Quantum field theory, fall 2023,

Exercise 5.

These excercises are not much related (apart from fourth) to what we are currently doing in lectures. It is difficult to write excercises on the LSZ-procedure, so these are just problems that give you some skills that come handy later.

1. In many experiments, a polarized beam of electrons can be produced, and it is therefore important to know how to deal with the spin in a covariant language. We will start from the rest frame of the spinor, in which the spin is described by a 3 -(unit)vector s. In this frame, the Dirac spinors with spin s are eigenstates of the spin operator $(1 \otimes \boldsymbol{\sigma}) \cdot \boldsymbol{s}$

$$
(1 \otimes \boldsymbol{\sigma}) \cdot \boldsymbol{s} u(0, \boldsymbol{s})=u(0, \boldsymbol{s}) \quad(1 \otimes \boldsymbol{\sigma}) \cdot \boldsymbol{s} v(0, \boldsymbol{s})=-v(0, \boldsymbol{s})
$$

and therefore

$$
\Sigma(\boldsymbol{s}) \equiv 1 \otimes \frac{1 \pm \boldsymbol{\sigma} \cdot \boldsymbol{s}}{2}
$$

with + sign for u-spinor and - sign for v-spinors serves as a spin projection operator in the rest frame. That is

$$
\Sigma(\boldsymbol{s}) u(0, \boldsymbol{s})=u(0, \boldsymbol{s}) \quad \Sigma(\boldsymbol{s}) v(0, \boldsymbol{s})=v(0, \boldsymbol{s}) \quad \Sigma(-\boldsymbol{s}) u(0, \boldsymbol{s})=\Sigma(-\boldsymbol{s}) v(0, \boldsymbol{s})=0
$$

To obtain a covariant version we promote \boldsymbol{s} to a 4 -vector s, that is given by $s^{\mu}=(0, \boldsymbol{s})$ in the rest frame. What are then the invariants s^{2} and $s \cdot p$ where p is the four-momentum of the spinor? By proving that in the rest frame

$$
(1 \otimes \boldsymbol{\sigma}) \cdot s=\gamma^{5} \phi \gamma^{0},
$$

deduce that the covariant spin projection operator is given by

$$
\Sigma(s)=\frac{1+\gamma^{5} \phi}{2} .
$$

With our definition of spin as a four-vector, and because of the covariant form of the projection operator, we then have

$$
\Sigma(s) u(p, s)=u(p, s) \quad \Sigma(s) v(p, s)=v(p, s) \quad \Sigma(-s) u(p, s)=\Sigma(-s) v(p, s)=0
$$

Show that $\Sigma(s)$ satisfies

$$
\Sigma(\pm s) \Sigma(\pm s)=\Sigma(\pm s) \quad \Sigma(\pm s) \Sigma(\mp s)=0 \quad \Sigma(\pm s)+\Sigma(\mp s)=1
$$

as a proper projection operator should.
2. Using the anticommutation properties of γ matrixes prove the following trace theorems

$$
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}, \quad \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right)
$$

where trace is taken over the Dirac indexes. Use these results (and the results on the spin sums of spinors) to calculate the (lepton) tensor

$$
L_{\mu \nu} \equiv \sum_{s_{1}, s_{3}}\left[\bar{u}\left(p_{3}, s_{3}\right) \gamma^{\mu} u\left(p_{1}, s_{1}\right)\right]\left[\bar{u}\left(p_{3}, s_{3}\right) \gamma^{\nu} u\left(p_{1}, s_{1}\right)\right]^{\dagger}
$$

3. Show that

$$
\begin{gathered}
\operatorname{Tr}\left[\gamma^{\mu_{1}} \cdots \gamma^{\mu_{2 n+1}}\right]=0 \\
\operatorname{Tr}\left[\phi_{1} \cdots \phi_{n}\right]=\sum_{i=2, n}(-1)^{i} a_{1} \cdot a_{i} \operatorname{Tr}\left[\phi_{2} \cdots \hat{\phi}_{j} \cdots \phi_{n}\right]
\end{gathered}
$$

where notation $\hat{\phi}_{i}$ means that term ϕ_{i} is removed from product. Show also that

$$
\begin{gathered}
\operatorname{Tr}\left[\gamma_{5} a b\right]=0 \\
\operatorname{Tr}\left[\gamma_{5} a b c d\right]=4 i \epsilon_{\mu \nu \rho \sigma} a^{\mu} a^{\nu} a^{\rho} a^{\sigma}
\end{gathered}
$$

and

$$
\begin{aligned}
\gamma_{\mu} \not d \gamma^{\mu} & =-2 a \\
\gamma_{\mu} \not b b \gamma^{\mu} & =4 a \cdot b \\
\gamma_{\mu} \not d b c \gamma^{\mu} & =-2 c b \not d
\end{aligned}
$$

4. Compute the symmetry factors of the following graphs in the $\lambda \phi^{4}$-theory:

