Quantum field theory, fall 2023,
Exercise 3.

1. Show that the normalization convention for spinors $\xi_{s}^{\dagger} \xi_{s^{\prime}} \equiv \delta_{s s^{\prime}}$ implies the results

$$
\begin{gathered}
\bar{u}_{s}(p) u_{s^{\prime}}(p)=2 m \delta_{s s^{\prime}} \quad \bar{v}_{s}(p) v_{s^{\prime}}(p)=-2 m \delta_{s s^{\prime}} \\
u_{s}^{\dagger}(p) u_{s^{\prime}}(p)=v_{s}^{\dagger}(p) v_{s^{\prime}}(p)=2 E_{p} \delta_{s s^{\prime}}
\end{gathered}
$$

Furtheremore prove the following formulas for the spin-sums

$$
\sum_{s} u_{s}(p) \bar{u}_{s}(p)=p+m \quad \sum_{s} v_{s}(p) \bar{v}_{s}(p)=p-m
$$

2. Show the following properties of the Dirac spinors

$$
\begin{array}{r}
u^{*}(-\mathbf{p},-s)=-\gamma^{1} \gamma^{3} u(\mathbf{p}, s) \\
v^{*}(-\mathbf{p},-s)=+\gamma^{1} \gamma^{3} v(\mathbf{p}, s)
\end{array}
$$

and

$$
\begin{aligned}
u(\mathbf{p}, s) & =-i \gamma^{2} v^{*}(\mathbf{p}, s), \\
v(\mathbf{p}, s) & =-i \gamma^{2} u^{*}(\mathbf{p}, s) .
\end{aligned}
$$

3. Derive the Gordon-identity:

$$
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=\bar{u}\left(p^{\prime}\right)\left[\frac{p^{\prime \mu}+p^{\mu}}{2 m}+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m}\right] u(p)
$$

where $\sigma^{\mu \nu} \equiv \frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ and $q^{\nu} \equiv p^{\nu}-p^{\nu}$.
4. Derive a field operatorator representation for angular momentum operator (akin to the Hamiltonian and the momentum operators). First find the transform of the Dirac field under rotation: $\psi \rightarrow \Lambda_{\frac{1}{2}} \psi\left(\Lambda^{-1} x\right)$ and require that the theory remains invariant. Angular momentum operator can now be obtained as a zeroth component of the Noether current corresponding to the rotation symmetry. (Hint. Peskin-Schröder, page 60.)
5. Find the transformation properties of the conserved current of a free charged scalar field

$$
\left.j^{\mu}=i\left(\partial^{\mu} \phi^{*}\right) \phi-\left(\partial_{\mu} \phi\right) \phi^{*}\right)
$$

under the discrete tranformations C, P, T and $C P T$.
6. The Lagrange density for the Quantum Chromodynamics (QCD) can be written as

$$
\mathcal{L}_{Q C D}=\bar{Q}(i \not D-m) Q-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}
$$

where Q is a three-component object wrt. $S U(3)$-group: $Q=\left(q_{r}, q_{b}, q_{g}\right)^{T}$ (the components q_{i} are normal spinor fields), covariant derivative is defined as $D_{\mu} \equiv \partial_{\mu}-i g T^{a} A_{\mu}^{a}$ and

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

T^{a} 's are the $\mathrm{SU}(3)$ generators that obey the Lie algebra $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$. Derive the tranformation properties of the covariant derivative D_{μ} and of the field $T^{a} A_{\mu}^{a}$ by requiring that $\bar{Q} i \not D Q$ is invariant under the local $\mathrm{SU}(3)$-phase transformation

$$
Q \rightarrow U Q \equiv e^{i T^{a} \theta^{a}(x)} Q
$$

Now show that the field strength tensor can be constructed as a commutator

$$
F_{\mu \nu} \equiv T^{a} F_{\mu \nu}^{a}=\frac{i}{g}\left[D_{\mu}, D_{\nu}\right]
$$

and hence (the normalization of T^{a} 's in the fundamental representation is $\left.\operatorname{Tr}\left(T^{a} T^{b}\right) \equiv \frac{1}{2} \delta^{a b}\right)$:

$$
-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}=\frac{1}{2 g^{2}} \operatorname{Tr}\left(\left[D_{\mu}, D_{\nu}\right]^{2}\right) .
$$

Use these results to show that the entire lagrangian $\mathcal{L}_{Q C D}$ is invariant. Show that F^{2}-term contains terms $\sim A^{2} \partial A$ and $\sim A^{4}$. What do these terms describe?

