
Quantum field theory applications, fall 2018, Excercise 3.

1. We continue to compute some basic 1-loop integral functions. First show that
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where A0 is the one-point scalar function computed in the first excercise. Explain why
any tensor with odd number of kµ-factors in the nominator has to vanish.

Next consider vector and tensor B functions using (Passarino-Veltman) reduction to a
linear combinations of scalar functions:
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and B0 is the two-point scalar integral computed in the first excercise. Note the symmetry
property B1(p
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integral. Explain why we must be able to make a reduction
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where B2g and B2p are two new scalar functions. Show that this relation leads to a system
of two linear equations for B2p and B2g:
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Finally, solve the above linear equation for B21, B22 and express your results in terms of
the basic A0- and B0-functions.



2. Use the results from the problem 1 to compute the electron self-energy diagram in
the dimensional regularization scheme using the Feynman gauge. Regulate the photon
propagator by a finite mass µp as was done in the lectures. Compute counter terms
explicitly and show that δm is IR-finite, but δ2 is IR- as well as UV-divergent.


