {paths in πΩ(A(a,R)) \ {πΩ(p̄)} joining πΩ(S(a, 4R)) and πΩ(S(a,R/2))}.

We postpone the proof of Theorem 3.1 until Section 4, and first show how it can be
applied to prove Theorem 1.3. We may assume that card CN(Ω) = ∞, since otherwise
Theorem 1.3 follows from Koebe’s theorem, see e.g. [Bon11, Theorem 9.5]. We enumerate
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ĝk
ĝk(pℓ)

pℓ

Figure 1. The domain Ωk has finitely many of pℓ ∈ CN(Ω) as its comple-
ment. After passing to subsequences, we can assume {ĝk(pℓ)}k converge for
each pℓ.

the elements and denote CN(Ω) = {p0, p1, . . .}. It follows directly from the definitions that
if Theorem 1.3 holds for

Ω′ = Ĉ \
⋃

p∈CN (Ω)

p ⊃ Ω,

then the theorem also holds for Ω. In particular, we may assume that Ω′ = Ω.

Recall that if G ⊂ Ĉ is a domain and p ∈ C(G), we do not make a distinction between
p and πG(p). In particular, if p ⊂ C then diam(πG(p)) is the Euclidean diameter of p.

Given k ∈ N, let Ω̃k = Ĉ \ (p0 ∪ p1 ∪ · · · ∪ pk). By Koebe’s theorem there is a conformal
homeomorphism gk : Ω̃k → D̃k so that qk,ℓ := ĝk(pℓ) is a disk (with positive radius) for all
ℓ = 0, 1, . . . , k. By postcomposing with a Möbius transformation, we may assume that

qk,0 = Ĉ \ D(0, 1) for all k = 1, 2, . . . . (2)

For every ℓ ∈ N, any subsequence of (qk,ℓ)k has a further subsequence Hausdorff con-
verging to a limit disk or a point. Therefore we can choose a diagonal subsequence (gkj)j,
converging locally uniformly in Ω, so that qkj ,ℓ → qℓ for each ℓ. By normalization (2),
the limit map f is non-constant and therefore a conformal homeomorphism from Ω onto a
domain D. Each qℓ, ℓ ∈ N, is a disk or a point, and q0 = Ĉ \ D(0, 1).

Theorem 1.3 follows once we have established the following properties:

diam(f̂(p)) = 0 for all p ∈ CP (Ω), (3)

qℓ = f̂(pℓ) and diam(qℓ) > 0 for all ℓ = 0, 1, 2, . . . . (4)

We denote gkj by fj, Ω̃kj by Ωj, and D̃kj by Dj. Moreover,

we fix p̄ ∈ C(Ω) and any Jordan curve J ⊂ Ω.

Next let b ∈ Ω ∩NR(p̄), where R = dist(p̄, J) and Nδ(A) is the δ-neighborhood of A in C.
Here and in what follows, all distances are Euclidean unless stated otherwise. We choose a
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point a ∈ ∂p̄ closest to b and denote by I the segment in C with endpoints a and b. Given
j ≥ 1, let

Γj = {paths in Ω̂j \ {πΩj
(p̄)} that join πΩj

(J) and πΩj
(I)},

Λj = {paths in Ω̂j \ {πΩj
(p̄)} that separate πΩj

(J) and πΩj
(p̄)}.

In summary, here is how the proofs of (3) and (4) proceed. We use Theorem 3.1 to prove
upper bounds on modΓj and modΛj. On the other hand, estimates on circle domains
Dj provide lower bounds on mod f̂j(Γj) and mod f̂j(Λj). Combined with the conformal
invariance of modulus, these yield (3) and (4).

We now state the circle domain estimates; we will prove them later in Section 5.

Proposition 3.2. The following estimates hold:

(1) There is a homeomorphism φa : [0,∞) → [0,∞) so that

lim sup
j→∞

mod f̂j(Γj) ≥ lim sup
j→∞

φa(dist(fj(b), f̂j(p̄))).

(2) If diam(f̂(p)) = 0 then limj→∞mod f̂j(Λj) = ∞.

We now apply Theorem 3.1 to establish modulus estimates on Γj, Λj. We first show
that

modΓj ≤ θa(|b− a|), (5)
where θa does not depend on j and θa(ϵ) → 0 as ϵ → 0.

To prove (5), we notice that every γ ∈ Γj intersects πΩj
(S(a,R)) and πΩj

(S(a, |b − a|))
but avoids πΩj

(p̄). Therefore, it suffices to show that

modΓj(r, R) ≤ θ(r), θ(r) → 0 as r → 0, θ does not depend on j,

where

Γj(r, R) = {paths in Ω̂j \ {πΩj
(p̄)} that join πΩj

(S(a,R)) and πΩj
(S(a, r))}.

We choose a sequence of radii Rn decreasing to zero as follows: Let R1 := R/10. Then,
assuming R1, . . . , Rn−1 are defined let

Rn =
R′

n

10
,

where R′
n ≤ Rn−1/2 is the smallest radius for which some p ∈ CN(Ω) \ {p̄} intersects

both S(a,Rn−1/2) and S(a,R′
n). If no p ∈ CN(Ω) \ {p̄} intersects S(a,Rn−1/2), we set

R′
n = Rn−1/2. Then Rn does not depend on j, Rn → 0 as n → ∞, and both annuli

An = D(a, 4Rn) \ D(a,Rn/2), n = 1, 2, . . . ,

and their projections πΩj
(An) are pairwise disjoint (for a fixed j). Let

Γj(n) = {paths in πΩj
(An) \ {πΩj

(p̄)} joining πΩj
(S(a, 4Rn)) and πΩj

(S(a,Rn/2))}.
Notice that if Ω satisfies Conditions (i) and (ii) in Theorem 1.3 with some H and N , then
every Ωj satisfies the same conditions. Therefore, by Theorem 3.1 we have modΓj(n) ≤ M ,
where M does not depend on j or n.
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We fix N ∈ N and choose for every 1 ≤ n ≤ N an admissible function ρn for Γj(n) withˆ

Ωj∩An

ρ2n dA+
∑

p∈C(Ωj)∩πΩj
(An)

ρn(p)
2 ≤ 2M.

Now ρ := 1
N

∑N
n=1 ρn is admissible for Γj(RN+1, R). Moreover, since sets πΩj

(An) are
pairwise disjoint we haveˆ

Ωj

ρ2 dA+
∑

p∈C(Ωj)

ρ(p)2 ≤ 2MN

N2
=

2M

N
→ 0 as N → ∞.

Estimate (5) follows.

We can now prove (3): assume p̄ = {a} ∈ CP (Ω) and suppose towards contradiction
that f̂(p̄) ∈ CN(D).2 Then there are c > 0 and a sequence (bm) of points in Ω converging
to a so that for every m ∈ N we have

lim sup
j→∞

dist(fj(bm), f̂j(p̄)) ≥ c > 0. (6)

Combining (5) and the first part of Proposition 3.2 with Lemma 2.1 (conformal invariance
of modulus) gives a contradiction, proving (3).

Towards (4), let p̄ = pℓ for some ℓ ∈ N ∪ {0}, and let jℓ be the smallest index for which
pℓ ∈ CN(Ωjℓ). We claim that

modΛj ≤ Mℓ < ∞ for all j ≥ jℓ, (7)

where Mℓ does not depend on j. To start the proof of (7), we fix c ∈ ∂pℓ and d ∈ J ∩ C
so that |c− d| = dist(pℓ, J), and let ξ be the segment with endpoints c and d. We cover ξ
with N1 < ∞ disks D(zn, r), where r = diam(pℓ)/20.

Since every λ ∈ Λj separates πΩj
(p) and πΩj

(J), λ has to pass through πΩj
(ξ) and,

consequently, through at least one πΩj
(D(zn, r)). Furthermore, we have

diam(π−1
Ωj
(|λ|)) ≥ diam(pℓ),

which implies that if λ passes through πΩj
(D(zn, r)) then it also passes through πΩj

(S(zn, 8r)).
Therefore,

Λj ⊂
N1⋃
n=1

Γj(n), (8)

where
Γj(n) = {paths in Ω̂j joining πΩj

(S(zn, r)) and πΩj
(S(zn, 8r))}.

By Theorem 3.1, for each n, there is an admissible ρn for Γj(n) so thatˆ

Ωj

ρ2n dA+
∑

p∈C(Ωj)

ρn(p)
2 ≤ 2M.

2Because a ∈ Ωj for all j and fj(a) are singletons, one may wonder if f̂(a) can ever be non-trivial.
However, in Section 6 we give one such example. Other examples can be found in [Nta23b] and [Raj].
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By (8), the function ρ1 + · · ·+ ρN1 is admissible for Λj. We conclude that

modΛj ≤
ˆ

Ωj

(ρ1 + · · ·+ ρN1)
2 dA+

∑
p∈C(Ωj)

(ρ1(p) + · · ·+ ρN1(p))
2 ≤ 2MN2

1 ,

which proves (7).

We can now prove (4). The proof of the first part is similar to the proof of (3). We
have qℓ ⊂ f̂(pℓ) by Carathéodory’s kernel convergence theorem; see [Nta23b, Lemma 2.14].
Suppose towards contradiction that qℓ ⊊ f̂(pℓ). Then there are c > 0 and a sequence (bm)
in Ω so that dist(bm, pℓ) → 0 as m → ∞ and (6) holds with p̄ = pℓ. Combining (5) and
the first part of Proposition 3.2 with Lemma 2.1 (conformal invariance of modulus) gives
a contradiction. For the second part of (4) it suffices to combine (7) and the second part
of Proposition 3.2 with Lemma 2.1.

We have proved that Theorem 1.3 follows from Theorem 3.1 and Proposition 3.2.

4. Proof of Theorem 3.1

In this section we assume that Ω ⊂ Ĉ is as in Theorem 3.1: a finitely connected domain
satisfying Conditions (i) and (ii) in Theorem 1.3 with some H and N .

4.1. Costs of detours around quasitripods. We may assume without loss of generality
that C(Ω) = CN(Ω); since Ω is finitely connected, point-components p ∈ CP (Ω) are isolated.
Therefore, the modulus of the family of paths passing through some p ∈ CP (Ω) is zero.

The proof of Theorem 3.1 is based on the following technical result. Given p ∈ C(Ω),
0 < τ < 1/4 and ap, bp ∈ C, we denote

rp = rp(τ) = τ diam(p) > 0,

assume that D(ap, 4τrp) ⊂ D(bp, rp), and let Γ(ap, bp, τ) be the family of paths α : [s1, t1] →
Ω̂ for which there are s1 < s2 ≤ t2 < t1 with the following properties:

(i) α(s2) ∪ α(t2) ⊂ D(ap, 4τrp),
(ii) α(t) ∩ S(bp, rp) ̸= ∅ for t = s1 and t = t1, and
(iii) α(t) ⊂ D(bp, rp) for all s1 < t < s2 and t2 < t < t1.

Recall that we assume that every p ∈ C(Ω) contains an H-quasitripod T with

diam(T ) ≥ diam(p)/H.

Proposition 4.1. There are 0 < τ < 1
1000

, depending only on H, and map p 7→ (ap, bp) ∈
C2 so that for every p ∈ C(Ω) we have the following properties: bp ∈ p,

D(ap, 4τrp) ⊂ D(bp, τ 1/2rp), (9)

and if α ∈ Γ(ap, bp, τ) then

dist(α(s1), α(t1)) ≤ dist(α(s1), α(s2)) + dist(α(t1), α(t2))− 200τrp. (10)
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Proposition 4.1 implies that if α ∈ Γ(ap, bp, τ) does not pass through p then it has to
“take a detour” whose length is estimated from below in (10), see Figure 2. Notice that
the right side of (10) does not include term dist(α(s2), α(t2)).

T (p)

α α

α(t1)

α(s1)

Figure 2. Part of a sample curve α ∈ Γ(ap, bp, τ) depicted.

Proof. We denote the vertices of the standard tripod T0 by z0, z1, z2. By assumption
there is a weakly H-quasisymmetric homeomorphism ϕ : T0 → T ⊂ p with diam(T ) ≥
H−1 diam(p). By Väisälä’s theorem [Hei01, Corollary 10.22], ϕ is in fact (strongly) qua-
sisymmetric: there is a homeomorphism η : [0,∞) → [0,∞) depending only on H so
that

|w1 − w0| ≤ t|w2 − w0| implies |ϕ(w1)− ϕ(w0)| ≤ η(t)|ϕ(w2)− ϕ(w0)|.

Let bp = ϕ(0) ∈ p and R0 = (100H)−1 diam(p). Moreover, given 0 < R < R0 we denote

kn(R) = min{0 < s < 1 : ϕ(szn) ∈ S(bp, R)}, n ∈ {0, 1, 2}.

Notice that by quasisymmetry and our choice of R0 there is 0 < sn(R) < 1 for every
n ∈ {0, 1, 2} so that ϕ(sn(R)zn) ∈ S(bp, R). Therefore, numbers kn(R) are well-defined.
Let

Jn(R) = ϕ([0, kn(R)zn]), n ∈ {0, 1, 2}.

Then D(bp, R)\
⋃2

n=0 Jn(R) is the union of pairwise disjoint connected sets V0(R), V1(R), V2(R)

which are labelled so that Vn(R) ∩ Jn(R) = {bp}.

We fix 0 < δ < (100H)−2, to be determined later, and point

cp = ϕ(k0(δR0)z0) ⊂ S(bp, δR0) ∩ J0(R0). (11)
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By standard porosity (see e.g. [Vä81, Proof of Theorem 4.1]) and distortion estimates on
quasisymmetric maps there are 0 < C < 1, depending only on H, and points a1p, a2p ∈ C so
that

D(a1p, CδR0) ⊂ V1(R0) ∩ D(cp, δR0) and D(a2p, CδR0) ⊂ V2(R0) ∩ D(cp, δR0). (12)

Recall that rp = τ diam(p) by definition. Let τ be the number satisfying CδR0 = 4τrp;

τ =

(
Cδ

400H

)1/2

.

We can then choose δ to be small enough so that

2δR0 < τ 1/2rp < rp < R0. (13)

Standard quasisymmetric distortion estimates show that

min{ℓ1, ℓ2} ≤ (1− C1)πrp, (14)

where ℓ1 and ℓ2 are the lengths of the circular arcs bounding V1(rp) and V2(rp), respectively,
and 0 < C1 < 1 depends only on H. If ℓ1 has this property we choose ap to be a1p and
otherwise we choose ap to be a2p.

We have found the desired ap, bp and τ . By our choice of τ , (11), (12) and triangle
inequality, we have

D(ap, 4τrp) = D(ap, CδR0) ⊂ D(cp, δR0) ⊂ D(bp, 2δR0).

Combining with (13) shows that (9) holds.

It remains to prove (10). We may assume without loss of generality that ℓ1 ≤ ℓ2 in (14).
We fix α ∈ Γ(ap, bp, τ). By the definition of Γ(ap, bp, τ) (Conditions (i)-(iii) above) and
since

D(ap, 4τrp) ⊂ V1(rp) ⊂ V1(R0)

by (9) and (12), both α(s1) and α(t1) intersect the circular arc bounding V1(rp). Therefore,
by (14) we have

dist(α(s1), α(t1)) ≤ 2(1− C2)rp, (15)

where C2 depends only on H. On the other hand, combining the definition of Γ(ap, bp, τ)
with (9) and the choice of τ also shows that

min{dist(α(s1), α(s2)), dist(α(t1), α(t2))} ≥ rp − τrp − τ 1/2rp ≥ rp − 2τ 1/2rp,

and therefore

dist(α(s1), α(s2)) + dist(α(t1), α(t2)) ≥ 2rp(1− 2τ 1/2). (16)

Combining (15) and (16) shows that (10) holds when δ and hence τ is small enough. The
proof is complete. □
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4.2. Good, bad, and large components. We continue the proof of Theorem 3.1. We
fix R > 0 and a ∈ p̄ ∩ C for some p̄ ∈ Ω̂. Our goal is to find an upper bound for the
transboundary modulus of

Γ =
{
paths in πΩ(A(a,R)) \ {πΩ(p̄)} joining πΩ(S(a, 4R)) and πΩ(S(a,R/2))

}
.

Scaling and translating Ω does not affect transboundary modulus, so we may assume that
a = 0 and R = 1.

Let P ⊂ C(Ω) be the collection of complementary components p ̸= p̄ intersecting A =
D(0, 4) \ D(0, 1/2), and let 0 < τ < 1

1000
be the constant in Proposition 4.1. We denote

PL = {p ∈ P : diam(p) ≥ τ} and PV = P \ PL.

Then ρ0 : Ω̂ → [0,∞], ρ0 = χPL
, is admissible for the family of paths in Γ passing

through some p ∈ PL. Notice that Γ may include constant paths which happens if p
intersects both S(0, 4) and S(0, 1/2). We cover D(0, 4) with 10τ−2 disks of radius τ and
apply Packing Condition (ii) in Theorem 1.3 (with constant N) to see that the cardinality
of PL is bounded from above by 10Nτ−2. Therefore,∑

p∈C(Ω)

ρ0(p)
2 ≤ 10Nτ−2.

We conclude that in order to prove Theorem 3.1 it suffices to consider

Γ2 = {γ ∈ Γ : γ does not pass through any p ∈ PL}. (17)

We apply Proposition 4.1 to find a suitable partition of PV into “good” and “bad” com-
ponents. Given p ∈ PV , let rp = τ diam(p) and ap ∈ C, bp ∈ p, be as in Proposition 4.1.
We start by choosing p1 ∈ PV so that

diam(p1) = max
p∈PV

diam(p).

Denote r1 := rp1 , a1 := ap1 and b1 := bp1 , and let

G1 =
{
p ∈ PV : diam(p) ≥ τr1, dist(p, p1) ≤ τ−2r1 = τ−1 diam(p1)

}
, and

B1 =
{
p ∈ PV : diam(p) < τr1, ap ∈ D(a1, 2τr1)

}
.

Suppose then that pℓ ∈ PV and Gℓ, Bℓ ⊂ PV are chosen for 1 ≤ ℓ ≤ k. We stop the
process if PV \

⋃k
ℓ=1(Gℓ∪Bℓ) = ∅. Otherwise, we choose pk+1 ∈ PV \

⋃k
ℓ=1(Gℓ∪Bℓ) so that

diam(pk+1) = max
p∈PV \

⋃k
ℓ=1(Gℓ∪Bℓ)

diam(p).

We denote rk+1 := rpk+1
, ak+1 := apk+1

and bk+1 := bpk+1
, and let

Gk+1 =

{
p ∈ PV \

k⋃
ℓ=1

(Gℓ ∪Bℓ) : diam(p) ≥ τrk+1, dist(p, pk+1) ≤ τ−2rk+1

}
, and

Bk+1 =

{
p ∈ PV \

k⋃
ℓ=1

(Gℓ ∪Bℓ) : diam(p) < τrk+1, ap ∈ D(ak+1, 2τrk+1)

}
.
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Notice that pk+1 ∈ Gk+1. Also, if p ∈ Bk+1 then

ap ∈ D(ak+1, 2τrk+1) ∩ D(bp, τ 1/2rp) ⊂ D(ak+1, 2τrk+1) ∩ D(bp, τ 5/2rk+1)

by (9). Since bp ∈ p, it follows that

dist(ak+1, p) ≤ dist(ak+1, ap) + dist(ap, p) ≤ 2τrk+1 + τ 5/2rk+1 < 3τrk+1.

Since diam(p) < τrk+1, we conclude that

p ⊂ D(ak+1, 4τrk+1) for every p ∈ Bk+1. (18)

Since Ω is finitely connected, the process stops after L < ∞ steps and we have a partition
of PV into disjoint sets Gk, Bk, k = 1, . . . , L, so that

PV = G ∪B :=
( L⋃

k=1

Gk

)
∪
( L⋃

k=1

Bk

)
.

We will construct suitable admissible functions ρ for Γ2 which equal zero in B. The
following simple estimate will be useful later on.

Lemma 4.2. Suppose 1 ≤ m < k ≤ L and

D(am, 2rm) ∩ D(ak, 2rk) ̸= ∅. (19)

Then rk < τrm.

Proof. By triangle inequality

dist(pm, pk) ≤ dist(ak, pk) + dist(pm, am) + |am − ak|. (20)

By (9) and (19), we have

dist(ak, pk) ≤ rk, dist(am, pm) ≤ rm and |am − ak| ≤ 2(rk + rm). (21)

From m < k it follows that rk ≤ rm. Therefore, combining (20) and (21) we have

dist(pm, pk) ≤ 3(rk + rm) ≤ 6rm. (22)

Since pk /∈
⋃m

ℓ=1(Gℓ∪Bℓ), the definition of Gm and (22) show that rk < diam(pk) < τrm. □

4.3. Modulus bound. Our goal is to give an upper bound for modΓ2, where Γ2 is defined
in (17). Note that if a non-negative Borel function ρ is admissible for the family of injective
paths in Γ2, then ρ is admissible for Γ2. Indeed, for every rectifiable γ2 ∈ Γ2 there is an
injective γ1 ∈ Γ2 so that |γ1| ⊂ |γ2|, see e.g. [Sem96, Proposition 15.1]. Then, if ρ is
admissible for injective paths we haveˆ

γ2

ρ ds ≥
ˆ

γ1

ρ ds ≥ 1,

so ρ is admissible for Γ2.

We fix an injective γ2 ∈ Γ2. After reparametrization and recalling that γ2 does not pass
through any p ∈ P with diameter greater than τ < 1

1000
, we may assume that the domain

of γ2 contains [0, 1], γ2([0, 1]) ⊂ πΩ(D(0, 3)), and

γ2(0) ∈ Ω ∩ D(0, 3) \ D(0, 5/2), γ2(1) ∈ Ω ∩ D(0, 3/4).
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We consider γ := γ2|[0, 1] for the rest of this section. Given path α : I → Ω̂, we denote

G(α) = {t ∈ I : α(t) ∈ G}.

Proposition 4.3. There are intervals [cν , dν ] ⊂ [0, 1], ν = 1, 2, . . . , µ, with non-empty and
pairwise disjoint interiors so that γ(t) /∈ B for all t ∈

⋃µ
ν=1(cν , dν) and

1 ≤
µ∑

ν=1

dist(γ(cν), γ(dν)) + 7τ−1
∑

t∈G(γ)

diam(γ(t)). (23)

We postpone the proof of Proposition 4.3 and first show how it yields the desired upper
bound for mod(Γ2). Let ρ : Ω̂j → [0,∞],

ρ(p) =

 1, p ∈ Ω ∩ D(0, 3),
8τ−1 diam(p), p ∈ G,
0, otherwise.

We claim that ρ is admissible for Γ2. Let γ and intervals [cν , dν ] be as in Proposition 4.3.
Since γ(t) /∈ B for all cν < t < dν and |γ| ⊂ D(0, 3), triangle inequality gives

dist(γ(cν), γ(dν)) ≤
ˆ

γ|[cν ,dν ]

ρ ds+
∑

t∈G(γ|(cν ,dν))

diam(γ(t)) (24)

for all 1 ≤ ν ≤ µ. Recall that the integral in (24) is over the subpaths of γ|[cν , dν ] whose
images are in Ω. Since γ is injective and intervals [cν , dν ] have disjoint interiors, summing
(24) over ν gives

µ∑
ν=1

dist(γ(cν), γ(dν)) ≤
ˆ

γ

ρ ds+
∑

t∈G(γ)

diam(γ(t)) ≤
ˆ

γ

ρ ds+ τ−1
∑

t∈G(γ)

diam(γ(t)). (25)

Combining (25) and Proposition 4.3 shows that ρ is admissible for Γ2.

We now estimate
´
Ω
ρ2 dA+

∑
p∈C(Ω) ρ(p)

2 in order to give an upper bound for mod(Γ2).
We first recall that every p ∈ Gk satisfies

τrk ≤ diam(p) ≤ diam(pk) = τ−1rk. (26)

We pack D(ak, τ−3rk) with 10τ−8 disks of radius τrk. We have p ⊂ D(ak, τ−3rk) for all
p ∈ Gk by (26) and (9). Thus, applying the first inequality in (26) with Packing Condition
(ii) in Theorem 1.3 (with constant N) shows that

cardGk ≤ 10Nτ−8 for every 1 ≤ k ≤ L. (27)

Finally,
disks D(ak, τrk), 1 ≤ k ≤ L, are pairwise disjoint. (28)

Indeed, suppose towards contradiction that there are 1 ≤ m < k ≤ L so that

D(am, τrm) ∩ D(ak, τrk) ̸= ∅.

By Lemma 4.2 we have rk < τrm, but by the definition of Bm and since pk /∈ Bm we have
ak /∈ D(am, 2τrm). Combining with triangle inequality gives a contradiction, proving (28).
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We are ready to estimate the energy of ρ. Clearly
´
Ω
ρ2 dA ≤ |D(0, 3)| = 9π, so it suffices

to estimate the sum of ρ2 over C(Ω). By (26) and (27) we have∑
p∈Gk

ρ(p)2 = 64τ−2
∑
p∈Gk

diam(p)2 ≤ 640Nr2k
τ 12

(29)

for every 1 ≤ k ≤ L. On the other hand, since the pairwise disjoint disks in (28) are
subsets of D(0, 5), we have

πτ 2
L∑

k=1

r2k =
L∑

k=1

|D(ak, τrk)| ≤ |D(0, 5)| = 25π. (30)

Combining (29) and (30) yields
∑

p∈G ρ(p)2 ≤ 16000N
τ14

.

We have proved that Theorem 3.1 follows from Proposition 4.3.

4.4. Proof of Proposition 4.3: Finding good subpaths. Let γ : [0, 1] → Ω̂ be as
in the proposition. We may assume that γ(t) ∈ B for some 0 < t < 1, since otherwise
Proposition 4.3 follows directly from the choices of the endpoints of γ. We construct
families

Ik = {Ik1 , Ik2 , . . . , Ikn(k)}, 0 ≤ k ≤ L,

of subsegments of [0, 1] with pairwise disjoint interiors, using the following algorithm: First
let I0 = {[0, 1]}, then assume that Iℓ is defined for all 0 ≤ ℓ ≤ k − 1. We define Ik by
choosing suitable subintervals of the intervals I in Ik−1.

Fix I = [s0, t0] ∈ Ik−1 and denote α = γ|[s0, t0]. We consider the following cases:

(1) If α(t) /∈ Bk for all s0 < t < t0, then we include [s0, t0] in Ik.
(2) Otherwise, let (recall that Bk is a finite set and so s0 < s2 ≤ t2 < t0 below)

A = {s0 < t < t0 : α(t) ∈ Bk}, s2 = minA and t2 = maxA,

A2 = {s0 < t < s2 : α(t) ∩ S(bk, rk) ̸= ∅}, and
A3 = {t2 < t < t0 : α(t) ∩ S(bk, rk) ̸= ∅}.

(a1) If A2 ∪ A3 = ∅, we do not include any subinterval of [s0, t0] in Ik.
(a2) If A2 ̸= ∅ and A3 = ∅, we include [s0, s2] in Ik.
(a3) If A2 = ∅ and A3 ̸= ∅, we include [t2, t0] in Ik.
(b) If A2 ̸= ∅ and A3 ̸= ∅, let s1 = maxA2 and t1 = minA3. Notice that

s0 < s1 < s2 ≤ t2 < t1 < t0.
(b1) if diam(α(c)) ≥ τrk for c = s1 or t1, we include [s0, s1] and [t1, t0] in Ik.
(b2) Otherwise we include [s0, s1], [s1, s2], [t2, t1] and [t1, t0] in Ik.

Let Ik([s0, t0]) be the family of subsegments of [s0, t0] ∈ Ik−1 included in Ik using the
above algorithm, and

Ik =
⋃

[s0,t0]∈Ik−1

Ik([s0, t0]), 1 ≤ k ≤ L.

We will show that the segments in IL satisfy the requirements of Proposition 4.3. Notice
that the above construction combined with a simple induction argument shows that if
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1 ≤ k ≤ L and a < t < b for some [a, b] ∈ Ik then γ(t) /∈
⋃k

ℓ=1 Bℓ. In particular, γ(t) /∈ B
for all t ∈

⋃
[a,b]∈IL(a, b). Clearly the interiors of distinct segments in IL are non-empty and

pairwise disjoint. Thus, in order to prove Proposition 4.3 it suffices to show that segments
in IL satisfy estimate (23).

Given 1 ≤ k ≤ L, let Jk−1(c) ⊂ Ik−1 be the family for which case

c ∈ {(1), (a1), (a2), (a3), (b1), (b2)}

applies, Jk−1(a) = Jk−1(a1) ∪ Jk−1(a2) ∪ Jk−1(a3), Jk−1(b) = Jk−1(b1) ∪ Jk−1(b2), and
J (c) =

⋃L
k=1 Jk−1(c). We use notation T (I) = dist(γ(a), γ(b)) for I = [a, b]. We next

claim that

11

10
≤

∑
I∈IL

T (I) +
L∑

k=1

(
2(cardJk−1(a))− 100τ(cardJk−1(b2))

)
· rk

+ 3τ−1
∑

t∈G(γ)

diam(γ(t)). (31)

4.5. Proof of Proposition 4.3: Preliminary estimates. The goal of this subsection
is to establish (31).

Lemma 4.4. Let 1 ≤ k ≤ L and [s0, t0] ∈ Jk−1(a). Then

dist(γ(s0), γ(t0)) ≤ Q([s0, t0]) + 2rk,

where

Q([s0, t0]) =

 0 in Case (a1),
dist(γ(s0), γ(s2)) in Case (a2),
dist(γ(t2), γ(t0)) in Case (a3).

Proof. In Case (a1) the definitions of A2 and A3 show that

γ(s0) ∩ D(bk, rk) ̸= ∅ and γ(t0) ∩ D(bk, rk) ̸= ∅. (32)

The claim then follows by triangle inequality.

Case (a3) is similar to Case (a2). In Case (a2) the second part of (32) holds. Since
γ(s2) ∈ Bk, we have

γ(s2) ⊂ D(ak, 4τrk) ⊂ D(bk, τ 1/2rk)
by (9) and (18), and diam(γ(s2)) < τrk. Therefore,

dist(γ(s0), γ(t0)) ≤ dist(γ(s0), γ(s2)) + dist(γ(s2), γ(t0)) + diam(γ(s2))

≤ dist(γ(s0), γ(s2)) + (1 + τ 1/2)rk + τrk ≤ dist(γ(s0), γ(s2)) + 2rk

by triangle inequality and since τ 1/2 + τ ≤ 1. □

Lemma 4.5. Let 1 ≤ k ≤ L and [s0, t0] ∈ Jk−1(b1). Then

diam(γ(c)) ≥ τrk and γ(c) ∈
k⋃

ℓ=1

Gℓ (33)
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for c = s1 or c = t1. Moreover,

dist(γ(s0), γ(t0)) ≤ dist(γ(s0), γ(s1)) + dist(γ(t1), γ(t0)) + 3τ−1D([s0, t0]). (34)
Here D([s0, t0]) =

∑
diam(p) and the sum is over the p ∈ {γ(s1), γ(t1)} which satisfy (33).

Proof. Recall that both γ(s1), γ(t1) intersect S(bk, rk) and
diam(γ(c)) ≥ τrk for c = s1 or t1. (35)

Also, recall that s0 < s1 < t1 < t0 and

γ(t) /∈
k−1⋃
ℓ=1

Bℓ for all s0 < t < t0.

Therefore, the definition of Gk shows that if c satisfies (35) then γ(c) ∈
⋃k

ℓ=1Gℓ. By
triangle inequality we have

dist(γ(s0), γ(t0)) ≤ dist(γ(s0), γ(s1)) + dist(γ(t1), γ(t0)) + dist(γ(s1), γ(t1))

+ diam(γ(s1)) + diam(γ(t1)).

The last distance is bounded from above by 2rk ≤ 2τ−1D([s0, t0]), and the sum of the
diameters is bounded from above by τrk+D([s0, t0]) ≤ 2D([s0, t0]). Inequality (34) follows.

□

Lemma 4.6. Let 1 ≤ k ≤ L and [s0, t0] ∈ Jk−1(b2). Then

dist(γ(s0), γ(t0)) ≤
1∑

m=0

[
dist(γ(sm), γ(sm+1)) + dist(γ(tm), γ(tm+1))

]
− 100τrk.

Proof. Recall that p ⊂ D(ak, 4τrk) for every p ∈ Bk by (18). Therefore, Proposition 4.1
can be applied to α = γ|[s1, t1] and we have

dist(γ(s1), γ(t1)) ≤ dist(γ(s1), γ(s2)) + dist(γ(t1), γ(t2))− 200τrk.

On the other hand, diam(γ(s1)) + diam(γ(t1)) ≤ 2τrk by assumption. The claim follows
by combining the estimates with triangle inequality. □

We are ready to prove (31). We apply Lemmas 4.4, 4.5 and 4.6 to see that if 1 ≤ k ≤ L
then (recall notation T (I) = dist(γ(a), γ(b)) for I = [a, b])∑

I′∈Ik−1

T (I ′) ≤
∑
I∈Ik

T (I) +
(
2(cardJk−1(a))− 100τ(cardJk−1(b2))

)
· rk

+ 3τ−1
∑

I∈Jk−1(b1)

D(I). (36)

Recalling that T ([0, 1]) ≥ 11
10

and applying induction together with (36) yields

11

10
≤

∑
I∈IL

T (I) +
L∑

k=1

(
2(cardJk−1(a))− 100τ(cardJk−1(b2))

)
· rk

+ 3τ−1

L∑
k=1

∑
I∈Jk−1(b1)

D(I). (37)
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Finally, it follows from the construction that each p ∈ G satisfies (33) in Lemma 4.5 for at
most one interval [s0, t0] ∈ J (b1). Therefore

L∑
k=1

∑
I∈Jk−1(b1)

D(I) =
∑

I∈J (b1)

D(I) ≤
∑

t∈G(γ)

diam(γ(t)), (38)

recall notation G(γ) = {0 < t < 1 : γ(t) ∈ G}. Combining (37) and (38) proves (31).

4.6. Proof of Proposition 4.3: Completion of the proof. Estimate (23), which is
the remaining claim in Proposition 4.3, follows by combining (31) with

L∑
k=1

(cardJk−1(a)) · rk ≤
1

20
+ 4τ−1

∑
t∈G(γ)

diam(γ(t)) + 12τ
L∑

k=1

(cardJk−1(b2)) · rk. (39)

The rest of this section is devoted to the proof of (39). The strategy is to associate to each
I ∈ J (a1) ∪ J (a3) (resp., J (a1) ∪ J (a2)) the left (resp., right) endpoint of a suitably
chosen “grandparent” I ′ of I. We first consider the left endpoints c. We now give precise
definitions.

We say that J ∈ Ik is a child of I ∈ Ik−1, and I the parent of J , if J ⊂ I. The consequent
definitions of grandchildren and grandparents are obvious. Recall that segments in J (a1)

do not have children and every other segment in
⋃L

k=1 Ik−1 has at least one child. More
precisely:

(1) If I ∈ Jk−1(1) ∪ Jk−1(a2) ∪ Jk−1(a3), then I has one child.
(2) If I ∈ Jk−1(b1), then I has two children.
(3) If I ∈ Jk−1(b2), then I has four children.

It follows by our choice of τ that [0, 1] /∈ J (a1). Moreover, if L = 1 then (39) follows from
the choice of r1. We assume from now on that L ≥ 2.

We next define finite sequences S = S(cℓ) of segments Im−1 = [cm−1, dm−1],

Im−1 ∈ Im−1, 1 ≤ ℓ ≤ m ≤ n ≤ L, Iℓ−1 ⊃ Iℓ ⊃ · · · ⊃ In−1,

as follows. We fix 1 ≤ ℓ ≤ L − 1 so that ℓ = 1 or Jℓ−1(b) ̸= ∅. Moreover, we fix Iℓ−1 so
that

Iℓ−1 = [0, 1] if ℓ = 1 and Iℓ−1 ∈ Jℓ−1(b) if ℓ ≥ 2.

(1) By the above discussion Iℓ−1 has at least one child.
(i) If ℓ = 1, then we choose I1 = [c1, d1] to be any one of the children of [0, 1].
(ii) If ℓ ≥ 2, then we choose Iℓ = [cℓ, dℓ] to be any one of the (several) children of

Iℓ−1 except the one for which cℓ = cℓ−1.
Our sequence will be uniquely determined by the choice of Iℓ. Notice that if cℓ ̸= 0
then cℓ lies in the interior of Iℓ−1.

(2) Suppose that m ≥ ℓ+ 1 and Im−1 has been defined.
(ii) If m = L or Im−1 ∈ J (a1), then we set n = m and stop the process.
(iii) Otherwise ℓ < m < L and Im−1 has at least one child.
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(a) If Im−1 ∈ J (1) ∪ J (a2) ∪ J (a3), then Im−1 has exactly one child I. We
choose Im := I. Segments Im−1 and Im have different left endpoints if
and only if Im−1 ∈ J (a3).

(b) If Im−1 ∈ J (b), then Im−1 has a child I with the same left endpoint as
Im−1. We choose Im := I.

We let S(cℓ) be the collection of all the segments Im−1 chosen above; this notation is valid
since cℓ determines S(cℓ) uniquely.

Lemma 4.7. Every I ∈ J (a1) ∪ J (a3) belongs to exactly one S(cℓ).

Proof. We can identify cℓ as the left endpoint of the smallest grandparent I ′ of I (ordered by
inclusion) with the property that the parent I ′′ of I ′ belongs to J (b) and has left endpoint
different from the left endpoint of I ′. If no such I ′ exists, then ℓ = 1 and cℓ = 0. □

We fix S(cℓ) and denote by ℓ ≤ m1 < m2 < · · · < mν ≤ n the indices for which

Imµ−1 ∈ Jmµ−1(a1) ∪ Jmµ−1(a3). (40)

We may assume without loss of generality that ν ≥ 1, i.e., that there is at least one such
index. Recall notation Im−1 = [cm−1, dm−1].

Lemma 4.8. Suppose that 2 ≤ µ ≤ ν. Then cmµ−1 = cmµ−1 and

γ(cmµ−1) ⊂ D(amµ−1 , 4τrmµ−1) ∩ D(bmµ , rmµ) ⊂ D(bmµ−1 , rmµ−1) ∩ D(bmµ , rmµ). (41)

Proof. The second inclusion in (41) follows from (9). Claims γ(cmµ−1) ⊂ D(bmµ , rmµ) and
cmµ−1 = cmµ−1 follow from the construction; notice that if m ≤ n− 1 then cm ̸= cm−1 only
if [cm−1, dm−1] ∈ Jm−1(a3). To see why

γ(cmµ−1) = γ(cmµ−1) ⊂ D(amµ−1 , 4τrmµ−1) (42)

holds, observe that we have Imµ−1−1 ∈ Jmµ−1−1(a3) and so γ(cmµ−1) ∈ Bmµ−1 . Now (42)
follows from (18). We conclude that also the first inclusion in (41) holds. The proof is
complete. □

Lemma 4.9. Suppose that ℓ ≥ 2. Then m1 ≥ ℓ + 1 and cm1−1 = cℓ. Moreover, if
diam(γ(cm1−1)) < τrℓ, then

γ(cm1−1) ⊂ D(bℓ, (1 + τ)rℓ) ∩ D(bm1 , rm1).

Proof. We assume ℓ ≥ 2 and so [cℓ−1, dℓ−1] = Iℓ−1 ∈ Jℓ−1(b) and m1 ≥ ℓ+ 1. Since

Im1−1 ∈ Jm1−1(a1) ∪ Jm1−1(a3), (43)

we have γ(cm1−1) ⊂ D(bm1 , rm1) by construction. Also, since m1 is the smallest index for
which (43) holds, we have cm1−1 = cℓ.

Recall that cℓ ̸= cℓ−1 by construction. More precisely, cℓ ∈ {s1, t2, t1} when Case (b1) or
Case (b2) is applied to [s0, t0] = [cℓ−1, dℓ−1]. In particular, we have

γ(cm1−1) ∩ D(bℓ, rℓ) = γ(cℓ) ∩ D(bℓ, rℓ) ̸= ∅. (44)

If diam(γ(cm1−1)) < τrℓ then by (44) we have γ(cm1−1) ⊂ D(bℓ, (1 + τ)rℓ). □
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Lemma 4.10. Let S(cℓ) = {Iℓ−1, . . . , In−1} as in (40). Then

ν∑
µ=1

rmµ ≤


1

160
if ℓ = 1,

2τrℓ if ℓ ≥ 2 and diam(γ(cℓ)) < τrℓ,
2τ−1 diam(γ(cℓ)) if ℓ ≥ 2 and diam(γ(cℓ)) ≥ τrℓ.

(45)

Proof. Suppose first that 2 ≤ µ ≤ ν. Combining Lemma 4.8 with (9), we see that

D(amµ−1 , 2rmµ−1) ∩ D(amµ , 2rmµ) ̸= ∅.

Thus, by Lemma 4.2 we have rmµ ≤ τrmµ−1 . Iterating the estimate yields

rmν ≤ τrmν−1 ≤ · · · ≤ τ ν−1rm1 . (46)

If ℓ = 1, then the upper bound in (45) follows from (46) by recalling that rm1 < τ < 1
1000

.

If ℓ ≥ 2 and diam(γ(cℓ)) < τrℓ then combining Lemma 4.9 with (9) and Lemma 4.2 as
in the above paragraph shows that

rm1 ≤ τrℓ. (47)
The upper bound in (45) follows from (46) and (47) by recalling again that τ < 1

1000
. If

ℓ ≥ 2 and diam(γ(cℓ)) ≥ τrℓ ≥ τrm1 , then the upper bound in (45) follows from (46). □

Suppose S(cℓ) = {Iℓ−1, . . . , In−1} is as in Lemma 4.10. We apply (45) to estimate sum
L∑

k=1

(card(Jk−1(a1) ∪ Jk−1(a3))) · rk

from above. First, since [0, 1] has at most four children there are at most four distinct
sequences S(cℓ) for which ℓ = 1. We denote by S1 the set of all intervals in J (a1)∪J (a3)
which belong to such a sequence. Moreover, given 1 ≤ k ≤ L, we denote

S1
k−1 = S1 ∩ (Jk−1(a1) ∪ Jk−1(a3)). (48)

By (45) we have
L∑

k=1

(card(S1
k−1)) · rk ≤

1

40
. (49)

Next assume that ℓ ≥ 2. Then Iℓ−1 ∈ Jℓ−1(b). We first consider the sequences S(cℓ) for
which Iℓ−1 ∈ Jℓ−1(b1). We denote by S2 the set of all intervals in J (a1) ∪ J (a3) which
belong to such a sequence, and define S2

k−1 as in (48).

Each Iℓ−1 has two children, [s0, s1] and [t1, t0] = [cℓ, dℓ] = Iℓ. By construction and
Lemma 4.5 we have

diam(γ(c)) ≥ τrℓ and γ(c) ∈
ℓ⋃

k=1

Gk

for c = s1 or c = t1 (or both). By (45) such a c moreover satisfies
ν∑

µ=1

rmµ ≤ 2τ−1 diam(γ(c)). (50)
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Notice that since t1, s1 are interior points of Iℓ−1, every 0 < t < 1 can have the role of
c in (50) for at most one sequence S(cℓ) for which Iℓ−1 ∈ Jℓ−1(b1). Therefore, summing
(50) over such sequences we have

L∑
k=1

(card(S2
k−1)) · rk ≤ 2τ−1

∑
t∈G(γ)

diam(γ(t)). (51)

Finally, assume that ℓ ≥ 2 and Iℓ−1 ∈ Jℓ−1(b2). We denote by S3 the set of all intervals in
J (a1)∪J (a3) which belong to such a sequence, and define S3

k−1 as in (48). By construction
we have diam(γ(cℓ)) < τrℓ. Therefore, in this case (45) gives

ν∑
µ=1

rmµ ≤ 2τrℓ. (52)

For each I ∈ J (b2) there are at most three sequences S(cℓ) for which I = Iℓ−1. Therefore,
summing (52) over all such sequences we have

L∑
k=1

(card(S3
k−1)) · rk ≤ 6τ

L∑
k=1

(cardJk−1(b2)) · rk (53)

By Lemma 4.7 every I ∈ J (a1) ∪ J (a3) belongs to some S(cℓ). Therefore, combining
(49), (51) and (53) gives

L∑
k=1

(card(Jk−1(a1) ∪ Jk−1(a3))) · rk ≤
1

40
+ 2τ−1

∑
t∈G(γ)

diam(γ(t))

+ 6τ
L∑

k=1

(cardJk−1(b2)) · rk. (54)

By applying an identical argument involving Case (a2) and the right endpoints dℓ instead
of Case (a3) and the left endpoints, we have

L∑
k=1

(card(Jk−1(a1) ∪ Jk−1(a2))) · rk ≤
1

40
+ 2τ−1

∑
t∈G(γ)

diam(γ(t))

+ 6τ
L∑

k=1

(cardJk−1(b2)) · rk. (55)

Combining (54) and (55) gives (39). The proof of Proposition 4.3 is complete.

5. Proofs of modulus estimates on circle domains, Proposition 3.2

We fix p̄ ∈ C(Ω), Jordan curve J ⊂ Ω, and points b, a as in the proposition. Let j ≥ 1 if
p̄ ∈ CP (Ω) and j ≥ ℓ if p̄ = pℓ ∈ CN(Ω). Then f̂j(p̄) is a generalized disk or a point in Ĉ.
In the following proof it is convenient to replace normalization (2), which was applied to
guarantee the injectivity of limit map f , with a new normalization.
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Namely, since transboundary modulus and generalized disks are invariant under Möbius
transformations, we lose no generality by replacing sequence (fj) with (h ◦ fj)j, where h is
any Möbius transformation. Therefore, by choosing h suitably we may assume that

f̂j(p̄) ∪ fj(J) ⊂ D(0, 1), ∞ ∈ Dj, and fj(J) separates f̂j(p̄) and ∞. (56)

We start with the first estimate in Proposition 3.2, i.e.,

lim sup
j→∞

mod f̂j(Γj) ≥ lim sup
j→∞

φa(dist(fj(b), f̂j(p̄))). (57)

We denote dist(fj(b), f̂j(p̄)) by δ. Let w0 be the point in f̂j(p̄) closest to fj(b). After a
rotation about the origin, fj(b) = δi + w0. Since fj(J) separates f̂j(p̄) and ∞, it follows
that every line Ls = {t + si + w0 : t ∈ R}, 0 < s < δ, has a subsegment Is ⊂ U ⊂ D(0, 1)
so that πDj

(Is) ∈ f̂j(Γj). Here U is the bounded component of Ĉ \ fj(J).

Recall that C(Dj) consists of disks. Let ρ be admissible for f̂j(Γj). Then

1 ≤
ˆ

Is∩Dj

ρ ds+
∑

q∈Cs(Dj)

ρ(q) for all 0 < s < δ, (58)

where Cs(Dj) = {q ∈ C(Dj) : Is ∩ q ̸= ∅}. Combining (58) with Fubini’s theorem yields

δ ≤
ˆ

Dj∩U

ρ dA+
∑
q∈CU

diam(q)ρ(q), (59)

where CU = {q ∈ C(Dj) : q ⊂ U}. By Hölder’s inequality (since U ⊂ D(0, 1)) we haveˆ

Dj∩U

ρ dA ≤ Area(U)1/2
(ˆ
Dj

ρ2 dA
)1/2

≤ π1/2
(ˆ
Dj

ρ2 dA
)1/2

and

∑
q∈CU

diam(q)ρ(q) ≤
( ∑

q∈CU

diam(q)2
)1/2( ∑

q∈C(Dj)

ρ(q)2
)1/2

≤ 2
( ∑

q∈C(Dj)

ρ(q)2
)1/2

.

Combining with (59) and taking infimum with respect to admissible functions shows that

mod f̂j(Γj) ≥
(

δ

π1/2 + 2

)2

.

In particular, (57) holds.

We now consider the second estimate in Proposition 3.2, i.e.,

If diam(f̂(p̄)) = 0 then lim
j→∞

mod f̂j(Λj) → ∞. (60)

Notice that the first claim in (4) does not depend on (60), so by (57) and the proof given in
Section 3 we already know that f̂(pℓ) = qℓ for every ℓ = 1, 2, . . .. In particular, generalized
disks qℓ are pairwise disjoint.

We construct a sequence of annuli as follows (compare to the proof of (5)): By our
assumption and Normalization (56) we have f̂(p̄) = {w0}, where w0 ∈ C. Let r1 be the
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number satisfying dist(f(J), w0) = 10r1. Since fj → f locally uniformly in Ω, we may
assume that dist(fj(J), w0) ≥ 5r1 for all j. Assuming r1, . . . , rn−1 are defined, let

rn =
r′n
10

,

where r′n ≤ rn−1/2 is the smallest radius for which some qℓ intersects both S(w0, rn−1/2)
and S(w0, r

′
n). If no qℓ intersects S(w0, rn−1/2) then we set r′n = rn−1/2. We let

An = D(w0, 4rn) \ D(w0, rn/2), n = 1, 2, . . . .

Now fix M ≥ 1, Jordan curve J ′ ⊂ Ω surrounding p̄, and jM so that

fj(J
′) ⊂ D(w0, rM/10) for all j ≥ jM ;

such choices are possible since f̂(p̄) = {w0}. By uniform convergence and our choices of
radii rn we may also assume that

πDj
(An) ∩ πDj

(Am) = ∅ for all 1 ≤ n,m ≤ M and j ≥ jM . (61)

Let 1 ≤ n ≤ M . Given rn/2 < t < 4rn, we denote by γ̃t the circle S(w0, t) parametrized
by arclength, γt = πDj

◦ γ̃t, and

Φj(n) = {γt : rn/2 < t < 4rn}.

Then Φj(n) ⊂ f̂j(Λj). We next prove a lower bound for mod(Φj(n)). Let ρ be admissible
for Φj(n) and rn/2 < t < 4rn. Then

1 ≤
ˆ

S(w0,t)∩Dj

ρ ds+
∑

q∈Ct(Dj)

ρ(q), (62)

where Ct(Dj) = {q ∈ C(Dj) : q ∩ S(w0, t) ̸= ∅}. We divide both sides of (62) by t and
integrate from rn/2 to 4rn to conclude

log 8 ≤
ˆ

An∩Dj

ρ(z)

|z|
dA(z) +

2

rn

∑
q∩An ̸=∅

min{diam(q), 4rn}ρ(q). (63)

We apply Hölder’s inequality to estimate the integral on the right:ˆ

An∩Dj

ρ(z)

|z|
dA(z) ≤

( ˆ

An∩Dj

dA(z)

|z|2
)1/2( ˆ

An∩Dj

ρ(z)2 dA(z)
)1/2

≤ (2π log 8)1/2
( ˆ

An∩Dj

ρ(z)2 dA(z)
)1/2

.

To estimate the sum in (63), we denote

QL = {q ∈ C(Dj) : q ∩ An ̸= ∅, diam(q) ≥ rn},
QS = {q ∈ C(Dj) : q ∩ An ̸= ∅, diam(q) < rn}.

Then
cardQL ≤ 100 and q ⊂ D(w0, 5rn) for all q ∈ QS, (64)
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and
2

rn

∑
q∩An ̸=∅

min{diam(q), 4rn}ρ(q) ≤ 8
∑
q∈QL

ρ(q) +
2

rn

∑
q∈QS

diam(q)ρ(q).

By Cauchy-Schwarz and (64) we have∑
q∈QL

ρ(q) ≤ 10
( ∑

q∈QL

ρ(q)2
)1/2

.

Since disks q are pairwise disjoint, Cauchy-Schwarz and (64) also yield∑
q∈QS

ρ(q) ≤
( ∑

q∈QS

diam(q)2
)1/2( ∑

q∈QS

ρ(q)2
)1/2

≤
(4Area(D(w0, 5rn))

π

)1/2( ∑
q∈QS

ρ(q)2
)1/2

≤ 10rn

( ∑
q∈QS

ρ(q)2
)1/2

.

Combining the estimates with (63) and taking infimum over all ρ shows that

mod(Φj(n)) ≥ 10−4 for all j ≥ jM and 1 ≤ n ≤ M. (65)

Since Φj(n) ⊂ f̂j(Λj), combining (61) and (65) shows that

mod(f̂j(Λj)) ≥ 10−4M

for all j ≥ jM . Letting M → ∞ proves (60). The proof of Proposition 3.2 is complete.

6. Necessity of the packing condition in Theorem 1.3

We construct a countably connected domain Ω ⊂ Ĉ containing ∞ and satisfying Qua-
sitripod Condition (i) (but not Packing Condition (ii)) in Theorem 1.3 so that {0} ∈ C(Ω)
and diam(f̂({0})) > 0 for every conformal f : Ω → D onto a circle domain D.

We describe the elements of C(Ω). First, {0} is the only element of CP (Ω). Collection
CN(Ω) is parametrized as follows: Given k ∈ N, we denote by Wk the collection of finite
words w = w1 · · ·wk, where wj ∈ {0, 1} for every 1 ≤ j ≤ k. Moreover, let W0 = {∅} and
W =

⋃∞
k=0Wk. We then have

CN(Ω) = {pw : w ∈ W}.
Words w ∈ W are ordered so that 0 < 1 < 00 < 01 < 10 < 11 < 000 . . .. We denote the
order of w by ℓ(w).

Each pw is the union of radial segments Iw, Jw and subarcs Sw, Tw of circles centered at
the origin. If w = w̄wk, wk ∈ {0, 1}, then Iw is a segment of length 2−ℓ−2 − ϵℓ, ℓ = ℓ(w̄),
in annulus

Aℓ = D(0, 2−ℓ) \ D(0, 2−ℓ−1),

where ϵℓ > 0 is a small number. Segments Iw̄0 and Iw̄1 are subsets of the same half-line
starting at the origin.

Arc Sw is attached to the middle of Iw and has length 1
24

times the length of the full
circle. Arc Tw is roughly a half-circle, attached to an end of Iw, and lies in S(0, 3 · 2−ℓ−2)
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p0

p1

p00

p01

p10

p11

p000

p001

I00

S00

T00

J00

Figure 3. Some complementary components of Ω

if wk = 0 and in S(0, 2−ℓ−1) if wk = 1. Segment Jw is attached to an end of Tw. The other
end of Jw lies at circle S(0, 2−ℓ(w)−1). The distance between Iw and Jw̄ is less than ϵℓ.

Figure 3 shows segments I00, J00, arcs S00, T00, components p00, p01, p10, p11, p000, p001,
and parts of components p0, p1. Sequence (ϵℓ)ℓ can be chosen so that elements pw have the
following properties.

(1) For every w ∈ W there is cw > 0 so that pw is the image of cwT0 = {cwz : z ∈ T0}
under a 106-biLipschitz map. In particular, each pw an 1012-quasitripod.

(2) For every ϵ > 0 there is kϵ ≥ 1 so that if word length |w| = k ≥ kϵ then pw ⊂ D(0, ϵ).
(3) For every w = w̄wk, wk ∈ {0, 1}, there is a family Γw of paths connecting pw̄ and pw

in Ω so that mod(Γw) ≥ 4k. More precisely, Γw consists of short subarcs of circles
in Aℓ centered at the origin.

Since Ω is countably connected, the He-Schramm theorem [HS93] guarantees the exis-
tence of a conformal f : Ω → D onto a circle domain D. Moreover, f is unique up to
postcomposition by a Möbius transformation. To show that f̂({0}) ∈ CN(D), we denote
by Γ the family of paths in Ω̂ joining p∅ and {0}.
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Towards contradiction, assume f̂({0}) is a point-component. Then mod(f̂(Γ)) = 0,
which can be proved by applying [Sch95, Theorem 6.1(2)] to a sequence of annuli (or
by modifying the proof of (5) in the special case of circle domains). Since transbound-
ary modulus is conformally invariant (Lemma 2.1), then also mod(Γ) = 0. The desired
contradiction thus follows if we can prove that

mod(Γ) > 0. (66)

We denote by W∞ the collection of infinite words w1w2 · · · , where wj ∈ {0, 1}. We
equip W∞ with the unique probability measure µ satisfying µ(Aw) = 2−k for all k ≥ 1 and
w ∈ Wk. Here

Aw = {w∞ ∈ W∞ : w∞ = wwk+1wk+2 · · · }.
Let ρ : Ω̂ → [0,∞] be an arbitrary Borel function satisfyingˆ

Ω

ρ2 dA+
∑
w∈W

ρ(w)2 = 1. (67)

We will find a v∞ = v1v2 · · · ∈ W∞ so that
∞∑
k=1

ρ(pv̄k) ≤ 1. (68)

Here v̄k = v1v2 · · · vk. We first notice thatˆ

W∞

∞∑
k=1

ρ(pw̄k
) dµ(w∞) =

∞∑
k=1

∑
w∈Wk

µ(Aw)ρ(pw) =
∞∑
k=1

2−k
∑
w∈Wk

ρ(pw) =: S.

Cauchy-Schwarz yields (notice that cardWk = 2k)

S ≤
∞∑
k=1

2−k/2
( ∑

w∈Wk

ρ(pw)
2
)1/2

≤
( ∞∑

k=1

2−k
)1/2( ∑

w∈W

ρ(pw)
2
)1/2

≤ 1,

where the last inequality follows from (67). Combining the estimates shows that there
indeed exists v∞ = v1v2 · · · ∈ W∞ satisfying (68).

Recall that for each v̄k = v1v2 · · · vk, k = 1, 2, . . ., there is a family Γv̄k of paths connecting
pv̄k−1

and pv̄k in Ω so that mod(Γv̄k) ≥ 4k. Now (67) implies that for every k there is γk ∈ Γv̄k

so that ˆ

γk

ρ ds ≤ 2−k. (69)

Concatenating paths πΩ ◦ γk, k = 1, 2, . . ., yields a path γ ∈ Γ so that |γ| ∩ C(Ω) only
contains {0}, p∅, and elements pv̄k , k = 1, 2, . . .. Combining (68) and (69) gives

ˆ

γ∩Ω

ρ ds+
∞∑
k=1

ρ(pv̄k) ≤ 2. (70)

We have proved that for every ρ satisfying (67) there is γ ∈ Γ satisfying (70). Lemma 2.2
now shows that (66) holds. We conclude that Ω has all the desired properties.
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Remark 6.1. It is also possible to construct a countably connected domain Ω ⊂ Ĉ which
satisfies Packing Condition (ii) (but not Quasitripod Condition (i)) in Theorem 1.3, so
that {0} ∈ C(Ω) and diam(f̂({0})) > 0 for every conformal homeomorphism f : Ω → D
onto a circle domain D. The details will appear elsewhere.

7. Cospread domains, Proof of Proposition 1.5

To start the proof of Proposition 1.5, we notice that the definition of cospread domains
already contains Quasitripod Condition (i) in Theorem 1.3. We state the remaining claims
of Proposition 1.5 as the following two propositions.

Proposition 7.1. Let Ω ⊂ Ĉ be an H-cospread domain. There is N depending only on H
so that

card{p ∈ CN(Ω) : diam(p) ≥ r, p ∩ D(z0, r) ̸= ∅} ≤ N for every z0 ∈ C and r > 0. (71)

Proposition 7.2. Let Ω ⊂ Ĉ be an H-cospread domain and ϕ : Ĉ → Ĉ an α-quasi-Möbius
map. Then ϕ(Ω) is H ′-cospread, where H ′ depends only on H and α.

We recall the definitions of quasi-Möbius and quasisymmetric maps. The cross-ratio of

distinct points z1, z2, z3, z4 ∈ Ĉ is [z1, z2, z3, z4] :=
q(z1, z2)q(z3, z4)

q(z1, z3)q(z2, z4)
, where q is the chordal

distance defined by

q(z, w) =
|z − w|√

1 + |z|2
√

1 + |w|2
, z, w ∈ C, q(z,∞) =

1√
1 + |z|2

.

Homeomorphism ϕ : Ĉ → Ĉ is quasi-Möbius if there is a homeomorphism α : [0,∞) →
[0,∞) so that

[ϕ(z1), ϕ(z2), ϕ(z3), ϕ(z4)] ≤ α([z1, z2, z3, z4]) for all distinct z1, z2, z3, z4 ∈ Ĉ. (72)

To emphasize the role of α, we use the term α-quasi-Möbius. Notice that Möbius trans-
formations are quasi-Möbius maps with α(t) = t.

Homeomorphism ϕ : E → F between subsets of C is (strongly) η-quasisymmetric if there
is a homeomorphism η : [0,∞) → [0,∞) so that

|ϕ(z2)− ϕ(z1)| ≤ η(t)|ϕ(z3)− ϕ(z1)| for all z1, z2, z3 ∈ E satisfying |z2 − z1| ≤ t|z3 − z1|.

It follows from the definitions that compositions and inverses of quasi-Möbius (resp.,
quasisymmetric) maps are quasi-Möbius (resp., quasisymmetric), quantitatively. If E ⊂ C
is connected, then by Väisälä’s theorem [Hei01, Corollary 10.22] weakly H-quasisymmetric
maps ϕ : E → F are η-quasisymmetric with η depending only on H.

7.1. Proof of the packing condition, Proposition 7.1. We fix z0 ∈ C and r > 0, and
denote

P := {p ∈ CN(Ω) : diam(p) ≥ r, p ∩ D(z0, r) ̸= ∅} .
Given p ∈ P , we choose zp ∈ p ∩ D(z0, r). Since r ≤ diam(p) and p is H-spread, there is
an H-quasitripod Tp ⊂ p ∩ D(zp, r) with diam(Tp) ≥ r/H. Clearly Tp ⊂ D(z0, 2r). Since
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quasitripods Tp are pairwise disjoint, the sought (71) is an immediate consequence of the
next lemma.

Lemma 7.3. Let M,H ≥ 1 and suppose that T is a collection of pairwise disjoint H-
quasitripods T ⊂ D(z0,Mr) satisfying diam(T ) ≥ r. Then card T ≤ N , where N depends
only on M and H.

Proof. Given T ∈ T , recall that there is an η-quasisymmetric homeomorphism ϕT : T0 → T .
We call ϕT (0) the center 0T of T and the components of T \ 0T the branches of T .

We fix 0 < δ < 1 to be chosen later and cover D(z0,Mr) with disks D1, . . . , Dn of
radius δr so that n ≤ 100(Mδ−1)2. Given 1 ≤ k ≤ n, we denote by Tk the collection of
elements T ∈ T for which 0T ∈ Dk. Since T =

⋃
k Tk, the lemma follows if we can choose

δ depending only on H so that for some N = N(H) that depends on H,

card Tk ≤ N for all 1 ≤ k ≤ n. (73)

Towards (73), a straightforward application of quasisymmetry shows that if T ∈ Tk and
if δ is small enough depending on H, each of the branches J1(T ), J2(T ), J3(T ) of T must
leave Bk = 2Dk. Here 2Dk the disk with the center of Dk and twice the radius. Let
αT
s (t), 0 ≤ t ≤ 1, be a homeomorphic parametrization of Js(T ) with αT

s (0) = 0T . We
denote aTs = αT

s (ts), where
ts := inf{t : αT

s (t) ∈ ∂Bk}.
Points aT1 , aT2 , aT3 partition ∂Bk into subarcs S1(T ), S2(T ), S3(T ). Another straightforward
application of quasisymmetry shows that their lengths satisfy

ℓ(Ss(T )) ≥ θr, for all s ∈ {1, 2, 3}, (74)

where θ > 0 depends only on H.

We fix ST ∈ {S1(T ), S2(T ), S3(T )} so that ℓ(ST ) ≤ ℓ(Ss(T )) for s ∈ {1, 2, 3}. We replace
Tk with a finite subcollection if needed, and enumerate the elements T1, T2, . . . , TL so that
ℓ(ST1) ≤ ℓ(ST2) ≤ · · · ≤ ℓ(STL

). We denote STm and ℓ(STm) by Sm and ℓm, respectively.

Next, notice that there is s ∈ {1, 2, 3} so that aT1

s′ ∈ Ss(T2) for every s′ = 1, 2, 3. In
particular, by our choice of subarcs ST and the enumeration of quasitripods Tj, either

(1) S1 ∩ S2 = ∅, or
(2) S2 contains S1 and another subarc Ss′(T1).

Using (74) we see that in both cases ℓ(S1 ∪S2) ≥ θr+ ℓ(S1). Similar reasoning shows that
if 2 ≤ m ≤ L then there are 1 ≤ m′ ≤ m and s ∈ {1, 2, 3} so that

Ss(Tm′) ⊂ Sm \
(m−1⋃

l=1

Sl

)
and so ℓ

( m⋃
l=1

Sl

)
≥ θr + ℓ

(m−1⋃
l=1

Sl

)
. (75)

Applying (75) and induction yields

Lθr ≤ ℓ
( L⋃

l=1

Sl

)
≤ ℓ(∂Bk) = 4δπr. (76)
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Since (76) holds for all finite subcollections of Tk and θ depends only on H, the desired
bound (73) holds. The proof is complete. □

7.2. Proof of quasi-Möbius invariance, Proposition 7.2. We will apply the following
estimate. The proof is a straightforward application of quasisymmetry.

Lemma 7.4. Let ν : D(z0, r) → ν(D(z0, r)) be η-quasisymmetric and A ⊂ D(z0, r) a set
satisfying

diam(ν(A)) ≥ δ min
z∈S(z0,r)

|ν(z)− ν(z0)|.

Then diam(A) ≥ δ′r, where δ′ depends only on δ and η.

Let Ω ⊂ Ĉ be H-cospread and ϕ : Ĉ → Ĉ an α-quasi-Möbius map. Let φ : Ĉ → Ĉ be
a Möbius transformation so that g = φ ◦ ϕ fixes infinity. Testing quasi-Möbius condition
(72) with quadruple z1, z2, z3,∞ then shows that g|C is α-quasisymmetric. Therefore,
since ϕ = φ−1 ◦ g it suffices to show the claim for quasisymmetric maps and Möbius
transformations.

We fix p ∈ CN(ϕ(Ω)), z0 ∈ p∩C and r ≤ diam(p). Our goal is to show that p∩D(z0, r)
contains a quasitripod with diameter comparable to r, under the assumption that ϕ is a
quasisymmetric map or a Möbius transformation.

First, let ϕ be η-quasisymmetric and denote ν = ϕ−1 and ℓ = minz∈S(z0,r) |ν(z)− ν(z0)|.
Since ν(p) is H-spread by assumption, there is an H-quasitripod T ⊂ D(ν(z0), ℓ) ∩ ν(p)
with diam(T ) ≥ ℓ/H. Then, since compositions of quasisymmetric maps are quasisym-
metric, ϕ(T ) ⊂ p ∩ D(z0, r) is an H1-quasitripod, where H1 depends only on H and η.
Moreover, since inverses of quasisymmetric maps are quasisymmetric, Lemma 7.4 shows
that diam(ϕ(T )) ≥ r/H2, where H2 depends only on H and η. We conclude that ϕ(Ω) is
max{H1, H2}-cospread.

We now show that ϕ(Ω) is cospread when ϕ is a Möbius transformation. If ϕ fixes infinity
then the claim is obvious. It therefore suffices to prove the claim for inversion ϕ(z) = z−1.
The following lemma follows directly from the definition of quasisymmetry.

Lemma 7.5. Let ϕ(z) = z−1 and suppose that s > 0 and w0 ∈ C satisfy |w0| ≥ 2s. Then
ϕ|D(w0,s)

is η-quasisymmetric with η(t) = 3t.

Now, if point z0 ∈ p ∩ C above satisfies |z0| ≥ r/10 then ϕ−1 = ϕ is quasisymmetric
on D(z0, r/20) by Lemma 7.5. On the other hand, if |z0| ≤ r/10 then we choose any
w0 ∈ p ∩ S(z0, r/2) (such a w0 exists since diam(p) ≥ r) and notice that |w0| ≥ r/10.
Lemma 7.5 then shows that h is quasisymmetric on D(w0, r/20) ⊂ D(z0, r).

Since ϕ−1(p) is spread by assumption, applying quasisymmetry and Lemma 7.4 as above
shows that

p ∩ D(k0, r/20) ⊂ p ∩ D(z0, r)
contains an H ′-quasitripod with diameter bounded from below by r/H ′. Here k0 = z0
if |z0| ≥ r/10 and k0 = w0 otherwise, and H ′ depends only on H. It follows that p is
H ′-spread. The proofs of Propositions 7.2 and 1.5 are complete.
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