
Quantum field theory applications The Final Exam
FYSH515 Fall 2018

Return by 12.00, Thursday 20.12 to office FL220 (Kimmo), complete with all intermedi-
ated details of your computation.

Consider the following model for fermions with a discrete chiral symmetry in two space-
time dimensions (D = 2):

L =
∑
j

ψ̄ji ∂/ ψj +
1

2
g2
(∑

j

ψ̄jψj
)2
, (1)

where j = 1, . . . , N is the number of fermion flavours. The model resembles the familiar
four dimensional λφ4 theory with O(N) symmetry, but for fermionic fields in two di-
mensions. The kinetic term of two dimensional fermions is built from matrices γµ that
satisfy the two dimensional Dirac algebra: {γµ, γν} = 2gµν with gµν = diag(+1,−1).
These matrices can be chosen as: γ0 = σ2, γ1 = iσ1, where σi are Pauli matrices. We
can define the two dimensional analogue of the γ5 (which anticommutes with the γµ) as:
γ5 = γ0γ1 = σ3.

Part one.

a) Show that the theory defined by Eq. (1) is invariant under the transformation

ψj → γ5ψj , (2)

and that this symmetry forbids the appearance of a fermion mass term in the theory.

b) Show that this theory is renormalizable in two dimensions (at the level of power
counting) and find the divergent n-point functions.

c) Show that the functional integral for this theory can be writtn in the following form:∫
DψjDψ̄jei

∫
d2xL =

∫
DψjDψ̄jDσ exp

(
i
∫

d2x{ψ̄ji ∂/ ψj − σ(ψ̄jψj)−
1

2g2
σ2}

)
, (3)

where σ(x) is a new auxiliary scalar field with no kinetic terms (not to be confused with
a Pauli matrices). It is evident that physically σ(x) describes the fermion condensate.

d) Compute the leading correction to the effective potential for σ(x) (the condensate) by
integrating over the fermion fields ψj and ψ̄j. You should encounter the determinant of a
Dirac operator. To evaluate it you can just take the determinant of the spinor degrees of
freedom (a 2× 2 matrix) and then pass to the momentum space, or you can diagonalize
the matrix in the momentum space for each Fourier mode. This 1-loop contribution
requires a renormalization counter term proportional to σ2 (that is, a renormalization of
the coupling constant g2). Renormalize by modified minimal substraction or MS scheme.



e) Ignoring higher-orger contributions, minimize the effective potential you found in the
previous step. Show that the σ(x) acquires a vacuum expectation value which breaks the
chiral symmetry of the model.

Part two.

Go back to the original theory as written in the Eq. (1). Compute the beta function β(g)
at the 1-loop level and show that the model is asymptotically free.

2. Decay µ→ eγ.

The muon and electron number violating decay µ → eγ (see Fig. 1) is not allowed if
neutrinos are massless. However, if neutrinos do mix, this decay has a branching ratio

B(µ→ eγ) ≡ Γ(µ→ eγ)

Γ(µ→ eνν̄)
=

3α

32π
δ2ν , (4)

where

δν =
3∑
i=1

U∗eiUµi(m
2
i /M

2
W ) . (5)

Here MW is the weak gauge boson mass, mi are the neutrino mass eigenvalues and Uαi
are the analogue of the CKM-mixing matrix in the neutrino sector, which defines the
flavour eigenstates in terms of the mass eigenstates:

να =
3∑
i=1

Uαiνi . (6)

Your task is to compute the branching ratio Eq. (4).

Figure 1: Generic matrix element for the decay µ→ eγ.



Part one.

a) First argue that the most general Lorentz structure of the matrix element is

Tλ = ūe(p
′)[iqνσλν(A+Bγ5) + γλ(C +Dγ5) + qλ(E + Fγ5)]uµ(p) . (7)

From this expression use the electromagnetic gauge invariance (why does it hold?) to
show that on-shell q2 = 0:

T (µ→ eγ) = ελTλ = ūe(p
′)[iqνελσλν(A+Bγ5)]uµ(p) . (8)

We will be working in the limit me = 0. Give an argument as to why in this limit you
must have A = B. (You will of course see this explicitly later in the calculation.) Finally,
using the equations of motion for the spinors rewrite Eq. (8) in the form:

T (µ→ eγ) = A ūe(p
′)[(1 + γ5)(2p · ε−mµγ · ε)]uµ(p) . (9)

b) Using Eq. (9) derive the following expression for the decay width (with me = 0):

Γ(µ→ eγ) =
m3
µ

4π
|A|2 . (10)

Derive (if you have time) the decay width Γ(µ → eνν̄) = G2
Fm

5
µ/192π3 (in the limit

me = 0, mνi = 0) and use this result together with Eq. (10) to write the branching ratio
as a function of |A|2.

Part two. (The harder one.)

c) You now need to evaluate the amplitude A. Since our operator is known to be finite
one can try to work it out in the unitary gauge1, where there is only one relevant diagram,
shown in Fig. 2. (Please use the momentum routing as defined in the left panel of the
figure 2.) The relevant Lagrange function for the problem in the flavour basis is

L =
g

2
√

2

(
ν̄eγ

α(1− γ5)eW−
α + ν̄µγ

α(1− γ5)µW−
α

)
. (11)

To derive the relevant Feynman rules insert the expansion (6) to Eq.(11). Finally, the
Feynman rule for the γλ(k1)W

−
α (k2)W

+
β (k3)-vertex, with all momenta directed into the

vertex is:

−ieVλαβ(k1, k2, k3) = −ie [(k1 − k2)βgλα + (k2 − k3)λgαβ + (k3 − k1)αgβλ] . (12)

Now write down the matrix element for the diagram shown in figure 2 in U-gauge. Then
expand the neutrino propagator in m2

i and show that the lowest order term vanishes.
Keeping only the leading term in m2

i show that your matrix element is

T = i
g2e

4

∑
i

U∗eiUµim
2
i

∫ d4k

(2π)4
R

[(k + p)2]2(k2 −M2
W )((k + q)2 −M2

W )
, (13)

1This is not guraranteed to work, because U-gauge can in principle spoil even a finite operator.



Figure 2: The 1-loop contribution to the matrix element for the decay µ→ eγ at 1-loop
level in the unitary gauge (left). The desired momentum routing (right).

where
R ≡ ∆νβ

W (k)∆µα
W (k + q)Γαβ Nµν (14)

with
Γαβ ≡ ελVλαβ(−q, k + q,−k) , (15)

Nµν ≡ ūe(p− q) [γµ(p/ + k/)γν(1− γ5)]uµ(p) (16)

and
∆ρσ
W (p) ≡ −gρσ + pρpσ/M

2
W . (17)

Show that out of the four terms coming from contracting ∆-tensors, only the one with
∼ pp/M2

W -terms from both propagators is dangerous for convergence. Show that this
term vanishes because

(k + q)αkβελVλαβ(−q, k + q,−k) = 0 . (18)

Thus, the integral is finite and we can indeed perform the computation in U-gauge. The
remaining contractions making up R ≡ S1 + S2 + S3 then are

S1 = ΓµνNµν

S2 = −(kλΓµλ)(kνNµν)/M
2
W

S3 = −((k + q)λΓµλ)((k + q)νNµν)/M
2
W . (19)

Now, introduce the Feynman parametrization using Peskin & Schröder equation (6.42)
and rewrite the integral as

T = i3!
g2e

4

∑
i

U∗eiUµim
2
i

∫
z1dz1dz2

∫ d4`

(2π)4
S̃1 + S̃2 + S̃3

(`2 − a2)4
, (20)

where ` is the shifted momentum and S̃i are Si written in terms of `. Compute the
effective mass a only to the leading order in M2

W :

a2 = (1− z1)M2
W + ... (21)

Obviously the next, and most tedious task is to compute the quantities S̃i. However, do
not to attempt to compute them completely. Instead, pick only the terms that eventually
are proportional to p · ε. This reduces the amount of work enormously. When you are
done, you should get

T = A× 2p · ε ūe(p′)(1 + γ5)uµ(p) + ... , (22)

where A is just the quantity you are after:

A =
1

64π2

mµ

M4
W

g2e

4

∑
i

U∗eiUµim
2
i . (23)

Rewriting this using GF etc, and inserting back to (10) should lead to the desired result.


