
Quantum field theory applications The Final Exam
FYSH515 Fall 2024

Return to Kimmo by 10.30, Thursday 19.12.2024.

1 SM vacuum stability and triviality
Perform the BPHZ-decomposition for the quartic Higgs vertes in the Minimal Standard
Model (SM), and show that the renormalized coupling can be written as

λ = λ̃Z−1
λ (λ̃, g̃, g̃′, ỹt)Z

2
ϕ(λ̃, g̃, g̃

′, ỹt) , (1)

where λ̃ ≡ λ0µ
−ϵ and f̃ = f0µ

−ϵ/2 for f = g̃, g̃′, ỹt, and Zλ = 1 + δλ and Zϕ = 1 + δϕ are
the Higgs vertex and wave function renormalization constants. All other fermion Yukawas
are so small that they can be neglected. Draw the relevant 1-loop diagrams for the Higgs
boson propagator and for the quartic scalar vertex function involving these couplings
and from these extract the counter terms δλ and δϕ that are necessary to compute the
β-function to order λ2, λf 2 and f 4. Use the MS-subtraction scheme and only find the
appropriate poles. (You might want to use the Landau gauge as ghosts do not couple to
scalars in L-gauge1. Note that you take p = 0 in the external legs in the quartic operator.)
That is, show that at 1-loop level the dominant RGE for λ is:

µ
dλ

dµ
= β(λ, ...) , (2)

where

16π2β(λ, ...) = 24λ2 + 12y2t λ− 6y4t − 3λ(3g2 + g′2) +
3

8
(2g4 + (g2 + g′2)2) . (3)

Convert the µ-dependence in the above equation to physical scale-dependence λ(Q2) as
we did in lectures with other models. You should find all necessary Feynman rules in the
appendix.

New physics/triviality

First note that for large enough Higgs mass (how large?) β > 0, so that λ grows with the
increasing scale. Show that in this region, you can eventually neglect all couplings in the
β-function except λ, and derive an analytic solution for λ(Q2) in this approximation. Show
that in this case the coupling becomes infinite at a finite energy scale and compute the
position of this Landau pole Q2 ≡ Λ2 assuming that you can neglect all other couplings
all the way to the weak scale. Parametrize the pole with λ(Qweak) ≡ m2

H/2v
2 and plot

its position (along the x-axis) as a function of the Higgs mass (in the y-axis). Estimate,
or compute exactly (it is possible!) how the position of the Landau pole is changed when
you include other couplings in the game. (For top quark in particular use values around
175 GeV.)

1In L-gauge the gauge-loop contribution to Higgs self-energy is cumbersome on the other hand, but
you only need to extract the p2-dependent part of it to compute Zϕ. Alternatively, you can use the
Feynman gauge throughout with the ghost contributions included.



Vacuum stability

For very light Higgs bosons (small λ(Qweak)) the top-quark coupling may dominate and
make beta function negative and effectively λ-independent. If this is the case, then the
1-loop quartic coupling may be driven negative at large energies. Compute at what scales
this happens (if it does) for different values of mH and plot these limiting scales to your
earlier plot with Landau poles.

If we require that SM remains valid as such for arbitrary large scales and that its vacuum
is absolutely stable, we must exclude the region above the Landau pole and in the region
where quartic coupling becomes negative. Show that this argument excludes all Higgs
masses except a narrow window around mH ≈ 130 GeV. Interesting, right? (To play
this game properly one should obviously perform a simultaneous RGE-analysis of the
top-quark Yukawa and gauge couplings.)

2 Higgs decay to two photons
Precise knowledge of the decay patterns of the Higgs boson is instrumental in testing the
SM. In this problem you will calculate the higgs decay to two real photons H → γγ in
the SM and beyond.

Generic reduction using Ward identity

The higgs decay to two photons is generically proportional to some rank-two tensor Mµν :

MH→γγ = Mµνϵ
∗ν
1 ϵ∗µ2 , (4)

where ϵ∗αi ≡ ϵ∗α(ki) are the outgoing photon polarization vectors. Instead of directrly at-
tacking the full one-loop Mµν in the SM, let us first use the gauge invariance to save us
some work.

Show, by use of Ward-identitites, that on-shell Mµν contributing to the decay can be
written as:

Mµν =
gHγγ

v

(
k1 · k2gµν − k1νk2µ

)
≡ gHγγ

k1 · k2
v

Pµν . (5)

Given this result show that
ΓH→γγ =

m3
H

64πv
(gHγγ)

2. (6)

Show also that the on-shell photon amplitude gives rise to an effective interaction La-
grangian:

LHγγ = −gHγγ

4v
hFµνF

µν . (7)

That is, show that
∫
d4x⟨γγ|L̂Hγγ(x)|h⟩ = (2π)4δ4(pH − k1 − k2)MH→γγ, where you un-

derstand L̂Hγγ as composed of field operators with appropriate creation and annihilation
operators. (Remember the method I used to get matrix elements in connection with ano-
malies. See also the note at the end of the exam.).



SM-one loop result and new physics limits

In the SM, a one loop calculation gives the rather simple looking result:

gSMHγγ =
α

2π

∣∣∣∣∣F1(τW ) +
∑
f

N f
c Q

2
fF1/2(τf )

∣∣∣∣∣ , (8)

where

F1/2(τf ) ≡ −2τf [1 + (1− τf )f(τf )] , (9)
F1(τW ) ≡ 2 + 3τW + 3τW (2− τW )f(τW ), (10)

with

f(τj) ≡


arcsin2 1√

τj
if τj ≥ 1

−1
4

[
log

1+
√

1−τj

1−
√

1−τj
− iπ

]2
if τj < 1

,

and τj ≡ 4m2
j/m

2
H . Your task is to prove these results as far as you can. However, before

you embark on this, let us work out some of the consequences.

Work out the limit τ → ∞ of the functions f(τ) and F1/2(τf ). Check numerically the
accuracy of this limiting formula for top quark with mt = 175 GeV when mH = 125 GeV.

The latest observational result to the Higgs total width and the branching ratio to two
photons are:

ΓTOT = 3.7+1.9
−1.7 MeV and BrH→γγ = (2.50± 0.2)× 10−3 (11)

Now assume that you have NF new heavy fermionic degrees of freedom, denoted by F ,
which couple to Higgs field with strength cFmF/v and to photons with a charge eQF .
Compute the correction to gSMHγγ from these fields as a function of the parameters NF ,
cF and QF . Assume that all these states are heavy and find the asymptotic expression
for the new gHγγ. Estimate the limit on the new physics mass and couplings you get this
using (11).

Fermion loops, computation

There are two triangle-diagrams contributing to Mµν from each fermion, similar to the
ones contributing to axial anomaly. Choose the momentum routings such that the fermion
propagator between the two photon vertices has the loop momentum p, as this will lead
to least cumbersome expressions. Perform traces keeping track only of the gµν- and pµpν-
terms, so that you can write (you need to keep track of pµpν term because it eventually
gives an extra gµν-term in the symmetric integration):

M f
µν =

∫
ddp

(2π)d
afgµν + bfpµpν + · · ·

Df0Df1Df2

, (12)

where

Df0 ≡ p2−m2
f + iϵ; Df1 ≡ (p+ k1)

2−m2
f + iϵ and Df2 ≡ (p− k2)

2−m2
f + iϵ , (13)



with mf = yfv/
√
2. Even though the final result will be finite, integrals need regulariza-

tion. Perform the Feynman parametrization and evaluate the symmetric momentum inte-
grals, keeping track of only the gµν terms. After integrating out also one of the Feynman
parameters you will encounter an integral of the form:

S(β) =

∫ 1

0

dx

x
log
[
1− x(1− x)β − iϵ

]
, (14)

You work this integral out by use of the the Spence, or dilogartihm functions:

Li2(x) = −
∫ x

0

dt
log(1− t)

t
. (15)

Prove that these functions obey the identity:

Li2(z) + Li2(
z

z − 1
) = −1

2
log2(1− z) . (16)

Using this identity you can find an analytic expression for S(β), which in fact is just
S(4/τ) = −2f(τ). After this it is just a matter of writing down the full solution for M f

µν .
Summing over all fermions you should find, consistently with (8-9):

M f
µν =

m2
Hα

4πv

(∑
f

N f
c Q

2
fF1/2(τf )

)
× Pµν . (17)

This is more or less where I expect you to get if you do very well. Think of the next part
as more like a bonus question, and do it if you still have time and steam left.

Gauge loops, computation

Because the result is finite, the calculation could be done in Unitary gauge with only
two different charged gauge boson loops. However, there are some issues with keeping the
gauge invariance in U-gauge, so it is easier to do the calculation in the Feynman gauge
despite the large number of diagrams involved. You find the The Feynman rules for the
necessary vertices (involving photons Aµ, Higgs h, gauge bosons W±, charged Goldstone
modes ϕ± and charged ghosts c±) in the appendix. Note that the direction of momentum
and the charge assignments in vertices are crucial, and that I wrote the vertices without
any symmetry factors (unlike is the case for example in Cheng and Li), so you have to
work out the symmetry factors for the graphs.

You should find 20 triangle diagrams, ten of which are related to ten others by crossing
of external legs. Furthermore, of the remaining ten diagrams three are related by three
others by charge conjugation. So there are only seven independent triangles with a mul-
tiplicity factor 4 in three and 2 in four of them.

Draw the seven independent triangle diagrams and indicate their multiplicity factors.

You should also find six diagrams with a bubble in one of the external legs. However,
four of these are again related either by crossing or by charge conjugation.



Draw the three different bubble diagrams with the appropriate multiplicity factors.

Consider first the triangle graphs. Note that in Feynman gauge all propagators have
the same denominator. Use the same momentum routing as in the fermionic case and
compute the coefficients of the tensor structures gµν and pµpν for each diagram by use of
the above Feynman rules. In this way you obtain:

MW,triangles
µν =

∫
ddp

(2π)d

∑7
i=1(aigµν + bipµpν)

DW0DW1DW2

, (18)

where DWi are given by (13) with mf → mW . Do not attempt to compute these inte-
grals yet! Instead, consider now the bubble diagrams. In each diagram, choose the loop
momenta so that you can easily expand the denominator to the form appearing in the
triangle case. In this way you obtain effective coefficients ai and bi also for the bubble
diagrams. Now form the grand total nominator:

PW
µν ≡

10∑
i=1

(
aigµν + bipµpν

)
= aWTOTgµν + bWTOTpµpν . (19)

Only at this point perform the Feynman parametrizations, shift p and do the symmetric
momentum and FP-integrations as you did in the fermionic case. No new tricks that will
be needed and the outcome should be just:

MW
µν =

m2
Hα

4πv
F1(τW )× Pµν . (20)

This is not an exam question, but a note on how to simply derive
F-rules needed in this problem

Apart from the standard Higgs and gauge self-coupling vertices and the ghost-vertices,
the necessary interactions arise from the covariant derivative term. For the decay problem
the relevant part of the covariant term is just:

|DµΦ|2 =

∣∣∣∣∣
(

∂µ − ieAµ − i√
2
gW+

µ

− i√
2
gW−

µ ∂µ

)(
ϕ+

1√
2
(η + v)

)
+ . . .

∣∣∣∣∣
2

(21)

Consider for example term −ieAµ(ϕ
+∂µϕ−−ϕ−∂µϕ+) included in (21). To find the F-rule,

replace each field with the appropriate field operator and compute the matrix element of
this operator between vacuum and the incoming one-particle states

⟨Ω|i(−ie)Âα(ϕ̂
+∂αϕ̂− − ϕ̂−∂αϕ̂+)|k, µ; p+; p−⟩amp = −ie(pµ− − pµ+) . (22)

This is in fact a shorthand for computing the tree level S-matrix element:∫
d4x out⟨Ω|eÂα(x)(ϕ̂

+(x)∂αϕ̂−(x)− · · · )|k, µ; p+; p−⟩in

= (2π)4δ4(k − p+ − p−)
[
− ie(pµ− − pµ+) ϵµ(k)

]
. (23)



The quantity in brackets is the lowest order −iT -matrix element, from which you ampu-
tate the photon wave function to get the vertex rule (for scalars the wave functions are
just ones). To remind, eg:

Âα(x) =

∫
d3q

(2π)32ωq

(ϵαqâαqe
−iq·x + ϵ∗αqâ

†
αqe

iq·x) .

Note that in this prescription all momenta in graphs are flowing into the vertex. Note
also that by nature this derivation accounts for all possible ways of contracting the fields,
so the rule you get contains the symmetry factor. To get rules without symmetry factors,
you have to divide it out explicitly. This is what I have done in the graphs with identical
particles in the appendix.

The standard gauge vertices shown in figure 2 can be obtained by a similar technique.
You just have to note that a contraction of Âα and âβ gives a gαβ in addition to the usual
momentum delta function. Given the SM-ghost lagrangian in Feynman gauge, the same
techniques can be used to derive the associated Feynman rules.
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