Quantum field theory applications, fall 2018, Excercise 3.

1. We continue to compute some basic 1-loop integral functions. First show that
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where Ag is the one-point scalar function computed in the first excercise. Explain why
any tensor with odd number of k*-factors in the nominator has to vanish.

Next consider vector and tensor B functions using (Passarino-Veltman) reduction to a
linear combinations of scalar functions:
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First show that B, (p* mi, m3) = p"Bi(p*; m3, m3), where
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and By is the two-point scalar integral computed in the first excercise. Note the symmetry
property Bj(p?; ma, my) + Bi(p*, my, ms) = Bo(p?;m1, my). Next consider the rank two
integral. Explain why we must be able to make a reduction
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where By, and By, are two new scalar functions. Show that this relation leads to a system
of two linear equations for By, and Byg:
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Finally, solve the above linear equation for Bsy, Bsy and express your results in terms of
the basic Agp- and By-functions.



2. Use the results from the problem 1 to compute the electron self-energy diagram in
the dimensional regularization scheme using the Feynman gauge. Regulate the photon
propagator by a finite mass j, as was done in the lectures. Compute counter terms
explicitly and show that ¢,, is IR-finite, but d5 is IR~ as well as UV-divergent.



