1. We continue to compute some basic 1-loop integral functions. First show that

$$
A_{\mu \nu}(m)=\mu^{4-d} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k_{\mu} k_{\nu}}{k^{2}-m^{2}+i \epsilon}=A_{2}(m) g_{\mu \nu}
$$

where

$$
A_{2}(m)=\frac{m^{2}}{4} A_{0}(m)+\frac{i m^{4}}{8(4 \pi)^{2}}
$$

where A_{0} is the one-point scalar function computed in the first excercise. Explain why any tensor with odd number of k^{μ}-factors in the nominator has to vanish.

Next consider vector and tensor B functions using (Passarino-Veltman) reduction to a linear combinations of scalar functions:

$$
\begin{aligned}
B_{\mu}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right) & \equiv \mu^{4-d} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{k_{\mu}}{\left(k^{2}-m_{1}^{2}\right)\left((k-p)^{2}-m_{2}^{2}\right)} \\
B_{\mu \nu}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right) & \equiv \mu^{4-d} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k_{\mu} k_{\nu}}{\left(k^{2}-m_{1}^{2}\right)\left((k-p)^{2}-m_{2}^{2}\right)}
\end{aligned}
$$

First show that $B_{\mu}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right)=p^{\mu} B_{1}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right)$, where

$$
B_{1}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right) \equiv \frac{1}{2 p^{2}}\left[A_{0}\left(m_{2}^{2}\right)-A_{0}\left(m_{1}^{2}\right)+\left(p^{2}+m_{1}^{2}-m_{2}^{2}\right) B_{0}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right)\right]
$$

and B_{0} is the two-point scalar integral computed in the first excercise. Note the symmetry property $B_{1}\left(p^{2} ; m_{2}, m_{1}\right)+B_{1}\left(p^{2}, m_{1}, m_{2}\right)=B_{0}\left(p^{2} ; m_{1}, m_{2}\right)$. Next consider the rank two integral. Explain why we must be able to make a reduction

$$
B_{\mu \nu}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right)=B_{2 g}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right) g_{\mu \nu}+B_{2 p}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right) \frac{p_{\mu} p_{\nu}}{p^{2}}
$$

where $B_{2 g}$ and $B_{2 p}$ are two new scalar functions. Show that this relation leads to a system of two linear equations for $B_{2 p}$ and $B_{2 g}$:

$$
\begin{aligned}
d B_{2 g}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right)+B_{2 p}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right) & =A_{0}\left(m_{2}^{2}\right)+m_{1}^{2} B_{0}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right) \\
B_{2 g}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right)+B_{2 p}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right) & =\frac{1}{2}\left[A_{0}\left(m_{2}^{2}\right)+\left(p^{2}+m_{1}^{2}-m_{2}^{2}\right) B_{1}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right)\right] .
\end{aligned}
$$

Finally, solve the above linear equation for B_{21}, B_{22} and express your results in terms of the basic $A_{0^{-}}$and B_{0}-functions.
2. Use the results from the problem 1 to compute the electron self-energy diagram in the dimensional regularization scheme using the Feynman gauge. Regulate the photon propagator by a finite mass μ_{p} as was done in the lectures. Compute counter terms explicitly and show that δ_{m} is IR-finite, but δ_{2} is IR- as well as UV-divergent.

