1. Prove the Gaussian identity

$$
\int_{-\infty}^{-\infty} \prod_{i}^{N} d x_{i} e^{-x^{T} A x+Q^{T} x}=\frac{\pi^{N / 2}}{\sqrt{\operatorname{det} A}} e^{\frac{1}{4} Q^{T} A^{-1} Q}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right), A$ is a symmetric $N \times N$-matrix with $\operatorname{det} A \neq 0$, and Q is an arbitrary vector $Q=\left(q_{1}, q_{2}, \ldots, q_{N}\right)$. Now show that the normalization factor N_{KG} in the Klein-Gordon theory partition function $Z[J]$ can be expressed as a functional derivative:

$$
\int \mathcal{D} \phi e^{i \int d^{4} x \mathcal{L}_{\mathrm{KG}}}=\mathrm{const} \times\left[\operatorname{Det}\left(\partial^{2}+m^{2}\right)\right]^{-1 / 2}
$$

Hint: discretize theory and perform Gaussian integrals over fields $\phi_{x_{i}}$.
2. Show that the tensor function $D_{\mu \nu}^{-1}(k) \equiv-g^{\mu \nu} k^{2}+k^{\mu} k^{\nu}$ does not have an inverse which satisfies the equation $D_{\mu \nu}^{-1}(k) D^{\nu \rho}(k)=\delta_{\mu}^{\rho}$. Show also that $D_{\mu \alpha}^{-1}(k)$ is actually a projection operator. Then show that a tensor

$$
D_{\mu \nu}^{-1}(k, \alpha) \equiv-g^{\mu \nu} k^{2}+\alpha k^{\mu} k^{\nu}
$$

does possess an inverse if $\alpha \neq 1$ and compute that inverse.
3. Show that in the Yang-Mills theory the field strength tensor $F_{\mu \nu}=-\frac{i}{g}\left[D_{\mu}, D_{\nu}\right]$ obeys the Bianchi identity

$$
\left[F_{\mu \nu}, D_{\rho}\right]+\left[F_{\nu_{\rho}}, D_{\mu}\right]+\left[F_{\rho \mu}, D_{\nu}\right]=0 .
$$

For the definition of the covariant derivative see lectures, page 207.
4. Derive the Feynman parametrizations

$$
\begin{aligned}
\frac{1}{A B} & =\int_{0}^{1} d x \int_{0}^{1} d y \frac{\delta(x+y-1)}{(x A+y B)^{2}} \\
\frac{1}{A B^{n}} & =\int_{0}^{1} d x \int_{0}^{1} d y \frac{n y^{n-1} \delta(x+y-1)}{(x A+y B)^{n+1}} \\
\frac{1}{A_{1} A_{2} \ldots A_{n}} & =\int_{0}^{1} \prod_{i=1}^{n} d x_{i} \frac{(n-1)!\delta\left(\sum_{i} x_{i}-1\right)}{\left(x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n}\right)^{n}} .
\end{aligned}
$$

(This problem is a preparation for the chapter 6 on renormalization.)

