
Quantum Field Theory Aplications

Exercise 1

Fall 2024

Return by 12.00 on Tuesday 10.9.

1. Let us consider the renormalizability of a scalar theory described by Lagrangian
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in d-dimensions. Prove first that if k = 2d/(d− 2) the theory is renormalizable, that
is, only finite number of n-point functions are divergent. Furthermore, show that the
renormalizability depends on the dimension of the coupling constant:

• If λk is dimensionless, theory is renormalizable.

• If λk has negative dimension of mass, [λk] = Mα, α < 0, theory is non-
renormalizable: infinite number of n-point functions are divergent.

• If λk has positive dimension of mass, [λk] = Mα, α > 0, theory is super-
renormalizable: only finite number of Feynman diagrams are divergent.

Categorize the cases (d = 3, k = 6), (d = 6, k = 3), (d = 3, k = 4) and (d =
4, k = 3) to renormalizable, non-renormalizable, super-renormalizable theories. Draw
then a diagram in (d, k)-plane which indicates the regions of different degrees of
renormalizability.

2. Compute very carefully the following two integrals in the dimensional regularization
method:
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I want you to work out both the divergent parts of the integrals (the poles in 1/ϵ
where ϵ = 4− d and the finite part. Throw out the O(ϵ) corrections. Note that the
latter integral needs to be handled differently in the three different domains: p2 < 0,
0 < p2 < (m1 +m2)

2 and p2 > (m1 +m2)
2. In the last domain it obtains a complex

part, which is well defined because of the ε-prescription in the denominator.

(These two integrals suffice for 1-loop renormalization of λϕ4-theory and get us a long
way into renormalizing QED as well.)


