Quantum field theory, fall 2023,

Exercise 2.

1. The contribution from the source term to the solution of the scalar field equation depends on the choice of the propagator function:

$$
\delta \phi_{X}(x) \equiv \int d^{4} y \Delta_{X}(x-y) J(y)
$$

where $\Delta_{X}=\Delta_{R}, \Delta_{A}, \Delta_{F}$ tai $\Delta_{\bar{F}}$. Show that the differences $\delta \phi_{X}(x)-\delta \phi_{X^{\prime}}(x)$ fulfill the homogenous equation, and can thus be absorbed to the free part $\phi_{0}(x) \rightarrow \phi_{0 X}(x)$. From this conclude that the use of different propagators simply corresponds to different boundary conditions at spatial and temporal infinity (we assume that j vanishes at infinity).
2. Verify that the integral representation of the Feynman propagator agrees with the expcetation value of the time-ordered 2-point function:

$$
D_{\mathrm{F}}(x-y)=\int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} e^{-i p \cdot(x-y)} \frac{i}{p^{2}-m^{2}+i \epsilon}=\langle | T(\phi(x) \phi(y))| \rangle .
$$

3. Show that the generator matrices $S^{\mu \nu}=\frac{1}{2} \sigma^{\mu \nu} \equiv \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ fulfill the Lorentz algebra

$$
\left[S^{\mu \nu}, S^{\rho \sigma}\right]=i\left(g^{\nu \rho} S^{\mu \sigma}-g^{\mu \rho} S^{\nu \sigma}-g^{\nu \sigma} S^{\mu \rho}+g^{\mu \sigma} S^{\nu \rho}\right)
$$

when γ^{μ}-matrices obey the Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$.
4. Show that γ^{μ} transforms as a vector under Lorentz-transform:

$$
\Lambda_{\frac{1}{2}}^{-1} \gamma^{\mu} \Lambda_{\frac{1}{2}}=\Lambda^{\mu}{ }_{\nu} \gamma^{\nu} .
$$

Hint: Follow Peskin-Schröder on page 42.
5. We can write a unitary representation for an arbitrary 4 -vector V as follows

$$
V=V^{0}+\vec{\sigma} \cdot \vec{V}
$$

where σ_{i} are the familiar Pauli matrices. Let us now require that V-matrix transforms according to the $\left(\frac{1}{2}, \frac{1}{2}\right)$-representation of the Lorentz-group,

$$
V \rightarrow \Lambda_{\frac{1}{2} L}^{-1}(\theta, \beta) V \Lambda_{\frac{1}{2} R}(\theta, \beta)
$$

where $\Lambda_{\frac{1}{2} L, R}$ are 2×2-matrices that transform the Weyl spinors under $\left(\frac{1}{2}, 0\right)$ and ($0, \frac{1}{2}$) representations (see the lectures on page 42). Show that this transformation law implies that the components of V transform as a Lorentz-vector. (This demonstrates that $\left(\frac{1}{2}, \frac{1}{2}\right)$ in fact is a vector representation of the Lorenz-group.)

