Quantum field theory, fall 2023,

Exercise 8.

1. Derive the form of the helicity spin vector $s_{\mu}=\frac{h}{m}(|\mathbf{k}|, E \hat{\mathbf{k}})$ from the requirements $s_{h} \cdot k=0$, $s_{h} \cdot s_{h}=-1$ and $\mathbf{s}_{h} \| \mathbf{k}$. Then show that the projection operator $P_{h}=\frac{1}{2}\left(1+\gamma^{5} \phi\right)$ obeys $P_{h} u\left(p, h^{\prime}\right)=\delta_{h, h^{\prime}} u\left(p, h^{\prime}\right)$ and $P_{h} v\left(p, h^{\prime}\right)=\delta_{h, h^{\prime}} v\left(p, h^{\prime}\right)$.
2. Let us now treat the issue of the polarization sums rigorously. Show that the vacuum Maxwell equations $\partial_{\mu} F^{\mu \nu}$ are invariant under the gauge transformation $A_{\mu} \rightarrow A_{\mu}^{\prime}+\partial_{\mu} \alpha$, where α is an arbitrary scalar function. Then note that in the Lorenz-Gauge these equations are replaced by:

$$
A_{\mu}=0 \quad \partial^{\mu} A_{\mu}=0
$$

Trying a plane-wave solution $A_{\mu}=\epsilon_{\mu}(k) e^{-i k \cdot x}$ where ϵ_{μ} is the polarization vector, show that the equations above imply $k^{2}=0$ (photon is massless) and $k^{\mu} \epsilon_{\mu}=0$.

Now show that the Lorenz-gauge does not yet uniquely define the entire gauge potential A_{μ}. Use the residual gauge degree of freedom to show that we can always require that the polarization vectors of real physical photons are of the form $\epsilon=(0, \boldsymbol{\epsilon})$ with $\boldsymbol{\epsilon}$ transverse to the direction of photon's momentum $\mathbf{k} \cdot \boldsymbol{\epsilon}=0$. In this way there are always two independent polarization vectors ϵ^{1} and ϵ^{2}. These are space-like vectors, so they are conventionally normalized such that $\epsilon \cdot \epsilon=-1$. Next derive the result for the sum over physical transverse photon polarization states

$$
P_{\mu \nu} \equiv \sum_{\lambda} \epsilon_{\mu}^{\lambda}(k) \epsilon_{\nu}^{* \lambda}(k)=-g_{\mu \nu}+\frac{k_{\mu} \bar{k}_{\nu}+k_{\nu} \bar{k}_{\mu}}{k \cdot \bar{k}} \quad, \bar{k} \equiv\left(k^{0},-\mathbf{k}\right)
$$

This is, by construction, an idempotent projector operator onto the physical space of photon polarizations. Hint: Note that the vectors $k, \bar{k} \epsilon^{1}, \epsilon^{2}$ form a basis of 4 -vectors and thus the second order tensor $P_{\mu \nu}$ can be expanded in terms of $g_{\mu \nu}, k_{\mu} k_{\nu}, \bar{k}_{\mu} \bar{k}_{\nu}, \bar{k}_{\mu} k_{\nu}$ and $k_{\mu} \bar{k}_{\nu}$. Finally show, using the Ward identity, that in practical calculations with external photons you can still replace $P_{\mu \nu} \rightarrow-g_{\mu \nu}$.
3. Show that the differential cross section for the scattering of an $e^{-} e^{+}$-pair into two photons is

$$
\left(\frac{d \sigma}{d \cos \theta}\right)_{\mathrm{CM}}=2 \frac{\pi \alpha^{2}}{s}\left(\frac{E}{p}\right) \frac{E^{2}+p^{2} \cos ^{2} \theta}{m^{2}+p^{2} \sin ^{2} \theta}
$$

Compute the total cross-section by integrating

$$
\sigma_{\mathrm{TOT}}=\int_{0}^{1} d(\cos \theta)\left(\frac{d \sigma}{d \cos \theta}\right)_{\mathrm{CM}},
$$

and extract the leading term as $E \gg m_{e}$.

