Quantum field theory, fall 2023,

1. Let us denote the mutual speed of two particles with $|\boldsymbol{v}_a - \boldsymbol{v}_b| \equiv v_{ab}$. In this case the flux factor F is defined as

$$\frac{1}{F} = \frac{1}{2E_a 2E_b v_{ab}}.$$

Show that if $\boldsymbol{v}_a \parallel \boldsymbol{v}_b$, we have

$$F = 4\sqrt{(p_a \cdot p_b)^2 - m_a^2 m_b^2},$$

in which p_a and p_b are the four-momenta of particles a and b respectively.

Explain, why our calculation guarantees that the flux factor F is Lorentz invariant under boosts along the direction of the particles motion.

2. Denote *n*-particle phase-space element with $d\Gamma_n$, so that

$$d\Gamma_n \equiv \left(\prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 2E_i}\right) (2\pi)^4 \delta^{(4)} (p_a + p_b - \sum_i p_i).$$

Show that in the center-of-mass frame (CMS) one obtains

$$\int d\Gamma_2 = \int d\Omega \frac{1}{16\pi^2} \frac{|\vec{p}_1|}{E_{\rm CM}}$$

and consequently the differential cross-section for $p_a + p_b \rightarrow p_1 + p_2$ scattering can be written as

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm CM} = \frac{1}{F} \frac{|\vec{p_1}|}{16\pi^2 E_{\rm CM}} |\mathcal{M}(\vec{p_a}, \vec{p_b} \to \vec{p_1}, \vec{p_2})|^2$$

in the CMS frame.

Exercise 4.

3. Tree level contributions to the scattering amplitudes can be computed directly from the equation of motion and Born expansion. In this problem you shall see how it works for a fermion scattering off a classical source. Starting from QED Lagrange function

$$\mathcal{L}_{\text{QED}} = \bar{\psi}^{(i} D - m) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

derive the equation of motion for the field ψ :

$$(i\partial \!\!\!/ - m)\psi = eA\!\!\!/\psi\,.$$

Show that if ψ satisfies this equation of motion, then the charge conjugated field $\psi^c \equiv C \bar{\psi}^T$, where $C \equiv i \gamma^2 \gamma^0$ satisfies the same equation with the opposite charge: $e \to -e$. Moreover, show that

$$\psi(x) \equiv u(p,s)e^{-ip\cdot x} \quad \Rightarrow \quad \psi^c_{p,s}(x) = v(p,s)e^{ip\cdot x}$$

Now show that $\Psi(x)$ has the formal solution

$$\Psi(x) = \psi_0(x) - e \int \mathrm{d}^4 x' S(x - x') \mathcal{A}(x') \Psi(x'),$$

where S(x - x') is a Greens function for a free fermion field. Take it to be the Feynman propagator. Now write a formal perturbative solution for $\Psi(x)$ in parameter e (write two lowest order terms). Starting from the momentum space representation (2.92) in the lectures, derive an the following expansion for S_F (remember also the spin sums (2.55) and (2.56)):

$$S_F(x-x') = \sum_s \int \frac{\mathrm{d}^3 p}{(2\pi)^3 2E} \left(\theta(t-t')\psi_{p,s}(x)\bar{\psi}_{p,s}(x') - \theta(t'-t)\psi_{p,s}^c(x)\bar{\psi}_{p,s}^c(x') \right) \,.$$

Interpretation? Now choose the boundary condition to be a free plane wave: $\lim_{t\to\infty} \Psi(x) = \psi_{p1,s1}(x)$ (this is the ÒinÓ-state for the problem). Show that in this case the wave function for the electron in the lowest nontrivial order in the perturbation is

$$\Psi_e^+(x) = \psi_{p_1,s_1}(x) - e \sum_s \int \frac{\mathrm{d}^3 p}{(2\pi)^3 2E} \psi_{p,s}(x) \int \mathrm{d}^4 x' \theta(t-t') \bar{\psi}(x')_{p,s} \mathcal{A}(x') \psi_{p_1,s_1}(x')$$

when $t \to \infty$. With this solution construct the S-matrix element for the process $\psi_{p_1} \to \psi_{p_3}$:

$$\langle p_3, s_3 | S | p_1, s_1 \rangle \equiv_{\text{out}} \langle \psi_{p_3, s_3} | \psi_{p_1, s_1} \rangle_{\text{in}} = \langle p_3, s_3 | p_1, s_1 \rangle - e \int \mathrm{d}^4 x' \bar{\psi}_{p_3, s_3}(x') \mathcal{A}(x') \psi_{p_1, s_1}(x') \psi_{p_1, s_1}(x') \mathcal{A}(x') \psi_{p_1, s_1}(x') \psi_{p_1, s_1}(x') \mathcal{A}(x') \psi_{p_1, s_1}(x') \psi_{p_1, s_1}(x') \psi_{p_1$$

4. Rutherford scattering. Assume that the vector potential appearing in the previous problem describes the static Coulomb potential of a nucleus with charge -Ze:

$$A_0 = \frac{-Ze}{4\pi |\mathbf{x}|}, \qquad \mathbf{A} = 0.$$

Compute the S and T-matrices by a direct substitution (you have to know/figure out what is the mometum space representation of $1/|\mathbf{x}|$. Hint: **A** is itself essentially a Greens function for a static delta function charge current). From this compute the differential cross section $d\sigma/d\Omega$ for the process, (sum over the final state spins and average over the initial state spins) when

$$d\sigma = \frac{|S_{fi}|^2}{2E_1 v_1 T} \frac{d^3 p_3}{(2\pi)^3 2E_3}.$$

Can you say why $d\sigma$ here has not been divided by the factor $2E_{\text{nucleus}}V$ in contrast with the generic equation (3.42) derived in the lectures?