3. INTERACTING THEORIES

The Lagrange functions of free theories were always quadratic in frelds (apart from the linear source terms), and their solutions could be expressed as harmonic oscillator expansions. Interactions will appear as nonlinear terms in Euler-Lagrange equations.

Not all interactions are allowed. Their form in constrained in particular by causality. (locality), symmetries and renormalizability.

Causality states that $\mathcal{L}=\mathscr{L}(x)$, so for example a term $\phi^{p}(x)$ is allowed, but $\phi^{n}(x) \phi^{m}(y)$ is not.


The Lagrangean (3.1) gives rise to the $E-L$ - equation of motion:

$$
\begin{equation*}
\left(\partial^{2}+m^{2}\right) \phi=-\frac{\lambda}{3!} \phi^{3} \tag{3.2}
\end{equation*}
$$

This equation cannot be solved generically by use of the Fourier analysis. However, theory (3.1) can still be quantized by the fore the or) term does not affect the conjugate momentum; $\pi=\frac{\partial R}{\partial \dot{\phi}}=\dot{\phi}$.

EXAMPLE 2. QED (An Abelian gauge theory)

$$
\begin{align*}
\mathcal{L}_{Q E 0} & =\underbrace{\bar{\psi}(i \not \supset-m) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}_{\text {Dirac }} \underbrace{e \bar{\psi} \gamma^{\mu} \psi A_{\mu}}_{\text {Maxwell! }} \underbrace{}_{\text {interaction }}  \tag{3.3}\\
& =\overline{\psi(i \not \supset-m) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}} \tag{3.4}
\end{align*}
$$

Here we introduced the covariant derivative.

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}+i e A_{\mu} \tag{3,5}
\end{equation*}
$$

The interaction term in fact follows from an invariance of the theory under local U(1) symmetry. Indeed, we have already seen that Dirac theory is invariant under a global $U_{(1)}$ transformation ${ }^{\circ}$

$$
\begin{equation*}
\psi \rightarrow e^{i \alpha} \psi \tag{3,6}
\end{equation*}
$$

where $\alpha$ in some constant. On the other hand, all observables are proportional to Bilinears $\bar{\Psi} \Psi \psi$, which are invariant also under local transformations with $\alpha=\alpha(x)$. It would be natural to require that the theory itself satisfies the same invariance. However:

$$
\begin{equation*}
\bar{\psi} \not \phi \psi \xrightarrow{\psi \rightarrow e^{i \alpha \alpha \alpha_{\psi}}} \bar{\psi} \not \psi \psi+\overbrace{i \bar{\psi}\left(\gamma_{\alpha}\right) \psi}^{\neq 0} \tag{3.7}
\end{equation*}
$$

- The transformation phases $U_{\theta}=e^{i \theta}$ are unitary: $U_{\theta}^{+}=U_{\theta}^{-1}$ and they form a (vii)-) group.

The only way to make the Dirac theory compatible with the local invariance

$$
\begin{equation*}
\psi \rightarrow e^{i \alpha(x)} \psi \tag{3.8}
\end{equation*}
$$

is then to extend the idea of the derivative. The form of the eqn suggests that we should add some vector field to $\partial_{\mu}$, and thin leads to form (3,5). Requirmig invariance now:

$$
\begin{array}{r}
\Psi \nabla \psi \xrightarrow{t \rightarrow e^{i(\alpha) \gamma} \psi} \Psi(\not \gamma+i e \not \subset) \psi+i \bar{\psi}(\not \gamma \alpha) \psi \\
\equiv \Psi\left(\not \gamma+i e \not \mathcal{A}^{\prime}\right) \psi=\Psi \not \gamma^{\prime} \psi
\end{array}
$$

leads to the transformation law for $A_{\mu}$

$$
\begin{equation*}
A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}-\frac{i}{e} \partial_{\mu} \alpha(x) \tag{3,9}
\end{equation*}
$$

This however, one recognizes an the gauge transformation, whir is the invariance of the Maxwells they: $\mathcal{L}_{\text {Maxwell }}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$. Combining the locally invariant Dirac theory and the Maxwells theory one discovers the dagrangian $(3,3)$ for the quantum electro. dynamics, essentially based on symmetry argument.

The E-L-equations for the $Q E D$ are easy to derive: charge $\sqrt{\text { - fermionic (rector) current. }}$

$$
\begin{align*}
& \partial_{\mu} F^{\mu \nu}=e \bar{\psi}_{\gamma}^{\nu} \psi=j^{\nu}  \tag{3.10}\\
& (i \gamma-m) \psi=e \alpha \psi \tag{3.11}
\end{align*}
$$

( $j^{\mu}$ is of course the conserved Wether current for $U(1)$-symmetry.)

EXAMPLE 3. (Scalar electrodynamics). The local ( $(1)$-imvanance can also be imposed on the complex scalar theory $(0,21)$. Again local invariance necessitates introducing the covariant denvative, and one finis

$$
\begin{equation*}
\alpha_{\phi}=\left|D_{\mu} \phi\right|^{2}-m^{2}|\phi|^{2}-\frac{1}{4}\left(F_{\mu \nu}\right)^{2} \tag{3,12}
\end{equation*}
$$

This theory contains interactions

$$
\begin{equation*}
e \phi^{*}\left(\partial_{\mu} \phi\right) A^{\mu} \text { and } e^{2}|\phi|^{2} A^{2} \tag{3.13}
\end{equation*}
$$

EXAMPLE 4. Quantum Chromodynamias (QCD) (Nan-Abelian gauge th.) Let us now assume that the Dirac theory spinor hos an internal SU(3)-midex :

$$
\psi \longrightarrow\left(\begin{array}{l}
q_{r}  \tag{3,14}\\
q_{b} \\
q_{g}
\end{array}\right) \xrightarrow{\text { sv(3) }} e^{i \frac{\lambda^{a} \theta^{\sigma^{*}-8}}{} \theta^{-8}} \psi
$$

Where $\frac{\lambda}{2}$ are the (8) generators of the $S U(3)$ Lie-algebra. If $\theta$ is are constant, then the free GeD-theory $(i, j=r, b, g)$

$$
\begin{equation*}
\mathcal{L}_{\text {free }}^{\text {Que }}=\bar{\psi}_{i}\left(i \not \varnothing-m_{i j}\right) \psi_{j} \tag{3,15}
\end{equation*}
$$

invariant. However, if $\theta^{a}=\theta^{a}(x)$, we must again introduce a covariant Derivative to achieve invariance. it is easy to see that the construction $\dot{n}$

$$
\begin{align*}
& \partial_{\mu} \longrightarrow \partial_{\mu}-\operatorname{ig} \frac{\lambda^{a}}{2} \cdot A_{\mu}^{a} \equiv D_{\mu}  \tag{3.16}\\
& \text { (one) ambling constant. } A_{\text {s gluon field a. }}^{\Longrightarrow}
\end{align*}
$$

The transformation law for the gluon field can be worked out:

$$
\begin{equation*}
T \cdot A^{\prime}=U T \cdot A U^{+}-\frac{i}{g} U \partial_{\mu} U^{+} \tag{3,166}
\end{equation*}
$$

where $T^{a} \equiv \frac{A^{a}}{2}$ and $U \equiv e^{I T \cdot \theta}$. The generalization of the Maxwells miraniant freed strength tensor is

$$
\begin{equation*}
F_{\mu \nu}=\frac{i}{g}\left[D_{\mu}, D_{\nu}\right]=F_{\mu \nu}^{a} \cdot T^{a} \tag{3,17}
\end{equation*}
$$

By direct evaluation one can Show that the Non-abelian term $-\frac{1}{4} F_{\mu v}^{a} F^{\text {gur }}$ contains new types of interactions

$$
\begin{equation*}
-\frac{1}{2} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right) \quad\left(\partial_{\mu} A^{\mu}\right) A^{2} \quad \text { and } \quad A^{4} \tag{3,18}
\end{equation*}
$$

We shall rectum to QCD and other non-Abelian Yang-Mills theories later on.

RENORMALI 3ABILISY
All interactions found above are characterized by the fact that the corresponding coupling constants one dimensionless. Indeed, since the action is dimensionless, we must have

$$
\begin{equation*}
[\alpha]=L^{-4} \tag{3.19}
\end{equation*}
$$

On the other hand $[2]=L^{-1}$, so that $[\phi]=[A]=L^{-1}$ and $[4]=L^{-3 / 2}$. Thus

$$
\begin{align*}
{[\bar{\psi} A \psi] } & =\left[\phi^{4}\right]=\left[\phi^{2} A^{2}\right]=[\phi(\theta, \phi) A \upharpoonleft \\
& =\left[A^{4}\right]=\left[A^{2} \partial, A\right]=L^{-4}! \tag{3.20}
\end{align*}
$$

This is not a coincidence: A theorem states that only interactions whose coupling has zero or negative dimension are renormalizable, What this means is that

1) If $[g]=L^{0}$, all infinities arising in the PT-colculations can be absorbed to the redefinition of the coupling, (mass) and the fields. $\mathcal{L}$ retains it form and the predictive power.
2) If $[g]=L^{+|\alpha|}$, perturbation theory will create an infinite amount of new interactions. Adjusting these infinities requires $\infty$ number of new parameters $\Rightarrow$ no predictive power.
3.) If $[g]=L^{-|\alpha|}$ the interaction is called super renormalizable. it does mot generate any new infinities.

Renormalizability excludes for example all interactions $g_{n} \phi^{n}$ with $n>4$ in the scalar theory. Similarly we cannot have a term $(\Psi \Psi)^{2}$ in a fundamental theory. In fact from our list of possible interactions for the $\operatorname{spin} 0, \frac{1}{2}$ and 1 fields we are missing only the forms

$$
\begin{align*}
& \mu \phi^{3} \text { and } \frac{y \phi \Psi \Psi}{\text { Yukava interaction. }} \quad \begin{array}{l}
(3,21) \\
\text { super renorm. } \\
\text { Scalar self. coupling } \\
\text { (spontaneus symm. breatoins jsse) }
\end{array} \tag{3,21}
\end{align*}
$$

Causality, symmetries and renormalizability are obviously very constraining principles for relatiritiz QFT. This should be contrasted to the situation in nonrelatinstic qu. when e potential! $V$ in arbivary.
3.1. S-Matrix. And cross sections

A very typical application of QFT is to solve the scattering problem by use of the perturbation theory


Fan away, in the in- and outstates the fields -are nonintersictily. (cheating a little nee. I will explain better later.)
The formal set up for the problem is as follows: (1) An "in"-state is prepared far from the interaction region (at $t \rightarrow-\infty \mathrm{im}$ the interaction time scale), typically to momentum eigenstates. (2) One meanuss the outgoing particles at $t \rightarrow+\infty$, ie constructs the "out"-state.

Experimentally the scattering problem in described by a (differential) scattering cows section. This can be viewed as an effective area of the scatterer on seen by the scattered particle.

Theoretically we wish to compute the errs section. To tho end we need to (1) set up an S-matrix formalism that can relate the " $m$ ". Staten to "out"-Stater. (2) Express the formal S-matrox in terms of the gree functions of the interacting theory. (3) Develop perturbation theory for evaluation of these miteracting theory greens functions.

FLUX AND THE CROSS SECTION


Assuming that target has $N_{k}$ independent scatterers, we got the number of states scattered to the solid angle $d \Omega$ per unit time

$$
\frac{d \bar{N}_{s}}{d \Omega}=F \cdot N_{k}\left(\frac{d \sigma}{d \Omega}\right)
$$

$\uparrow$ experimental! coefficient of
$a$

$$
\begin{equation*}
\frac{d \sigma}{d \Omega} \equiv \frac{1}{F \cdot N_{k}}\left(\frac{d \bar{N}_{s}}{d \Omega}\right) \quad(3.2 y) \tag{3.24}
\end{equation*}
$$

-by normalization: property of a single sortlewing event.

Theoretically we wish to compute this proportionality constant do/ar in an interacting QFT. First note/assume that

1 The "in" and "out" states can be taken to be eigenstates of the non-interacting field theory. $\Rightarrow$ boundary conditions fully undusterd.
${ }^{2}$ The scattering amplitude *

$$
\begin{equation*}
{ }_{\text {out }}^{t a+\infty}\langle f \mid i\rangle_{\text {in }}^{t=-\infty} \tag{3,25}
\end{equation*}
$$

Is still nontrivial because the states are defined atchfferment times and in state must be developed through the interacting region before $s$ can be related to the out-state.

Indeed, we shall define an $\hat{\mathbf{s}}$-operator as a map:

$$
\begin{equation*}
|\alpha\rangle_{\text {in }}^{+\infty-\omega}=\hat{S}|\alpha\rangle_{\text {out }}^{t=+\omega} \tag{3,26}
\end{equation*}
$$

Thus the scattering amplitude becomes the $\hat{s}$-matrix-element:

$$
\begin{align*}
S_{f i} & ={ }_{\text {out }}\langle f| \hat{S}|i\rangle_{\text {out }}  \tag{3,27}\\
& ={ }_{\text {in }}\langle f|\left(\hat{S}^{-1}\right)^{+}|i\rangle_{\text {in }} \\
& ={ }_{\text {out }}\langle f|\left(S^{-1}\right)^{+}|i\rangle_{\text {out }}
\end{align*}
$$

* Note that amplitudes in $\langle\alpha \mid \beta\rangle_{\text {in }}$ and out $\langle\alpha \mid \beta\rangle_{\text {out }}$ are known and trivial based on the first arrmpition.

The last equivalence followed from the assumed equivalence of the (free) and out - states. This proves that $\hat{\mathcal{S}}$-operator is unitary

$$
\begin{equation*}
\hat{S}^{-1}=\hat{S}^{+} \tag{3.28}
\end{equation*}
$$

The transition probability between states $|i\rangle_{\text {in }}$ and $|f\rangle_{\text {out }}$ is the square of the amplitude:

$$
\begin{equation*}
P_{f i}=\langle f| \hat{s}|i\rangle\langle f| \hat{s}|i\rangle^{*}=s_{i f}^{+} S_{f i} \tag{3,29}
\end{equation*}
$$

$\hat{S}$-matri x-elements contain also the uninteresting possibility that $|f\rangle=|i\rangle$, [s. no scattering. To this and one defines the $\hat{T}$-matrix as


Our goal below is to find an expression for $T_{f i}$ from QFT: However, a part of the process of the evaluation of $d \sigma / d \Omega$. does not depend on the precise form of $T_{f i}$ (interactions), but instead involves kinematics of the free $i n$-and out-states and their normalization. Let us first figure this part out.

Unitarity of $\hat{S}$ can also be seen as a requirement that the total probability of getting from $|i\rangle$ to all possible states is 1. lie.

$$
\hat{s}^{+} s=1 \Rightarrow \sum_{j} s_{i f}^{+} s_{f i}=1
$$

NORMALI3ATION AND INTERPRETATI ON OF Pf FR e CONTNUOOS VARIABLES
Our in-and out-states are collections of free particles described by infinite plane waves. These need careful normalization procedures. indeed assume that instate has $N$ and the out-state $N^{\prime}$ free particles. Then in $(3,30)$;

$$
\begin{align*}
\delta_{f i} & =\left\langle p_{1}^{i}, \ldots, p_{w}^{i}, \alpha_{1}^{i}, \ldots, \alpha_{N}^{i} \mid p_{1}^{f}, \ldots, p_{N}^{f} ; \alpha_{1}^{f}, \ldots, \alpha_{N}^{f}\right\rangle \\
& =\delta_{N N^{1}} \prod_{n=1}^{N} \underbrace{(2 \pi)^{3} 2 E_{n} \delta^{3}\left(p_{n}^{i}-p_{n}^{f}\right)}_{\begin{array}{c}
\text { our usual normalization } \\
\text { for 1-particle states }
\end{array}} \delta_{\alpha_{n}^{i}, \alpha_{n}^{f}} \tag{3,31}
\end{align*}
$$

The total transition probability can now be computed from the unitenily relations

$$
\begin{align*}
P_{\text {tot }}=\sum_{f} P_{f i} & =\sum_{f} s_{i f}^{+} s_{y i}=\delta_{i i} \\
& =\prod_{i=1}^{N}(2 \pi)^{3} 2 E_{n} \delta^{3}(0)=\infty \tag{3.32}
\end{align*}
$$

This is actually a distribution. To see what is going on note that we can undustand $\delta(0)$ as a volume-factor!

$$
\begin{align*}
& (2 \pi)^{3} 2 E_{p} \delta(0)=(2 \pi)^{3} 2 E_{\varphi}\left(\lim _{q \rightarrow 0}\left(\lim _{L \rightarrow \infty} \frac{1}{(2 \pi)^{3}} \iint_{-L / 2}^{L / 2} d x d y d z e^{-i \vec{q} \cdot \vec{x}}\right)\right) \\
& =2 E_{p} \vee(v \rightarrow \infty)  \tag{3.33}\\
& =\lim _{p \rightarrow p 1}\left\langle\vec{p} \mid \vec{p}^{\prime}\right\rangle \quad \text { the norm of the }  \tag{3.34}\\
& \text { one-particle stake } \\
& \alpha \text { Not/phare space clement }
\end{align*}
$$

From (3.33) and (3.34) we conclude that with plane wave normalization the continuum quantities $P_{f i}$ are proportional to particle number/phase space element in an infinite volume $V \rightarrow \infty$. (Naturally!). If we normalize "probabilities" to unit volume by dividing with $V\left(=(2 \pi)^{3} \delta^{3}(0)\right)$, the infinities will cancel. Formally the normalization

$$
\begin{equation*}
|\vec{p}\rangle \rightarrow \frac{1}{\sqrt{v}}|\vec{p}\rangle ; v \rightarrow \infty \tag{3.35}
\end{equation*}
$$

Would lead to

$$
\begin{equation*}
\hat{P}_{T r}=\prod_{i=1}^{N} 2 E_{i} \tag{3,36}
\end{equation*}
$$

Again, based on equations (3.33) and (3.34) we find that the quantity

$$
\begin{equation*}
\rho\left(\vec{p}_{i}\right)=2 E_{i} \tag{3.37}
\end{equation*}
$$

can be interpreted as phase-space density of states in a unit volume.
of course, performing a normalization $|\vec{p}\rangle \rightarrow|\stackrel{\rightharpoonup}{p}\rangle / \sqrt{2 v E}$ we could remove also the $2 E$-factor and find that $\widetilde{\tilde{P}}_{\text {Tor }}=1$ with this nomdization. This is not necessary however, when we undustand that $P_{f i}: s$ are actually not (or necessanity not) probabilities, but phase space densities.

BOK: Note that $\delta_{f i}$ in (3.31) is a generalization of the cronecker $\delta$-function in that

$$
\sum_{N_{f}} \sum_{\alpha_{1}^{2} \ldots, a_{w}^{t}} \int \frac{N_{t}}{\prod_{i=1}} \frac{d^{3} p}{\left(2_{F}\right)^{3} 2 E_{p}} \delta_{f^{i}}=1
$$

(although $\delta_{i i}=\infty$ ) distribution
For discrete states of course

$$
\left.P_{i j}=S_{f f}^{+} S_{+i}=|\langle f| \hat{S}| \imath\right\rangle\left.\right|^{2}
$$

is a $C$-number, and so

$$
P_{\text {PT }}=\sum_{f} P_{i t}=c \text {-number }
$$

that can carly be normalized to 1.

To be specific, let us now compute an explicit expression for the own-section in case of $2 \rightarrow N_{f}$ scattering.
$\underline{\underline{2} \rightarrow N_{f} \text { SCATTERING }}$


$$
\begin{align*}
& p_{f i}=S_{i f}^{+} S_{f i} \\
& \text { (3.30) } \\
& =\left[(2 \pi)^{4} \delta^{4}\left(p_{f}-p_{i}\right)\right]^{2}\left|T_{f i}\right|^{2} \\
& =(2 \pi)^{4} \delta^{4}\left(p_{f}-P_{i}\right) \cdot \underbrace{(2 \pi)^{3} \delta^{3}(0)}_{\substack{\text { infinite } \\
\text { volume }}} \cdot \underbrace{2 \pi \delta(0)}_{\substack{T \\
\text { infinite } \\
\text { time }}}\left|T_{f i}\right|^{2} \tag{3.38}
\end{align*}
$$

The problem with the square of the $\delta$-functions was thus seen to be of the same origin as was the infinities $\dot{m}$ normatization of the states. (Infinite plane waves are scattering off each others everywhere and at all timer.) Dividing out the VT-factor we get:

$$
\begin{equation*}
\frac{\left|S_{f \neq i}\right|^{2}}{V T}=(2 \pi)^{4} \delta^{4}\left(p_{t}-p_{i}\right)\left|T_{f+i}\right|^{2} \tag{3.38}
\end{equation*}
$$

This expression ought to be related to experimental $x$-section. To this and note that

$$
\begin{align*}
& \frac{\left|S_{f \neq i}\right|}{V T} \cdot \underbrace{d N_{f}}=\frac{{\widetilde{P_{f}}}}{V T} 4 E_{1}^{i} E_{2}^{i} V^{2} \underbrace{\prod_{i=1}^{N_{f}}} 2 E_{k}^{+} \cdot V d N_{f} \\
& =\prod_{k=1}^{N_{k}} \frac{d^{3} P_{k}^{k}}{(2 \pi)^{3} 2 E_{k}^{4}} \\
& =\prod_{k=1}^{N_{t}} \frac{V d^{3} p_{k}^{f}}{(2 \pi)^{3}} \equiv \widetilde{N}_{f} \\
& =\frac{N_{1}^{i} N_{2}^{i}}{V T} \underbrace{\approx}_{\substack{\text { Single seething } \\
\text { propsty wish unit nom. }}} \approx \frac{d N_{\text {staff }}(t)}{V T} \tag{3,39}
\end{align*}
$$

Dividing this with the density of the target states (say"") $P_{1}=2 E_{1}=N_{1} / V$, and by the flux $F$ of the stater 2 (assume Lab-frame with $\vec{p}_{1}=0$ ):

$$
F=P_{2} v_{2}^{1 a b}=\frac{N_{a}}{T \cdot A}=\left(\frac{N}{V} \cdot \frac{L}{T}\right) \quad(J, 40)
$$

We get

$$
\underbrace{\frac{1 S_{1} F}{\left.4 E_{1}^{i} E_{2}^{i}\right|_{2} ^{2}} v_{2}^{\operatorname{los}} V T}_{\rho_{1} F} \cdot d N_{f}=\frac{d N_{\text {sati }}(f)}{V T\left(\frac{N_{1}}{V} \frac{N_{2}}{T A}\right)}
$$



The actual area of one particle in the target

"d"dpponds of "f".
effective ares of the target state leaving to outcome " $f$ ".
incomiliy particle

Combining equations $(3,41)$ and $(3,38)$ we find the differential owes section

$$
d \sigma=\frac{(2 \pi)^{4} \delta^{4}\left(p_{t}-p_{i}\right)\left|T_{f+i}\right|^{2}}{4\left[\left(p_{i}^{i} \cdot p_{2}^{\prime}\right)^{2}-m_{1}^{2} m_{2}^{2}\right]^{1 / 2}} \prod_{i=1}^{N_{f}} \frac{d^{3} p_{i}^{+}}{(2 \pi)^{3} 2 E_{i}^{+}} \quad(3,42)
$$

where in the final stage one used the invariant form

$$
\begin{align*}
4 E_{1} E_{2} v_{2}^{l a b} & =4 m_{2} p_{1}^{l a p}=4\left(\left(p_{1}^{i} \cdot p_{2}^{\prime}\right)^{2}-m_{1}^{2} m_{2}^{2}\right)^{1 / 2} \\
& =2 \lambda^{1 / 2}\left(s, m_{1}^{2} m_{2}^{2}\right) ; \quad s=\left(p_{1}+p_{2}^{2}\right. \tag{3,43}
\end{align*}
$$

Similar expressions can be found for the decay $1 \rightarrow N_{f}$ and any other kinematic poses. Let un now turn to the task of evaluating $T_{f+i}$ from QFT.
3.2. LSE - reduction formalism

Above we have derived the connection between the $T$-matrix and the observable cross-sections by use of the asymptotic properties of the theory. Now we will develop a formalism to express the scattering amplitude and $T$-matrix in terms of the greens functions of the interacting theory. In section 3.3 we will then start developing the perturbative methods for evaluating these greens functions. There will be several steps on the way, like wieks theorem, vacuum normalization, extracting vacuum - to vacuum transitions and irrelevant disconnected graphs. In the end the procedure will finalize ito a simple set of Feynman rules for computing arbitrary scattering T-matrices, so do not get scared by the intermediate complications!

- Again we shall introduce the conapts by use of the simple seaken theory. (At this point the form of the interactions is not relevant), observe that we can express the creation and annihilation operators in terms of the field operators as follows;

$$
\left\lvert\, \begin{align*}
& a_{i n}=i \int d^{3} x e^{i p \cdot x} \stackrel{\leftrightarrow}{\partial_{0}} \phi_{i n}(x) \\
& a_{i n}^{+}=-i \int d^{3} x e^{-i p \cdot x} \stackrel{\rightharpoonup}{\partial}_{0} \phi_{i n}(x) \tag{3.44}
\end{align*}\right.
$$

where $A \vec{\partial}_{0} B \equiv A \partial_{0} B-\left(\partial_{0} A\right) B$.

- Now assume that the matrix elements of the interacting and noninderacting fields ( $\hat{\phi}$ and $\hat{\phi}_{\text {in }}$ ) can be related as: multiplicative normalization

This is a very important relation. Intuitively it is well expected: asymptotically, far outside the interaction region, the complete field operator should approach adiabatically the fee field limit. The factor was also to be expected. Indeed $\hat{\varphi}_{i n}$ creates only 1 -particle states out of the vacuum but $\hat{\phi}$ will create also the all extra pairs. So, for example the matin element $\langle 1| \hat{\phi}|0\rangle$ does not exhaust the state $\hat{\phi}|0\rangle$, and thus one would expect $z \leqslant 1$.

Let us now consider amplitude for a process $N_{i} \rightarrow N_{f}$ in the form $(3,25)$

$$
\begin{aligned}
& { }^{\text {out }}\left\langle q_{1}, \ldots, q_{N_{f}} \mid p_{1}, \ldots, p_{N_{i}}\right\rangle_{\text {in }}=\left\langle q_{11}, \ldots, q_{N_{f}}\right| a_{\text {in }}^{+}\left(p_{1}\right)\left|p_{2}, \ldots, p_{N_{i}}\right\rangle_{\text {in }} \\
& =-i \int d^{3} x e^{-i p_{1} \cdot x} \stackrel{\partial}{t}^{\partial_{\text {out }}}\left\langle q_{v}, \ldots, f_{N_{g}}\right| \hat{\phi}_{\text {in }}(x)\left|p_{2, \ldots}, \ldots p_{N_{i}}\right\rangle_{\text {in }}
\end{aligned}
$$

We now want to get rid of the limit $t \rightarrow-\infty$ (past) and ( one state is
removed replace it by action of $\hat{\phi}$ over all space $t$ a future term. We use:

$$
\begin{align*}
& \frac{\lim _{t \rightarrow \infty} \int_{-t}^{t} \int_{-}^{3} d^{3} x A(\stackrel{\rightharpoonup}{x}, t)=\int_{-\infty}^{\infty} d t \partial_{t} \int d^{3} x A(\bar{x}, t)}{\sqrt{\text { all peace }}} \\
& \Rightarrow \text { out }^{\cdots}|\cdots\rangle_{\text {in }}=+i Z^{-\frac{2}{2}} \int d^{\text {rall space }} x \partial_{t}\left(e^{-i p_{i} x}{\underset{\partial}{t}}^{\text {out }}\left\langle q_{\text {r...., }} q_{N_{3}}\right| \hat{\phi}(x)\left|p_{2}, \ldots, p_{N_{i}}\right\rangle_{\text {in }}\right. \\
& -i \lim _{t \rightarrow+\infty} z^{-4 / l_{2}} \int d^{3} x e^{-i p_{4} \cdot x} \leftrightarrow_{t} \text { out }\left\langle q_{1}, \ldots q_{w_{t}}!\hat{\phi}(x) \mid p_{\left.p_{1}, \ldots, p_{w_{i}}\right\rangle}\right\rangle_{\text {in }} \\
& \text { (couture) } \tag{3,48}
\end{align*}
$$

Note that we cannot assume that $\hat{\phi}=\mathcal{Z}^{1 / 2} \hat{\phi}_{\text {in. }}$. If we did, we could use equal time commutation relations to immediately pore that $z=1 \Rightarrow \hat{\psi}=\hat{\phi}_{\text {in }}$ !

In $(3,48)$ we have succeeded in removing one field from the past in-state and replaced it with the action of the field operator $\hat{\phi}$ through entire space (note that ( 3.47 ) could not be used before $\hat{\psi}_{\text {in }} \rightarrow \hat{\phi}!$ ), and an additional term involving a limit $t \rightarrow+\infty$. This term can be written as (using (3,M4-3,45)):

$$
\begin{align*}
\underset{t \rightarrow+\infty}{-i \lim _{t \rightarrow+\infty}(\ldots)} & ={ }_{\text {out }}\left\langle q_{1} \ldots, q_{N_{f}}\right| a_{\text {out }}^{+}\left(p_{1}\right)\left|p_{2}, \ldots, p_{N_{i}}\right\rangle \\
& =\sum_{i=1}^{N_{t}} \underbrace{(2 \pi)^{3} 2 E_{q_{i}} s^{3}\left(q_{i}-p_{i}\right)}{ }_{\text {out }}\left\langle q_{1}, \ldots, \hat{q}_{i}, \ldots, q_{N_{f}} \mid p_{2}, \ldots, p_{N_{i}}\right\rangle \tag{3.49}
\end{align*}
$$

$$
=\text { free }\left\langle q_{i} \mid p_{i}\right\rangle_{\text {free }}
$$

a removed state
amplitude with one particle less m both instal \& final states.
We now realize that the term ( 3.49 ) is a sum of all processes where at least one particle don not interact at all. Graphically:

$$
\begin{gathered}
\text { out }\left\langle\prod_{i=1}^{N_{H}} q_{i} \mid \prod_{j=1}^{N_{i}} p_{j}\right\rangle_{i n}
\end{gathered}=\underbrace{\text { Disconnected processes }}_{\substack{\text { 1. interaction } \\
\text { leg. }}}
$$

After this realization, we will simply. iterate the process until! all $a_{\text {in }}^{+}\left(p_{i}\right)$ and $a_{\text {mut }}^{+}\left(q_{j}\right)$ ane removed and replaced either by the expectation values involving $\hat{\phi}$ or by trivial free-free amplitudes. In the end

From the definitions of S-and T-matrices: $(3.26)$ and $(3.30)$ it is clear that in complicated processes also DC-terms contribute to the $T$-matrix. If the initial states are uncorrelated Cos they usually alleys are) the disconnected processes con be burt from the connected subprocerses. It is therefore sufficient to concentrate only on generic connected processes from now on, discarding OC-grapls.

Having thus rid ourselves of the DC-term in (3.48) let us now rewrite the formula in a covariant form by use of the identity:

$$
\begin{aligned}
& \int d^{4} k \partial_{0}\left(e^{-i p \cdot x} \stackrel{\leftrightarrow}{\partial}_{0} g\right)=\int d^{4} k(\underbrace{-\left(\partial_{0}^{2} e^{-i p \cdot x}\right)} g+e^{-i p \cdot x} \partial_{0}^{2} g) \\
& =-\left(\partial_{\mu}^{2}-\nabla^{2}\right) e^{-i p \cdot k}=+\left(m^{2}+\nabla^{2}\right) e^{-i \bar{p} \cdot k} \\
& =\int d^{4} x\left(\left(\nabla^{2} e^{-i r \cdot x}\right) g-e^{-i \varphi \cdot x}\left(\partial_{0}^{2}+m^{2}\right) g\right)
\end{aligned}
$$

Using this with $g=\left\langle\left.\cdots\right|_{p_{2} . .}\right\rangle$, we finally get that after one reduction step:


There is one more complication that arises in the second step of reduction. (Let us now remove a particle from the final state)

$$
\begin{align*}
& \text { out }\left\langle q_{2}, \ldots, q_{w_{j}}\right| a_{\text {out }}\left(q_{1}\right) \hat{\phi}(x)\left|p_{2}, \ldots, p_{v_{i}}\right\rangle_{\text {in }} \\
& =i \lim _{y_{0} \rightarrow+\infty} z^{-1 / 2} \int d^{3} y e^{i q_{i} y \stackrel{\leftrightarrow}{\partial_{y}}}{ }_{y_{0}}\left\langle q_{2}, \ldots, q_{w_{f}}\right| \hat{\delta}(y) \hat{\phi}(x)\left|p_{2}, \ldots, p_{w_{i}}\right\rangle \tag{3,51}
\end{align*}
$$

We could use the trick (3,47) again to convert this into a 4-spaceintegral form + a berm with the limit $y_{0} \rightarrow-\infty$. Interpreting the ritter as a OC-term is not possible however, because the operator $\hat{b}(y)$ and $\hat{y}(x)$ would be in wrong oveler. This forces us to use the time-ordered identity;

$$
\begin{equation*}
\lim _{y_{0} \rightarrow \infty} \int_{-\infty}^{\infty} T(\phi(y) \phi(x))=\int_{-\infty}^{\infty} d y_{0} \partial_{y} T(\phi(y) \phi(x))_{\infty} \tag{5,52}
\end{equation*}
$$

That in, introducing the time-ordering to the Y-space, terms we get the operation order exchanged in the surface terms? with this it easy do show that

$$
\operatorname{oust}\left\langle q_{1}, \ldots, q_{w_{k}} \mid p_{L_{1}} \ldots, p_{w_{i}}\right\rangle_{\text {in }}=
$$

$$
\begin{align*}
& i^{2}\left(z^{-\frac{1}{2}}\right)^{2} \int d^{4} x_{1} d^{4} y_{1} e^{i q_{1} \cdot y_{1}-i p_{1} \cdot x_{1}}\left(\partial_{1_{1}}^{2}+m^{2}\right)\left(\partial_{x_{1}}^{2}+m^{2}\right) \\
& x_{\text {out }}\left\langle q_{2}, \ldots, q_{w_{l}}!T\left(\phi\left(y_{1}\right) \phi\left(y_{2}\right)\right) \mid p_{2}, \ldots, p_{v_{i}}\right\rangle_{\text {in }} \tag{3.53}
\end{align*}
$$

+ DC-terms.
The issue with operator ordering comes back at each reduction Step, and it can always be accounted by introducing time-orderving
and one eventually finds:

$$
\begin{align*}
& { }_{\text {out }}^{\left\langle q_{1}\right.}, \ldots, q_{N_{f}}\left|p_{1}, \ldots p_{N_{i}}\right\rangle_{i n}=O C-\text { terms }+ \\
& \quad+\left(i z^{-\frac{1}{2}}\right)^{N_{i}+N_{f}} \int d_{1}^{4} y_{1} \ldots d^{4} y_{N_{f}} d_{x_{1}}^{4} \ldots d_{k_{N_{i}}}^{4} \times \\
& \times e^{i \sum^{N_{t}} q_{i} \cdot y_{i}-i \sum_{p_{i}} \cdot x_{i} \prod_{j=1}^{N_{t}} \prod_{i=1}^{N_{i}}\left(\partial_{y_{j}}^{2}+m^{e}\right)\left(\partial_{x_{i}}^{2}+m^{2}\right) \times} \\
& \langle\Omega| T\left(\hat{\phi}\left(y_{1}\right) \ldots \hat{\phi}\left(y_{N_{f}}\right) \hat{\phi}\left(k_{1}\right) \ldots \hat{\phi}\left(x_{N_{i}}\right)\right)|\Omega\rangle \tag{3,54}
\end{align*}
$$

This is the a Lehmann-Symanzik-Zimmermann reduction formula, which expresses an on-shell transition amplitude out $\langle f \mid i\rangle_{\text {m }}$ in terms of the $N_{i}+N_{f}$-point greens function of the interacting field theory:

$$
\begin{equation*}
G\left(x_{1} \ldots x_{m}\right)^{(t=+\infty)} \equiv\langle 0| T\left(\hat{\phi}\left(x_{1}\right) \cdots \hat{\phi}\left(x_{m}\right)\right)|0\rangle^{(t=-n)} \tag{3,55}
\end{equation*}
$$

Our next task is to develop methods for computing $G\left(a_{a}, \ldots, x_{m}\right)$ $=$ perturbation theory.
*
(One often leaves out the labels $t= \pm \infty$ over the racua in expressions 3,54 \& 3,45 . The elea is that one is impliatly assuming that trandioas are between infinite pant and natin'te future.)
3.3 PERTURBATION THEORY

We still need to work out the vacuum-to vacuum Gems functions (over minute time!) left out from LSZ-reduction. The idea will be to wite everything in terms of the non-siteraching theory operators, treating interactions as perturbations:
TIME EVOLUTION OPERATOR. In Heisenberg picture we have:

$$
\begin{equation*}
\hat{\phi}(\bar{x}, t)=e^{i \hat{H}\left(t-t_{0}\right)} \hat{\phi}\left(\vec{x}, t_{0}\right) e^{-i \hat{H}\left(t-t_{0}\right)} \tag{3,56}
\end{equation*}
$$

Taking $t=-\infty$, this can be used to relate full $\hat{\phi}(x, t)$ to the onymptohic in-State operators. However most of thin evolution is tubal. free field evolution. To extract this we dine

$$
\begin{equation*}
\hat{H}=\hat{H}_{0}+\hat{H}_{I} \tag{3,57}
\end{equation*}
$$

where $H_{0}$ is the free Hamildorian and $H_{I}$ is the interaction:

$$
\begin{equation*}
H_{I}=\int d^{3} x \mathcal{H}_{I}(x)=-\int d^{3} x \mathscr{L}_{I}(x) \tag{3,58}
\end{equation*}
$$

what field. ?
For example in $\lambda \phi^{4}$ th theory: $\quad H_{2}(x)=\frac{\lambda}{4!} \phi^{4}(x)$. $(3,59)$
Separating out the free evolution that takes $\hat{\phi}_{\text {free }}\left(t_{0}\right) \rightarrow \hat{\psi}_{\text {free }}(t)$, we con write

$$
\begin{gather*}
\hat{\phi}(\vec{x}, t)=U^{-1}\left(t, t_{0}\right)(\underbrace{e^{i \hat{\psi_{0}}\left(t-t_{0}\right)} \hat{\phi}\left(\vec{x}, t_{0}\right) e^{-i \hat{H_{0}}\left(t-t_{0}\right)}}_{r}) \cup\left(t, t_{0}\right)  \tag{3,60}\\
\equiv \phi_{I}(\vec{x}, t)
\end{gather*}
$$

where we have defined

$$
\begin{equation*}
+e^{i \hat{H}_{3}\left(1-t_{3}\right)}! \tag{3.61}
\end{equation*}
$$

Taking $t_{0} \rightarrow-\infty$ we can identify $\hat{\phi}\left(\vec{k}, t_{0}\right)=\hat{\phi}_{\text {in }}$, and so $\hat{\phi}_{I}(x, t)$ becomes the free infield at time $t: \hat{\phi}_{I}=\hat{\phi}_{\text {in }}(\tilde{x}, t)$. Ourtask is thus reduced to finding a usable form for the time-erolution operator U. $U^{(b)}$ We can derive an e.0.m for it from

$$
\begin{align*}
& \dot{\phi}(t, \dot{x})=i[H(t), \phi(t, \vec{x})]  \tag{3,62a}\\
& \dot{\phi}_{i n}(t, x)=i\left[H_{0}^{\vdots n}, \phi^{i n}(t, \dot{x})\right] \tag{3.62b}
\end{align*}
$$

On the other hand from $(3,60)$ :

$$
\begin{aligned}
\dot{\phi}_{\text {in }}= & \frac{d}{d t}\left(U \phi U^{-1}\right) \\
= & \dot{U} \phi U^{-1}+U \dot{\phi} U^{-1}-U \phi U^{-1} \dot{U} U^{-1} \\
= & \dot{U} U^{-1} \phi_{\text {in }}-\phi_{\text {in }} \dot{U} U^{-1}+U:[H, \phi] U^{-1} \\
= & {\left[\dot{U} U^{-1}, \phi_{\text {in }}\right]+\left[i U H U^{-1}, U \phi U^{-1}\right]: U H U^{-1} } \\
= & \underbrace{\left[\begin{array}{l}
U U^{-1}+i H\left(\phi_{i n}, \pi_{i n}\right)
\end{array}, \phi_{\text {in }}\right]}=H\left(\phi_{i n} .\right. \\
& =i H_{0}^{i n}+\underbrace{}_{3,2} 0
\end{aligned}
$$

(0) By definition $U\left(t_{1}, t_{2}\right)$ satisfies $U(t, t)=1$ and

$$
\begin{aligned}
& U\left(t_{1}, t_{2}\right) U\left(t_{2}, t_{3}\right)=U\left(t_{1}, t_{3}\right) \\
& U^{-1}\left(t_{1}, t_{2}\right)=U\left(t_{2}, t_{1}\right)
\end{aligned}
$$

From this if follows that:

$$
\begin{equation*}
i \frac{d}{d t} U\left(t, t_{0}\right)=H_{I}(t) U\left(t, t_{0}\right) \tag{3.63}
\end{equation*}
$$

whore

$$
\begin{gather*}
H_{T}(t) \equiv H\left(\phi_{i n}, \pi_{i n}\right)-H_{0}^{i_{n}}=\int d^{3} \times \frac{\lambda}{4!} \phi_{i n}^{4}  \tag{3,64}\\
\phi_{\text {in }}-\text { field! ! }
\end{gather*}
$$

When integrating $(3,63)$ one must be careful to account for the non -commutativity at different times: $\left[\hat{H}_{I}\left(t_{1}\right), \hat{H}_{I}\left(t_{2}\right)\right] \notin 0$. We get by iteration,

$$
\begin{align*}
U\left(t_{1}, t_{0}\right) & =U\left(t_{0}, t_{0}\right)-i \int_{t_{0}}^{t} d t^{\prime} H_{I}\left(t^{\prime}\right) U\left(t^{\prime}, t_{0}\right) \\
& =1-i \int_{t_{0}}^{t} d t^{\prime} H_{I}\left(t^{\prime}\right)\left(1-i \int_{t_{0}}^{t_{0}^{\prime}} d t^{\prime \prime} H_{I}\left(t^{\prime}\right) U\left(t^{\prime \prime}, t\right)\right) \\
\cdots & =1-i \int_{t_{0}}^{t} d t_{1} H_{I}\left(t_{1}\right)+(-i)^{2} \int_{t_{0}}^{t} d t_{2} \int_{t_{0}}^{t_{1}} d t_{2} H_{I}\left(t_{1}\right) H_{I}\left(t_{2}\right)+\cdots \\
& =1-i \int_{t_{0}}^{t} d t H_{I}\left(t_{1}\right)+\frac{(-i)^{2}}{2!} \int_{t_{0}}^{t} \int_{t_{0}}^{t} d t_{1} d t_{2} T\left(H_{I}\left(t_{1}\right) t_{I}\left(t_{2}\right)\right)+\cdots \\
& =\sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!} \int_{t_{0}}^{t} d t_{1} \ldots d t_{n} T\left(H_{I}\left(t_{1}\right) \cdots H_{I}\left(t_{n}\right)\right) \\
& \equiv T \exp \left(-i \int_{t_{0}}^{t} d t \hat{H}_{I}(t)\right) \tag{3.65}
\end{align*}
$$



Thus $U\left(t, t_{0}\right)$ is a time-ordered exponent of the interaction Hamiltonian.

PT-EXPANSION FOR THE N-POINT GREEN FUNCTION
We have established that a scattering matrix $S_{f i}^{(n)}$ involving $n$ particles in the initial on final states is related to the $n$-point Guin function:

$$
\begin{equation*}
S_{f i}^{(n)}=\left(i R^{-1}\right)^{n} \int \prod_{i=1}^{n}\left[d^{\mu} x_{i} e^{-i p_{i} \cdot x_{i}}\left(\square_{i}+m_{i}^{2}\right)\right]\langle\Omega| T\left(\hat{\phi}\left(x_{n}\right) \ldots \hat{\phi}\left(x_{n}\right)\right)|\Omega\rangle \tag{3.66}
\end{equation*}
$$

where all momenta are pointing into the graph. (For out states set $p_{i} \rightarrow-p_{i}$ then). We now cant to compute $\langle\Omega| T\left(\hat{\phi}(m) \ldots \hat{\phi}\left(x_{n}\right)\right)|\Omega\rangle$ pertertatively, using free theory states and free theory vacuum. The main distinction is that for full theory $H|\Omega\rangle=0$ whereas in free theory $H_{0}|0\rangle \equiv 0$. Now arorme that $|0\rangle$ can he expanded in full theory Fork space: $|0\rangle=|\Omega\rangle\langle\Omega \mid 0\rangle+\sum_{n=1}^{\infty}|n\rangle\langle n \mid 0\rangle$. This them implies that

$$
e^{-i H T}|0\rangle=e^{-i E_{\Omega} t}\langle\Omega \mid 0\rangle|\Omega\rangle+\sum_{n=1}^{n} e^{-i E_{n} t}\langle n \mid 0\rangle|n\rangle
$$

Now set $T \rightarrow(1-i \epsilon)$, which implies that only the racism state will remain in the sum. (This is our preparation of the system into collection of tree particles
 in both asymptotics.) Using also $e^{i h_{0} t}|0\rangle=|0\rangle$, we get

$$
\begin{equation*}
|\Omega\rangle=\lim _{T \rightarrow(1-\epsilon) a} \frac{e^{-i H(T+t)} e^{i+(t+t)}|0\rangle}{e^{-i E_{n}(T+t)}\langle\Omega \mid 0\rangle}=\lim _{T \rightarrow(1-i t) a a} \frac{U\left(t_{1}-T\right)|0\rangle}{e^{-i E_{n}(T+t)}\langle\Omega \mid 0\rangle} \tag{3.67}
\end{equation*}
$$

and

$$
|\Omega\rangle=\lim _{T \rightarrow(1-\epsilon) a 1} \frac{e^{-i H(T-t)} e^{i H_{0}(T-t)}|0\rangle}{e^{-i E_{n}(T-t)}\langle\Sigma \mid 0\rangle}=\lim _{T \rightarrow(1-\epsilon) a \infty} \frac{\langle 0| U(T, t)}{e^{-\mid \Sigma_{n}(T+t)}\langle\Sigma \mid 0\rangle} \quad \text { (3.68) }
$$

(Note that $\langle 0| e^{i H T}=\left(e^{-i H T}|0\rangle\right)^{\dagger} \rightarrow\left(e^{-i E_{\Omega} T-E \in T}\langle\Omega \mid 0\rangle|\Omega\rangle\right)^{t}=e^{-E_{E} T} e^{-i E_{\Omega} T}\langle 0 \mid \Omega\rangle\langle\Omega|$. converges as too.) Then wing normalization $\langle\Omega \mid \Omega\rangle=1$, we moreover get

$$
\begin{equation*}
1=\lim _{T \rightarrow(H-\epsilon) a 1} \frac{\langle 0| U(T, t) U(t,-T)|0\rangle}{e^{-2 i E_{\Omega} T}|\langle\Omega \mid 0\rangle|^{2}} \Rightarrow\langle 0| U(T,-T)|0\rangle=e^{-2 i E_{\Omega} T}|\langle\Omega \mid 0\rangle|^{2} \tag{3.69}
\end{equation*}
$$

We can now are ( $3,68-3,70$ ) to write: ( let us take $t>\alpha_{16}>x_{20}>\ldots x_{n 0}>-t$ )

$$
\begin{equation*}
\langle\Omega| T\left(\hat{\phi}\left(x_{n}\right) \cdots \phi\left(x_{n}\right)|Q\rangle=\frac{\langle 0| U(T, t) \hat{\phi}\left(x_{1}\right) \cdots \hat{\phi}\left(x_{n}\right) U(t,-T)|0\rangle}{\langle 0| U(T,-T)|0\rangle}\right. \tag{3.70}
\end{equation*}
$$

Next write $\hat{\phi}\left(\bar{x}_{i}, x_{0}\right)=e^{i \hat{H}\left(x_{a}-t\right)} \hat{\phi}\left(\vec{x}_{,} t\right) e^{-i \hat{H}\left(x_{0}-t\right)}$

$$
\begin{align*}
& =U\left(t, x_{0 i}\right) e^{i \hat{H_{0}}\left(x_{0 i}-t\right)} \hat{\phi}(\bar{x}, t) e^{-i \hat{H}_{0}\left(x_{0 i}-t\right)} U\left(x_{0 i}, t\right) \\
& =U\left(t, x_{0 i}\right) \hat{\phi}_{I}\left(\bar{x}, x_{0 i}\right) U\left(x_{0 i}, t\right) \tag{3.71}
\end{align*}
$$

$t$ a state evolved from $t$ to $x_{0 i}$ by free field evolution operator.
= 1 -particle state of full theory at $t$ evolved to $x_{0 i}$ as 1 -partide state
We can then wite the nominator with no interactions.
in the r.h.s of equation (6) as

$$
=\langle 0| \overbrace{U(T, t) U\left(t, x_{01}\right)}^{=U\left(T, x_{01}\right)} \hat{\phi}_{I}\left(x_{1}\right) \overbrace{U\left(x_{01}, t\right) U\left(t, x_{0}\right)}^{U\left(x_{01}, x_{0_{2}}\right)} \hat{\phi}_{I}\left(x_{2}\right) \cdots \hat{\phi}_{I}\left(x_{n}\right) \overbrace{U\left(x_{0, n}, t\right) U(t,-T)}^{U\left(x_{m_{1},}-T\right)}
$$

This applies for any ordering of $x_{0 i}$, which means it applies also to the $T$-ordered product.

$$
=\langle 0| T\left(U\left(T, x_{n}\right) \hat{\phi}_{I}\left(x_{1}\right) U\left(x_{01}, x_{02}\right) \hat{\phi}_{I}\left(x_{0_{2}}\right) \ldots \hat{\phi}_{I}\left(x_{0_{n}}\right) U\left(x_{0 n}-T\right)\right)|0\rangle
$$

$$
=\langle 0| T\left(\hat{\phi}_{I}\left(x_{n}\right) \cdots \hat{\phi}_{I}\left(x_{n}\right) U\left(T_{1}-T\right)\right)|0\rangle
$$

Here we used first $-T \ll x_{0 i} \ll T$, used the fact that $U\left(t_{1}, t\right)$ is $T$-ordered operator and finally relied on time-ordering to split $U\left(T_{1}-T\right)$ correctly around and between the field operators. Finally using (3.65), we get

$$
\begin{equation*}
\langle\Omega| T\left(\hat{\phi}\left(x_{n}\right) \cdots \phi\left(x_{n}\right)\right)|Q\rangle=\frac{\langle 0| T\left(\hat{\phi}_{I}\left(x_{n}\right) \cdots \hat{\phi}_{I}\left(x_{n}\right) \exp \left(i \int_{-T}^{T} d^{y} x d_{I}(x)\right)\right)|0\rangle}{\langle 0| T\left(\exp \left(i \int_{-T}^{\top} d^{y} x d_{I}(x)\right)\right)|0\rangle} \tag{3.72}
\end{equation*}
$$

The r.h.s. of eqn. (3.72) can be expanded as a serves of time-ordered vacuum expectation values. The series has hope of converging if $\alpha_{I}$ is in some sense small. This series expansion $=$ perturbation the orly.

Putting (372) back to (J,54) we have a calculable (approximation) scheme for computing the T-matrix from the QFT?

3,4 WiCK's THEOREM:
Perturbation theory is quite cumbersome tool, and one must be good at bookkeeping when wings. it. The following wicks theorem. is an invaluable tool in reducing complicated free-theory vacuum expectation values:

$$
\begin{align*}
\langle 0| T & \left(\hat{\phi}\left(x_{1}\right) \ldots-\hat{\phi}\left(x_{n}\right)\right)|0\rangle \\
& =\sum_{\text {combinations }} D_{F}\left(x_{2}-x_{1}\right) \cdots D_{F}\left(x_{n}-x_{n-1}\right) \tag{3.73}
\end{align*}
$$

More precisely, $(3,73)$ follows from Wiak's theorem, that actually states a connection between time-ordered and normal-orelered operator products. To appreciate this, considu first a product of two fields.

Define:

$$
\begin{align*}
& \hat{\phi}^{+}(x)=\int \widetilde{d_{p}^{3}} a_{p} e^{i p \cdot x}  \tag{3,74}\\
& \hat{\phi}^{-}(x)=\int \widetilde{d}_{p}^{3} a_{p}^{+} e^{-i p \cdot x}
\end{align*}
$$

Then obviously $\quad \downarrow^{\text {annihilation operator to lett. }}$

$$
\begin{equation*}
\underset{\text { aminimion op to }}{\rightarrow} \hat{\phi}^{+}|0\rangle=\langle 0| \hat{\phi}^{-}=0 \tag{3.75}
\end{equation*}
$$

ammintanion op to night.
We can now express a normal-ordered product:

$$
\begin{align*}
&: \hat{\phi}(x) \hat{\phi}(y):= \overbrace{\hat{\phi}^{+}(x)}^{\hat{\phi}^{+}(y) \hat{\phi}^{+}(x)+(x)}+\hat{\phi}^{-}(x) \hat{\phi}^{+}(y) \\
&+\hat{\phi}^{-}(y) \hat{\phi}^{+}(x)+\hat{\phi}^{-}(x) \hat{\phi}^{-}(y) \\
&=\hat{\phi}^{-}(y) \hat{\phi}^{-}(x) \tag{3,76}
\end{align*}
$$

Now, if $x_{0}>y_{0}$ we have *

$$
\begin{equation*}
T(\hat{\phi}(x) \hat{\phi}(y))=\hat{\phi}(x) \hat{\phi}(y)=: \hat{\phi}(x) \hat{\phi}(y):+\left[\hat{\phi}^{+}(x), \hat{\phi}^{-}(y)\right] \tag{3,77a}
\end{equation*}
$$

and if $x_{0}<y_{0}$

$$
\begin{equation*}
T(\hat{\phi}(x) \hat{\phi}(y))=\hat{\phi}(y) \hat{\phi}(x)=: \hat{\phi}(x) \hat{\phi}(y):+\left[\phi^{+}(y), \phi^{-}(x)\right] \tag{3.77b}
\end{equation*}
$$

Rem: $T(\phi(x) \phi(y)) \equiv \theta\left(x_{0}-y_{0}\right) \phi(x) \phi(y)+\theta\left(y_{0}-x_{0}\right) \phi(y) \phi(x)$

Defining a contraction

$$
\begin{equation*}
\bar{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right) \equiv \theta\left(x_{0}-y_{0}\right)\left[\hat{\phi}^{+}(x), \hat{\phi}(y)\right]+\theta\left(y_{0}-x_{0}\right)\left[\hat{\phi}^{+}(y), \hat{\phi}-(x)\right] \tag{3,78}
\end{equation*}
$$

we can write the Wick's theorem for two fields:

$$
\begin{equation*}
T\left(\hat{\phi}_{1}(x) \hat{\phi}_{2}(x)\right)=: \hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right):+\hat{\phi}\left(x_{4}\right) \hat{\phi}\left(x_{2}\right) \tag{3,79}
\end{equation*}
$$

It is easy to see that the contraction is just the Feynman propagator (without taking race. expectation valuer!): (see (1.45) and (1.49))

Since $\langle 0|: \hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right):|0\rangle=0$, the result $(3,73)$ for two fields follows from (3.79).

The most general form of the wick theorem states that

$$
\begin{array}{r}
T\left(\hat{\phi}_{1}, \ldots, \hat{\phi}_{n}\right)=8 \hat{\phi}_{1} ; \hat{\phi}_{n}+\text { all possible } \\
\text { contractions : }
\end{array}
$$

Examples:

$$
\begin{aligned}
& T\left(\hat{\phi}_{1} \hat{\phi}_{2}\right)=: \hat{\phi}_{1} \hat{\phi}_{2}+\vec{\phi}_{1} \hat{\phi}_{2}:=: \hat{\phi}_{1} \hat{\xi}_{2}:+\hat{\phi}_{1} \hat{\phi}_{2} \\
& T\left(\hat{\phi}_{1} \hat{\phi}_{2} \hat{\phi}_{3}\right)=: \hat{\phi}_{1} \hat{\phi}_{2} \hat{\phi}_{3}+\hat{\phi}_{1} \hat{\phi}_{2} \hat{\phi}_{3}+\hat{\phi}_{1} \hat{\phi}_{2} \hat{\phi}_{3}+\hat{\hat{\phi}}_{1} \hat{\phi}_{2} \hat{\phi}_{3}:
\end{aligned}
$$

and so on.

Theorem (3.31) then holds for $n=2$. Let us sketch id proof for an arbitrary $G_{n}$ by induction. (Again take $x_{1}^{0} \geqslant x_{2}^{0} \geqslant \ldots \geqslant x_{n}^{0}$.) If not this order, gust relabel!.

$$
T\left(\hat{\phi}_{1}, \ldots, \hat{\phi}_{n}\right)=\hat{\phi}_{1}, \ldots, \hat{\phi}_{n}
$$

induction step

$$
\begin{align*}
& =\hat{\phi}_{1}: \hat{\phi}_{2},-, \hat{\phi}_{n}+\text { contractions }: \\
& =\left(\hat{\phi}_{1}^{+}+\hat{\phi}_{1}^{-}\right): \hat{\phi}_{2}, \ldots, \hat{\phi}_{n}+\text { contractors }: \tag{3,81a}
\end{align*}
$$

It is sufficient to prove theorem for a generic $\left(\phi_{1}^{+}+\phi_{1}^{-}\right): \hat{\gamma}_{2} \cdots \hat{\phi}_{m}$ :
Write $: \hat{\phi}_{2} \ldots \hat{\phi}_{m}$ :
some $n$-ordered enb-5equence.

$$
=\sum_{k=0}^{m-1}\binom{m-1}{k} \widetilde{\phi_{i}-\cdots \phi_{i_{k}}^{-} \phi_{i_{k+1}}^{+}} \cdots \phi_{i_{m-1}}^{+} \quad: \sum_{k=0}^{m-1}\binom{m+1}{k}=2^{m-1} \text { terms. }
$$

Then

$$
\text { " } \frac{(m-1)!}{k!(k-m+1)!}
$$

$$
\begin{aligned}
\left(\phi_{1}^{+}+\phi_{1}^{-}\right): \hat{\phi}_{2} \cdots \hat{\phi}_{m}:= & \underbrace{\phi_{1}^{-}: \hat{\phi}_{2} \cdots \hat{\phi}_{m} 0}+: \hat{\phi}_{2} \cdots \hat{\phi}_{m}: \phi_{1}^{+}
\end{aligned}+\left[\hat{\phi}_{2}^{+}: \hat{\phi}_{2} \cdots \hat{\phi}_{m} \cdot\right] ~\left[\begin{array}{ll}
m-1 & \sum_{k=0}^{m-1}\left(\begin{array}{c}
m-1
\end{array}\right) \text { terr }=: \hat{\phi}_{1} \hat{\phi}_{2} \cdots \hat{\phi}_{m}:
\end{array}\right.
$$

Commutator:
this adds all contractions with $\hat{\phi}_{1}$ to all rubstrings

$$
\begin{aligned}
& =\left[\phi_{1}^{+}, \phi_{i_{1}}^{-}\right] \phi_{i_{2}}^{-} \cdots \phi_{i_{3}}^{-}+\phi_{i_{1}}^{-}\left[\phi_{1}^{+}, \phi_{i_{2}}^{-}\right] \phi_{i_{3}}^{-} \cdot \phi_{i_{4}}^{-} \\
& \quad=\phi_{1} \phi_{i 1} \quad \rightarrow \cdots \phi_{i_{1}}^{-}-\phi_{i_{3-1}}^{-}\left[\phi_{i_{1}}^{+}, \phi_{i_{15}}^{-}\right]=k \text { term } \\
& \text { with } \phi_{1} \text { to all substrings }
\end{aligned}
$$ $\downarrow$

Thus

$$
\hat{\phi}_{1}: \hat{\phi}_{2}-\hat{\phi}_{m}:=: \hat{\phi}_{1} \hat{\phi}_{2} \cdots \hat{\phi}_{m}:+\underset{\text { all possible }}{\text { with }} \phi_{1} .
$$

So, going through all terms in the series we get all possible new normed orderings and all possible contractions with all fields, which proven the theorem.
Wicks theorems most important consequence in $(3,73)$. It follows trivially from the fact that $\langle 0|$ :anything: $|0\rangle=0$, is. only the fully contracted term in the Writes expansion survives.
3.5 FEYNMANIN DIAGRAMMAT
are nothing but a nice way to represent graphically the chfterent terms contributing to function (3.73).

Example 1.

$$
\begin{aligned}
& \langle 0| T\left(\hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right) \hat{\phi}\left(x_{3}\right) \hat{\phi}\left(x_{4}\right)\right)|0\rangle \\
& =D_{F}\left(x_{2}-x_{1}\right) D_{F}\left(x_{4}-x_{3}\right) \\
& +D_{P}\left(x_{3}-x_{1}\right) D_{F}\left(x_{4}-x_{2}\right) \\
& +D_{F}\left(x_{4}-x_{1}\right) D_{F}\left(x_{5}-x_{2}\right) \\
& x_{x_{2}}^{x_{1}} \perp \int_{x_{4}}^{x_{3}} \\
& x_{1} \longmapsto x_{3} \\
& x_{2} \longrightarrow x_{4} \\
& x_{x_{2}}^{x_{1}} \text { 共 }
\end{aligned}
$$

This function, and the coursponding graphs follow from $(3,72)$ in the lowest order of the perturbation theory. These are not interesting scallerings, and we shall see that they actually do not contribute to the T-matrix. (Note that despite the appearance, these are unlike the DC-processes in the Lsz-step. Terms (3.82) are part of a fully connected process, but not interesting due to PT-expanstion.)

The higher order terms can be found by expanding the operator $e^{i \int \alpha_{I}}$ as a Taylor series. Indeed:

$$
\left.\begin{array}{l}
\langle 0| T\left(\hat{\phi}_{1}, \ldots, \hat{\phi}_{n} e^{i \int d^{4} y \alpha_{I}}\right)|0\rangle \\
=\sum_{n=0}^{\infty} \frac{1}{m!} \int_{-\infty}^{\infty} d_{y_{1}}^{4} \ldots d^{4} y_{m}\langle 0| T\left(\hat{\phi}\left(x_{1}\right)_{2} \ldots \hat{\phi}\left(x_{n}\right)\right. \\ \tag{3,82}
\end{array} \quad \times i \mathcal{L}_{I}\left(y_{1}\right) \ldots i \alpha_{I}\left(y_{m}\right)\right)|0\rangle .
$$

${ }^{8}$ example 2

$$
=-\frac{\lambda}{4!} \phi^{( }(y)
$$

$$
\begin{aligned}
& \langle 0| T\left(\hat{\phi}_{1} \hat{\phi}_{2} i \int d^{4} y \alpha_{I}(y)\right)|0\rangle \\
= & -\frac{\lambda}{4!} \int d^{4} y\langle 0| T(\underbrace{\hat{\phi}\left(x_{1}\right) \hat{\phi}\left(x_{2}\right) \hat{\phi}(y) \hat{\phi}(y) \hat{\phi}(y) \hat{\phi}(y)}_{4 \cdot 3 \text { mas }})|0\rangle \\
= & -\frac{\lambda}{4!} \int d^{4} y\left(3 D_{F}\left(x_{1}-x_{2}\right) D_{F}^{2}(0)\right. \\
& \left.+4.3 D_{F}\left(y-x_{1}\right) D_{F}\left(y-x_{2}\right) D_{F}(0)\right)
\end{aligned}
$$

First of these is again a disconnected graph. In the end it is also cancelled in the expression (3,72), (It contains a ram graph 8 and all such terms go away when one accoumb for the denouninator. in the PT-expansion.)
The combinatoric $\frac{1}{\text { actors }} 3$ and $4.3=12$ appearing in $(3,83)$
are coefficients expressing the number of equivalent contractions. For example the recuum diagram 8 has three of these:

$$
8=\langle 0| \cdots \phi_{y} \phi_{y} \phi_{y} \phi_{y}+\cdots \phi_{y} \phi_{y} \phi_{y} \phi_{y}+\cdots \phi_{y} \phi_{y} \phi_{y} \phi_{y}|0\rangle
$$

Combinatoric factors are very important, and at first sight very cumbersome. Fortunately $\lambda \phi^{\prime}$-the only provides the worst case seenans 'm combinatorics!
$C F^{\prime}$ s can be defined graphically. A contraction means just conneding two points in a graph. Each field operator creates a dot to which a line can be conneded. Thus the interaction term $\sim \mathscr{y}_{4}^{4}$ is a " 4 -dot" to which 4 lines can be connected dat us denote it as follows:

G each "end" Coperator) can be connected. any Whore.

Example The diagram $O$ can be constructed as follows.


We are thus getting 12 equivalent terms that will have the same numerical value. Kombinatorics factor defines the symmetry factor $S$ for the graph. Above

$$
s(0) \equiv \frac{4!}{12}=2
$$

More generally it holds that the symmetry factor of an arbitrary graph of order $\lambda^{n}$ ( $n$th order graph) : is :

$$
\begin{equation*}
S=\frac{(4!)^{n} n!}{\text { comb. factor }} \tag{3.85}
\end{equation*}
$$

In higher orders things get more baroque of course.
Example 3

$$
\begin{aligned}
& \frac{1}{2!}\left(\frac{\lambda}{4!}\right)^{2}\langle 0| \phi_{1} \phi_{2} \phi_{y} \phi_{y} \phi_{y} \phi_{y} \quad \phi_{z} \phi_{z} \phi_{z} \phi_{z}|0\rangle \\
& =\frac{\lambda^{2}}{2!(4!)^{2}}\left\{\begin{array}{c}
(128) \\
3.3 \\
88
\end{array}+4.3000+4!(48)=\binom{D C}{t-v a c}\right. \\
& \begin{array}{l}
(16) \\
+8.3 .3 \\
(s=4)
\end{array} \quad \text { (vacuum) } \\
& +8.4 .3 .3-00 \text { (resumable) } \\
& +\left(\begin{array}{l}
(5=6) \\
\left.\left.8.4 .3 .2-\begin{array}{l}
(5=4) \\
8.4 .3 \cdot 3
\end{array}\right)\right\}
\end{array}\right. \\
& ()=\text { Important! 1PI (one particle } \\
& \text { (later) irreducible gusphs). } \\
& =\lambda^{2} \sum \frac{1}{S_{i}}(\text { Diagram }) . \quad(3,86) \\
& \overbrace{\substack{\text { sym. } \\
\text { coupler } \\
\text { constant }}}^{\uparrow} \overbrace{\text { Diagram }} \text { (from Feynman rules) }
\end{aligned}
$$

In practice one does not develop the PT-expansion from the vacuum expectation values and their operator product expansions. Rather, one claws the appropriate (1PI-) diagrams up to the desired order in $\lambda$ and determines the relevant symmetry factor. You can already guess what they are,

Feynman rules for evaluating Greens functions (direct space)

In each separate graph mark each.

1 propagator $x \longrightarrow y \rightarrow D_{F}(x-y)$
2) vertex $\quad\left\langle z \rightarrow-i \lambda \int d^{4} z\right.$ and
3) divide by the graphs symmetry factor

Example

$$
\frac{1}{2!}\left(-\frac{i \lambda}{4!}\right)^{2} \times(\text { combinatoniss fester })
$$

$$
\underset{x_{1}}{y}{ }_{x_{2}}=\frac{(-i \lambda)^{2}}{S} \int d^{4} y d^{4} z D_{F}\left(y-x_{1}\right)\left(D_{F}(z-y)\right)^{3} D_{F}\left(x_{2}-z\right)
$$

where $\quad S=\frac{(4!)^{2} 2!}{8 \cdot 4 \cdot 3 \cdot 2}=\frac{(4!)^{2} 2!}{\frac{1}{3}(4!)^{2}}=\frac{6}{2}$

comb. fac $=8 \cdot 4 \cdot 3 \cdot 2$
3.6 CLASSIFYING GEAPMS

As has become clear from the examples above, PT creates a large number of different graphs, so at high orders computations become involved. Fortunately by for the most of the graphs we have drawn turnout to be uninteresting. There in two main reasons for this:

1. Disconnected graphs are killed in (3.54).
2. Vacuum graphs get cancelled in (3,72)

REMOVING THE DC-GRAPHS

While performing the $L S Z$-reduction we systematically dropped all $D$-graphs. Yet, when computing the Greens function in (3.54), we immediately got more $D C$-processes. This apparent contradiction is removed when we reclize that these new DC-graphs do not wintuibule to the amplitude up $|1\rangle$ in. Indeed, each "new" DCgraph in the PT-expansion involves at least one contraction between the external operators (not containing any interaction operators):

$$
\begin{aligned}
D C & \sim\langle 0| T\left(\hat{\phi}_{1} \cdots \hat{\phi}_{i} \cdots \hat{\phi}_{j} \cdots \hat{\phi}_{n} e^{i \rho \alpha_{I}}|0\rangle\right. \\
& \propto D_{F}\left(x_{j}-x_{i}\right) \times \cdots
\end{aligned}
$$

Such a term in always accompanied in (3.54) by the integrals:

$$
D C \sim \int d^{4} x_{i} d^{4} x_{j} e^{ \pm i p_{i} \cdot x_{j} \pm i p_{j} \cdot x_{j}}\left(\partial_{x_{i}}^{2}+m^{2}\right)\left(\partial_{x_{j}}^{2}+m^{2}\right) D_{F}\left(x_{j}-x_{i}\right) \ldots
$$

But since $D_{f}\left(x_{j}-x_{i}\right)$ is the Greens function of the free field theory, we have

$$
\left(\partial_{x}^{2}+m^{2}\right) D_{f}(x-y)=-i \delta^{4}(x-y) .
$$

Using (3.90) we can evaluate the integrals in (3.89) with the result

$$
D C \sim \cdot(2 \pi)^{4} \delta^{4}\left(p_{j} p_{i}\right) \underbrace{\left(-p_{i}^{2}+m^{2}\right)}_{=0 \text {, because this is an on shell state. }}
$$

Thus despite the fact that PT-expansion for mteracting greens functions creates $D$-graphs, these are not part of the ampliuch.
$\Rightarrow$ When employing rules (3.87) never draw any $D C$-graphs.


For example for the $2^{\text {nd }}$ order corrections in example 3 on $p 99$ this implies that we can throw the $1^{\text {st }}$ line trash night corral.

VACUUM GRAPH CANCELLATION

Reorganizing the perturbation expansion, we can Show that each compacted graph in accompanied by an identical infinite series of racuum diagrams. Moreover, this series will be identified with the perturbative expansion of the denominator in (3.72). Indeed for example:

$$
\begin{align*}
& x_{1} \longrightarrow_{x_{2}}+\frac{8}{0}+\left(\frac{1}{2!} 88\right. \\
&= x_{1} \longrightarrow \infty  \tag{3,41}\\
& x_{2} \times\left(1+8+\frac{1}{2!} \times 8+8+\theta+\cdots\right)+\cdots
\end{align*}
$$

Similarly one can see that with the graph $\Omega$ we get

$$
\begin{equation*}
Q \times(1+8+\cdots) \tag{3.42}
\end{equation*}
$$

The diagrams appearing these multiplicative expansions are not connected to any of the external points. Such graphs are thus vacuum-to-vacuum transitions, or vacuum diagrams,

In these cares it is fairly easy to show that the series is an exponent:

$$
\begin{align*}
& 1+\frac{1}{4!} 8+\frac{1}{2!}\left(\frac{1}{4!}\right)^{2}(88+\infty 0+\theta)+\cdot \\
= & \langle 0 \mid 0\rangle+\left\langle 01 T\left(i \int d^{4} y_{1} \alpha_{I}(y)\right) \mid 0\right\rangle+\frac{1}{2!}\langle 0| T\left(i \int d^{4} y \alpha_{5}(4) i \int_{d^{4} k} \alpha_{I}(x)\right)|0\rangle+\cdots \\
= & \langle 0| e^{i \int^{4} y \alpha_{I}(y)}|0\rangle \tag{3.43}
\end{align*}
$$

Formal proof for an arbitrary connected diagram, or contraction, in straightforward:
a) Let $\Gamma_{i}$ be some connected contraction, which first appears in the $n$th order of the PT':

$$
\Gamma_{n, i}^{m}=\langle 0| T^{T}\left(\hat{\phi}_{1}, \ldots, \hat{\phi}_{m}\left[\frac{1}{n!} \prod_{j=1}^{n} i \int d^{4} y_{j} \alpha_{I}\left(y_{j}\right)\right]|0\rangle\right.
$$

b) In all higher orders we can make exactly the same contractions, after we have chosen $n$ interaction vertices for the contraction. In order $n+k$ this selection can be done in

$$
\binom{n+k}{n}=\frac{(n+k)!}{n!k!}
$$

different ways. Thus

$$
\begin{array}{ll}
\langle 0| T\left(\hat{\phi}_{1}, \ldots, \hat{\phi}_{m}\left[\frac{1}{(n+k)!} \prod_{j=1}^{n+k} i \int d^{4} y_{j} \alpha_{I}\left(y_{j}\right)\right]\right)|0\rangle & \begin{array}{c}
\text { self contracted } \\
\text { (vacuum) }
\end{array} \\
=\langle 0| T\left(\hat{\phi}_{v} \ldots, \hat{\psi}_{m}\left[\frac{1}{n!} \prod_{j=1}^{n} i \int d^{4} y_{j} \alpha_{I}\left(y_{j}\right)\right]\left[\frac{1}{k!} \prod_{i=1}^{k} i\left(d^{4} y_{i} \alpha_{I}\left(y_{i}\right)\right]\right)|0\rangle\right. \\
\Gamma_{n i}^{n} & +0.00 \cdot \\
=\Gamma_{n, i}^{m} i\langle 0| \frac{1}{k!} T\left(\prod_{i=1}^{k} i \int d^{4} y_{i} \alpha_{I}\left(y_{i}\right)\right)|0\rangle &
\end{array}
$$

c) Sum over all orders $n+k, k=0,1, \ldots, \infty$. Once. obviously gets

$$
\begin{aligned}
& =\Gamma_{n, i}^{n} \cdot \sum_{k=0}^{\infty} \frac{1}{k!}\langle 0| T\left(\prod_{i=1}^{k} i \rho d y_{i}^{4} \alpha_{I}\left(y_{i}\right)\right)|0\rangle \\
& =\Gamma_{n, i}^{m} \cdot\langle 0| T\left(e^{i \int d^{4} y \alpha_{I}(y)}\right)|0\rangle
\end{aligned}
$$

d) Because our derivation a)-c.) applies to an arbitrary connected diagram, we can write.

$$
\begin{align*}
& \langle\Omega| T\left(\hat{\phi}_{1}, \ldots, \hat{\phi}_{m} e^{i \int d^{y} y \Omega_{I}(y)}\right)|\Omega\rangle \\
& \quad=\sum^{(\text {connected graphs }) \times\langle 0| T e^{i \int d^{y} y \alpha_{I}(y)}|0\rangle}
\end{align*}
$$

This is a remarkable nesult, because the full Greens function in $(3,72)$ has the racuum-factor in the denominator! Thus

$$
\begin{aligned}
& \langle\Omega| T\left(\hat{\phi}_{1}, \ldots, \hat{\phi}_{m}\right)|\Omega\rangle=\frac{\langle 0| T\left(\hat{\phi}_{1}^{\text {in }}, \ldots, \hat{\phi}_{m}^{\text {in }} e^{i \int d^{i} y / \alpha_{z}}\right)|0\rangle}{\langle 0| T \mathrm{e}^{\left.i \int d^{4}\right\rangle \alpha_{2}}|0\rangle} \\
& =\sum \text { (connected graphs) } \\
& \equiv\langle 0| T\left(\hat{\phi}_{1, \ldots, \alpha^{\text {in }}} e^{i \int d^{\mu} y R_{I}}\right)|0\rangle_{C} \quad \quad(3.95)
\end{aligned}
$$

Example. For two point function we get

$$
\begin{array}{ll}
\langle\Omega| T\left(\hat{\phi}_{1}, \hat{\phi}_{2}\right)|\Omega\rangle \rightarrow- & +0 \\
& +\cdots+0 \\
\begin{array}{l}
\text { pertutatively, } \\
\text { accountingony } \\
\text { connected graphs. }
\end{array} & +\cdots .
\end{array}
$$

And for the 4 -point function:

$$
\begin{aligned}
\langle\Omega| T\left(\hat{\phi}_{1} \hat{\phi}_{2} \hat{\phi}_{3} \hat{\phi}_{4}\right)|\Omega\rangle \rightarrow X & +(\chi+\gamma+\hat{\chi}) \\
& +[\mathcal{Y}+\text { perm. }]+\cdots
\end{aligned}
$$

1PI-diagrams

It turns out there are even further simplifications. Namely all one-particle reducible diagrams can be accounted for by resummation. You will learn to appreciate this best when we learn about renormalization, but we can give a correct houristic argument here. First, a graph is 1-particle reducible if it breaks to two by cutting a single internal line.

010



1P-Irreducible: 1 PI

To see how this works consider for example the expansion

$$
\begin{equation*}
=+\bar{Q}+\overline{0}+\frac{\rho}{0}+\underline{0}+\cdots \tag{3.96}
\end{equation*}
$$

If we define a free propagator of the interacting theory as a sum:

$$
\begin{equation*}
\equiv-2+0+Q+\frac{8}{\square}+\cdots \tag{3,97}
\end{equation*}
$$

we see that $(3,26)$ in describing an uninteresting $D$-process:

$$
=\square
$$

which does not contribute to the T-matrix.
Similarly for example:

$$
x+x+x^{2}+x^{\varnothing}+\ldots+\text { perm }=
$$

here can contain arbitrary connected subgraphs.
That is, the 1-particle reducible processes merely describe how the nonmteracting state $|k\rangle$ evolves to the propagating made of the interacting the ry. They have nothing to to with ratterings.

As a result we only need to consider connected IPI-graph?

$$
\begin{aligned}
& 0+\theta+\frac{8}{0}+\cdots \\
& x+x+p o m+x o \alpha+>0 \alpha+p o m+\cdots
\end{aligned}
$$

Remember the time-arolution operator (3.61) that connects the operators of free and interacting theory.

$$
\begin{equation*}
U(t, T)=e^{i H_{0}(t-T)} e^{-i H(t-T)} \tag{5.98}
\end{equation*}
$$

First note that the free racum under the full interacting theory on

$$
\begin{equation*}
e^{-i H T}|0\rangle=e^{-i E_{\Omega} T}|\Omega\rangle\langle\Omega \mid 0\rangle+\sum_{n=1}^{\infty} e^{\left\langle E_{n} T\right.}|n\rangle\langle n \mid 0\rangle \tag{3.99}
\end{equation*}
$$

We can keep other states from entering the vacuum state of we turn the interactions on codrabatically. $T \rightarrow(1-i \epsilon) \infty$.
Given this complex time contour. the extra terms with $n \neq 0$ die quickly in ( 3.99 ) in comparison to LS). Normalizing this adiabatic
 vacuum we get
|e.

$$
\begin{align*}
& \equiv \lim _{T \rightarrow(1-i \epsilon) \infty} \frac{e^{-i H(T+t)} e^{i H_{0}(T+t)}|0\rangle}{e^{-i E_{\Omega}(T+t)}\langle\Omega \mid 0\rangle} \\
& =\lim _{T \rightarrow(1-i \epsilon) \infty} \frac{U(t,-T)|0\rangle_{i n}}{e^{-i E_{n}(T+t)\langle s(0\rangle}} \tag{3,100}
\end{align*}
$$

Similarly:

$$
\begin{equation*}
\langle\Omega|=\lim _{t \rightarrow(1-i t) \infty} \frac{\operatorname{in}\langle 0| U(T, t)}{e^{-i E_{\Omega}(T-t)}\langle 0 \mid \Omega\rangle} \tag{3,101}
\end{equation*}
$$

From this we see that

$$
\begin{align*}
1 & \left.=\langle\Omega \mid \Omega\rangle=\lim _{T \rightarrow \infty(1-i e)} \frac{\langle 0| U\left(T_{1}+t\right) U(t,-T)|0\rangle_{n}}{-2 i E_{\Omega} T} \right\rvert\,\left.\langle 0| \Omega\right|^{2} \\
& \Rightarrow\langle 0| T e^{i \int \alpha_{\Omega}}|0\rangle \propto e^{-2 i E_{\Omega} T} \tag{3.102}
\end{align*}
$$

Vacuum graph expansion is this proportional to the vacuum energy of the interacting theory. This gets even clearer when you note that: (ENK.)

$$
\begin{aligned}
\langle 0| T e^{i \int d^{\mu} y \alpha_{I}}|0\rangle & =\sum_{\left\{n_{i}\right\}} \prod_{i} \frac{1}{n_{i}!}\left(v_{i}\right)^{n_{i}} \\
& =\prod_{i} \sum_{n_{i}} \frac{1}{n_{i}!}\left(v_{i}\right)^{n}=\prod_{i} e^{v_{i}}=e^{\sum v_{i}} \quad(5,103)
\end{aligned}
$$

That is

$$
\sum_{i}^{\sum_{i} V_{i} \times 2 V T \cdot\left(\frac{E_{\Omega}}{V}\right)} \underset{\sim}{\text { Vacuum energy density of the interacting }} \text { th. }
$$

Graphically: ok, it tumsout that $\forall i: v_{i}=2 v T \cdot \tilde{v}_{i}$ finite part

$$
\begin{equation*}
\langle 0| T e^{i \delta \alpha_{L}}|0\rangle=\exp \{8+8+\theta+\ldots\} \tag{3,105}
\end{equation*}
$$

3.7 FEYMMAN RULES In momentum space, for computing T-matrix directly.
We are now ready to collect what we have learned to a set of rules to compute the LSZ-reduced transition amphtudes. Again it in best go through a couple of examples:
Example 1

$$
\begin{aligned}
& \text { out }\left\langle q_{1} \mid p_{1}\right\rangle_{\text {in }}=\widetilde{(2 \pi)^{3}} 2 E_{p_{1}} \delta^{3}(\vec{p}-\vec{q}) \\
& +i^{2} Z \int d^{4} y d^{4} x e^{-i p \cdot x+i y \cdot y}\left(\partial_{x}^{2}+m^{2}\right)\left(\partial_{y}^{2}+m^{2}\right) \delta-\text { functions } \\
& \cdot\left(-\frac{i x}{2}\right) \int d^{4} z D_{F}(z-x) D_{F}(z-y) D_{F}(0) \\
& =D C-\operatorname{term}+z \cdot \frac{\lambda}{2} \underbrace{\int^{4} z e^{-i(p-q) z} \underbrace{i D_{F}(0)}}_{(2 \pi)^{4} \delta^{4}(p-q)} \\
& =D C-\tan +\underbrace{\frac{(2 \pi)^{4} \delta^{4}(p-q)}{\lambda}}_{\begin{array}{c}
\text { 4-momentum } \\
\text { conservation. }
\end{array}} \underbrace{\left(\frac{\lambda}{2}\right) \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i z^{-1}}{p^{2}-m^{2}+i \epsilon}}_{\text {T-matrix }} \quad(3,106)
\end{aligned}
$$



Example 2. Consider 2-2 seattenng at lowest order:
We have
4 ! identica! contractions

$$
x_{2}^{x_{1}} X_{x_{1}}^{n_{3}}=\langle 0| T\left(\hat{\phi}_{1} \hat{\phi}_{2} \hat{\phi}_{7} \hat{\phi}_{4} \int d_{z}^{4} \frac{i \lambda}{4!} c_{2} \phi_{z} \phi_{t} \phi_{z}\right)|0\rangle_{c}
$$

$$
=i \lambda \int d^{4} z D_{F}\left(x_{1}-z\right) D_{F}\left(x_{2}-z\right) D_{F}\left(z-x_{3}\right) D_{F}\left(z-k_{4}\right)
$$

Using this result for the amplitude in $(3,54)$ we get

$$
\begin{aligned}
& \text { out }\left\langle q_{1} q_{2} \mid p_{1} p_{2}\right\rangle_{\text {in }}=x \text {-terms } \\
& +i \int d^{4} y_{1} d^{4} y_{2} d^{4} x_{1} d^{4} x_{2} e^{i q_{1} \cdot y_{1}+i q_{i} y_{2}-i p_{1} \cdot x_{1}-i p_{2} \cdot x_{2}} a \\
& \therefore \quad \therefore \lambda d^{4} z(\prod_{i=1}^{2}(\underbrace{\left(\partial_{i}^{2}+m^{2}\right) D_{F}\left(x_{i}-z\right)}_{=i \delta^{4}\left(x_{i}-z\right)})(\underbrace{\left(\prod_{j=1}^{2}\left(\partial_{j}^{2}+m^{2}\right) D_{F}\left(z-y_{j}\right)\right)}_{-i \delta^{4}\left(y_{j}-z\right)} \\
& =D C-\text { terms } \\
& +i \lambda \int d z e^{i\left(q_{1}+q_{2}-p_{1}-r_{2}\right) \cdot z} \\
& =D C-\text { terms }+(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-q_{1}-q_{2}\right) \cdot i^{i \lambda}
\end{aligned}
$$

We can now immediately wite down the lowest order prediction of this theory for the 2-2 scattering crrssection:

$$
\frac{d \sigma}{d R_{e m}}=\frac{\lambda^{2}}{64 \pi^{2} s}
$$

(Here I used $m_{1}=m_{2}=m_{3}=m_{4}=m$, so the 1 -functions cancel.)

Note that I left rut the $Z$-factors. They reduce to 1 in the lowest order in P5.

These examples ane sufficient for us to define the general Feynman rules to compute the T-matrix: directly:

1. Draw all connected IPI-Feynman graphs relevant for the process.
2. To every internal propagator put
3. To every vertex put

$$
\begin{aligned}
Z & =\frac{i}{p^{2}-m^{2}+i \epsilon} \\
& =-i \lambda
\end{aligned}
$$

4. To every external leg

5. To every closed loop inserts

$$
\int \frac{d^{4} p}{(2 \pi)^{4}}
$$

6. Divide by the ymmetry factor.

These rules in mediately give a T-matrix relevant for the reattering event under investigation.

Box:

- You should quickly note that the simplest lerp-diagram in eqn. (3.106) actually diverges:

$$
\int d^{4} p \frac{1}{p^{2}-m^{2}} \sim \lim _{x \rightarrow \infty} \int_{N} d p_{p} \frac{p^{3}}{p^{2}} \sim \lim _{N \rightarrow \infty} N^{2}
$$

This is an example of a singularity, whose elimination requires the renormalization procedure. We shall retum to this issue in chapter 5 .

- Note that the F-rules $(3, \log )$ would lead to a horrible result for disconnected graphs

$$
\begin{aligned}
& q \frac{00}{\sim} \sim \lambda^{2}\left(\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i z}{p^{2}-m^{2}}\right) \frac{1}{\underbrace{q^{2}-m^{2}}}\left(\int_{(2 \pi)^{4} p}^{(2 \pi)^{4}} \frac{i z}{p^{2}-m^{2}}\right) \\
& =\frac{1}{0}=\infty!
\end{aligned}
$$

So, the resummation in not a convenience, but a necesmly!

- The $z$-factor in the LSZ-reduction Step is related to both of the issues above. It's role as a wove function renormalization factor becomes dear later. For time being (before touching renormatization) we can set $z=1$ forever.
3.8 FEYNMAN RULES FOR FERMIONS

We shall follow exactly the same recipe as for the scalar fields. This can be pictured as follows:


Feynman rules

We only need to concentrate on a couple of additional small features white doing LSZ-reduction, and deriving the Wick theorem.

LSZ-reduction for fermions
We now have four operators (see. 2.73)


Their freld-operator representations can be found by using the orthogonality \& normalization relations for spinous,

$$
u_{\vec{p}, s^{\prime}}^{+} u_{\vec{p}, s^{\prime}}=v_{p, s}^{+} v_{p, s^{\prime}}=2 E_{p} \delta_{s s^{\prime}} \text { and } u_{p}^{+} v_{p}=v_{p}^{+} u_{\vec{p}}=0
$$

Namely,

$$
\begin{align*}
& a_{p}^{s}=\int d^{3} x \bar{u}(p, s) e^{i p \cdot x} \gamma^{0} \hat{\psi}(x) \\
& b_{p}^{s t}=\int d^{3} x \bar{\psi}(p, s) e^{-i p \cdot x} \gamma^{0} \hat{\psi}(x) \\
& a_{\hat{p}}^{+}=\int d^{3} x \hat{\bar{\psi}}(x) \gamma^{0}(u, s) e^{-i p \cdot x} \\
& b_{j}^{5}=\int d^{3} x \hat{\bar{\psi}}(x) \gamma^{0} v(p, s) e^{i p \cdot x} \tag{3,111}
\end{align*}
$$

Furthermore, we are setting the asymptotic condition as before

$$
\begin{equation*}
\langle f| \hat{\psi}|i\rangle \xrightarrow{x^{0} \rightarrow \infty} Z_{\psi}^{v_{2}}\langle f| \hat{\psi}_{\text {in }}|i\rangle \tag{5.112}
\end{equation*}
$$

Based on these we get for example

$$
\begin{aligned}
& { }_{\text {out }}\left\langle f \mid\left(k_{j} s\right) ; i\right\rangle_{\text {in }}={ }_{o u t}\langle f| a_{\hat{k} \mid n}^{s+}|i\rangle_{\text {in }} \\
& =\lim _{t \rightarrow-\infty} z_{\psi}^{-\frac{\xi}{2}} \int d^{3} x{ }_{\text {out }}\langle f| \hat{\bar{\Psi}}(x)|i\rangle_{\text {in }} \gamma^{0} u(k, s) e^{-i k \cdot x}
\end{aligned}
$$

By $4 x$ of $\int_{-\infty}^{\infty} \partial_{0} A(x)=\int_{-\infty}^{\infty} A(x)$ this again becomes

$$
\begin{aligned}
= & \text { out } \left.^{\langle f}\left|a_{\vec{k}, \text { out }}^{s+}\right| i\right\rangle \\
& -z_{\psi}^{-1 / 2} \int d^{4} x \partial_{x_{4}}\left[{ }_{\text {out }}\langle f| \hat{\bar{\psi}}(x)|i\rangle_{\text {in }} \gamma^{0} u(k s)^{k} e^{-i k \cdot x}\right]
\end{aligned}
$$

Now

$$
\gamma^{0} \partial_{0} u(k, s) e^{-i k \cdot x}=(\gamma-\vec{\gamma} \cdot \nabla) \varphi_{E, s}(x)=(-i m-\vec{\gamma} \cdot \nabla) \varphi_{k, 5}(x)
$$

So
$\rightarrow+\vec{\gamma} \cdot \overleftarrow{\nabla}$ after portia! integration.

$$
\begin{align*}
& { }_{\text {out }}\langle f| a_{\text {pin }}^{s t}|i\rangle_{\text {in }}=D C-\text { term fielder, multiplying factor } \\
& +i z^{-k} \int d^{4} x_{0}\langle f| \hat{\psi}(x)|i\rangle_{i n}(i \bar{x}+m) u(k, s) e^{-i k \cdot x} \tag{3,113}
\end{align*}
$$

Similarly one finds: (dropong $D C$-terms)

$$
\begin{align*}
& { }_{\text {out }}\langle f| b_{t, \text { in }}^{\text {st }}|i\rangle=i Z_{t}^{-i / 2} \int d y \underbrace{y}(k, s) e^{-i k \cdot x}(i p-m) \quad \text { our }\langle f| \hat{\psi}(x)|i\rangle_{\text {in }} \\
& \operatorname{our}\langle f| a_{\hat{k}, \text { out }}^{s}|i\rangle=-i Z_{\psi}^{-1 / 2} \int d x \bar{u}(k, s) e^{i k \cdot x}(i y-m) \operatorname{out}\langle f| \hat{\psi}(x)|i\rangle \text { in } \\
& \text { aus }\langle f| b_{i k, i n}^{5}|i\rangle=-i z_{u}^{-\frac{1}{2}} \int d^{4} x_{{ }_{\text {out }}}\langle f| \hat{\Psi}(x)|i\rangle_{\text {in }},{ }^{(i \bar{x}+m) v(k, s) e^{i k x}} \tag{3,114}
\end{align*}
$$

By use of (3.113-3.114) the whole fermionic matrix element can be reduced to a vacuum expectation value. Just as with bosons, the next steps give rise to time-ordering, where T-ordening follows the fermion Statistics. See (2.102). Other than that the proof is similar to that for bosons.
If we define

$$
\text { out }\langle f \mid i\rangle_{\text {in }}={ }_{\text {out }}^{\left\langle{ }_{\text {fermions }}\right.} \underbrace{q_{1}, \ldots, q_{n_{0}}}_{\text {antiferm. }}, \underbrace{q_{1}^{\prime}, \ldots, q_{n_{0}^{\prime}}^{\prime}}_{\text {form. }} \mid \underbrace{p_{1}, \ldots, p_{n_{i}}}_{\text {antifa. }} \underbrace{\left.p_{1}^{\prime}, \ldots, p_{n_{i}}^{\prime}\right\rangle_{\text {in }}}_{1}
$$

We eventually get:

$$
\begin{align*}
& { }_{\text {out }}\langle f \mid i\rangle_{n}=\left(i z_{\psi}^{-1 / 2}\right)^{n_{i}+n_{i}^{\prime}}\left(-i z_{\psi}^{-1 / 2}\right)^{n_{0}+n_{i}^{\prime}} \int d^{4} y_{1} \ldots d_{y_{1}}^{4} \cdots d^{4} x_{1} \ldots d_{x_{1}^{\prime}}^{\prime} \cdots . \\
& \times \prod_{i=1}^{n_{0}} \bar{u}\left(f_{i}, s_{i}^{0}\right) e^{i \not v i \cdot y_{i}}\left(i \psi_{x_{i}}-m\right) \times \prod_{i=1}^{n_{i}^{\prime}} \bar{v}\left(p_{i}^{\prime}, \bar{s}^{i}\right) e^{-i p_{i} \cdot x_{i}^{\prime}}\left(i \gamma_{x_{i}}-m\right) \\
& \times\langle\Omega| T\left(\hat{\psi}\left(y_{1}\right) \ldots \hat{\psi}\left(y_{n_{0}}\right) \hat{\psi}\left(x_{i}^{\prime}\right) \ldots \hat{\psi}\left(x_{n_{i}^{\prime}}^{\prime}\right) .\right. \\
& \left.\hat{\Psi}\left(x_{1}\right) \ldots \hat{\Psi}\left(x_{n_{i}}\right) \hat{\Psi}\left(y_{1}^{\prime}\right) \ldots \hat{\Psi}\left(y_{n_{j}}\right)\right)|\Omega\rangle \\
& \times \prod_{i=1}^{n_{i}} u\left(p_{i} s_{i}\right)\left(i \stackrel{\leftarrow}{\bar{x}_{x_{i}}}+m\right) e^{-i p_{i} \cdot \alpha_{i}} \cdot \prod_{i=1}^{n_{0}} v\left(q_{i} \bar{s}_{i}\right)\left(i \bar{x}_{\gamma}+m\right) e^{i q_{1} \cdot y_{i}} \tag{3,115}
\end{align*}
$$

This is a simple formula which looks complicated ale to lengthy notation. Note however, that for fermions and antifermions the "in" and "out" function is reversed.

Wicks theorem for fermions

The -signs arising from fermion field reorelenings match in the time -ordered and normal ordered product. For example

$$
T\left(\psi_{1} \psi_{2} \psi_{3} \psi_{3}\right)=(-1)^{3} \psi_{3} \psi_{1} \psi_{4} \psi_{2} \text { if } x_{3}^{0}>x_{1}^{0}>x_{1}^{0}>x_{2}^{0}
$$

This is matched by

$$
: \psi_{1}^{-} \psi_{2}^{-} \psi_{3}^{+} \psi_{4}^{-}:=(-1)^{2} \psi_{3}^{+} \psi_{1}^{-} \psi_{2}^{-} \psi_{4}^{-}=(-1)^{3} \psi_{3}^{+} \psi_{1}^{-} \psi_{4}^{-} \psi_{2}^{-}
$$

So, for example

$$
\begin{equation*}
T(\hat{\psi}(x) \hat{\Psi}(y))=: \psi(x) \bar{\psi}(y):+\overline{\psi(x)} \vec{\psi}(y) \tag{3,116}
\end{equation*}
$$

where

$$
\overline{\psi(x) \bar{\psi}(y)} \equiv\left\{\begin{array}{rl}
\left\{\psi^{+}(x), \bar{\psi}^{-}(y)\right\}, & x^{0}>y^{0} \\
-\left\{\bar{\psi}^{+}(y), \psi^{-}(x)\right\}, & x^{0}<y^{0}
\end{array}=S_{F}(x-y)(3,117)\right.
$$

When ore notes also that

$$
: \widetilde{\psi_{1} \psi_{2}} \bar{\psi}_{3} \bar{\psi}_{4}:=-\sqrt[\psi_{1}]{\psi_{3}}: \psi_{2} \bar{\psi}_{4}:
$$

ie, making a contraction one pulls the fields neat to each other by ontricommuting suffuent number of tires and count the - signs.

Eventually one gets

$$
\begin{equation*}
T\left(\psi_{1} \bar{\psi}_{2} \psi_{3} \ldots\right)=: \psi_{1} \bar{\psi}_{2} \psi_{3} \ldots+\text { all contractions: } \tag{3,118}
\end{equation*}
$$

Anticommutation rules introduce a number of signs to contractions, ar medicated above, but that is essentially the only difference to bosoms. These signs will have consequences for the Feynman rules however.

We have not defined a specifz interaction get, but we can waite formally: other fields comply to $Y$.

$$
\begin{align*}
&\langle\Omega| T^{\prime}\left(\psi_{1} \ldots \bar{\psi}_{N}\right)|\Omega\rangle= \\
&=\langle 0| T\left(\psi_{i n}^{\prime} \ldots \bar{\psi}_{i n}^{N} e^{i\left(f_{I}\left(\psi_{i n}, \bar{\psi}_{i n}, \phi_{m}\right)\right.}\right)|0\rangle_{C} \tag{3,119}
\end{align*}
$$

Computation of the matrix element in ( 3,119 ) proceeds analogously to the bosonic care, through use of the wick -theorem, which reduces it to a producer of contractions. These one then easily integrated in $\left(J_{1} 119\right)$ by wing the fact that $(i y-m) S_{F}(x-y)=i \delta^{14}(x, y)$

Examples

$$
\begin{align*}
& \ldots \int d^{4} x_{i} \bar{u}\left(q_{i}, s_{i}\right) e^{i q_{i} \cdot x_{i}}\left(i \not \phi_{-m}\right) \ldots\langle 0| \ldots \psi\left(y_{i}\right) \ldots \bar{\psi}\left(x_{i}\right)-|0\rangle \\
& \because(-1)^{n_{\operatorname{cont}}} \int d^{4} x_{i} \bar{u}\left(q_{i} s_{i}\right) e^{i i_{i} \cdot x_{i}} \underbrace{\left(i x_{-}-n\right) s_{r}\left(x_{i}-y\right)}_{i \delta^{4}\left(x_{i}-y\right)} \cdots \\
& =\cdots(-1)^{\eta_{\text {cont }}} e^{i q_{i} \cdot y} i \bar{u}\left(q_{i}, s_{i}\right) \tag{3,120}
\end{align*}
$$

$\uparrow \uparrow$ wave function to be put to the external le.
contributes to the relation of the graph. in the overall. amplitude
goes to build up the
4-monentum conservation lows.

LSZ- theorem gomenalizes along the same lines to the case when in and out sates contain both barons and fermions. It is completely straightforward, but notationally cumber some, so we wan't write it down explicitly.
3.9 Yukawa - theory

This is the simplest theory involving interacting fermions and bosons, The Lagrange density is i
free scaler theory (Kicin-Gardan)

Frescimas theory

Gukama inkeracbory term $\mathcal{L}_{I}$

Example 1. $\psi \psi \rightarrow \psi \psi$-scattering (partizle-particle)
All external legs are fermions, so from (3.115) we get

$$
\begin{align*}
\text { our }\left\langle q_{1} s_{1}^{i} j q_{2} \cdot s_{2}^{0} \mid p_{1}, s_{i}^{i} j p_{2} s_{2}^{i}\right\rangle= & \int d^{4} x_{1} d^{4} x_{2} d^{4} y_{1} d^{4} y_{2} e^{-i p_{1} \cdot x_{1}-i p_{2} \cdot x_{2}+i q_{i} \cdot y_{1}+i q_{i} y_{2}} \\
& \times\left[-i \bar{u}\left(q_{1} s_{1}\right)\left(i \phi_{y_{1}}-m\right)\right]_{\alpha}\left[-i \bar{u}\left(q_{2} ;_{2}^{0}\right)\left(i \phi_{y_{2}}-m\right)\right]_{\beta} \\
& \times\langle | T\left(\psi\left(y_{1}\right) \psi\left(y_{\alpha}\right) \bar{\psi}\left(x_{1}\right) \bar{\psi}\left(x_{2}\right)\right)| \rangle \\
& \times\left[i u\left(p_{1}, s_{j}\right)\left(i \overleftarrow{\psi}_{x_{1}}+m\right)\right]_{\gamma}\left[i u\left(p_{2} s_{2}^{i}\right)\left(i \psi_{x_{2}}+m\right)\right]_{\delta} \tag{3,122}
\end{align*}
$$

Where

$$
\begin{aligned}
& \langle\Omega| T(\cdots)|\Omega\rangle=\langle 0| T\left(\Psi_{i n}\left(y_{1}\right) \psi_{i n}\left(y_{2}\right) \Psi_{i n}\left(\alpha_{1}, \bar{\psi}_{i_{n}}\left(x_{2}\right) e^{i \alpha_{2} d y}\right)|0\rangle_{c}\right. \\
& =\frac{1}{2!}\langle 0| T\left(\psi_{\psi_{1}} \psi_{\nu_{2}} \bar{\psi}_{x_{1}} \bar{\psi}_{\psi_{2}}\left[-i g \int d_{w}^{4} \bar{\psi}_{w} \psi_{w} \phi_{w}\right]\left[-i g \int d z \bar{\psi}_{z} \psi_{z} \phi_{z}\right]\right)|0\rangle_{C} \\
& +\theta\left(g^{4}\right)
\end{aligned}
$$

Using the properties $\left[\psi_{x}, \bar{\psi}_{y} \psi_{y}\right]=\left[\bar{\psi}_{k}, \bar{\Psi}_{y}, \psi_{y}\right]=0$ we can whit this expectation value as

Gone sign change $T$

$$
\begin{equation*}
=\frac{(-i g)^{3}}{2!} \int d^{4} w d_{z}\langle 0| T\left(\psi_{x_{1}}^{\psi_{y_{2 B}} \bar{\psi}_{w,}} \bar{\psi}_{z_{2}} \phi_{w} \phi_{z} \psi_{z_{2} \psi_{w_{E}} \bar{\psi}_{x_{1}, y} \bar{\psi}_{x_{2}}}\right)|0\rangle \tag{3,124}
\end{equation*}
$$

We are getting four different contractions, (pay attention to Dracindices)

$$
\begin{align*}
& =\frac{(-i g)^{2}}{2} \int d^{4} z d^{4} w \\
& (-1) S_{F}\left(y_{1}-w\right)_{\omega_{G}} S_{F}\left(y_{2}-z\right)_{\beta C}-\overline{D_{\phi}(w-z)}(-1) S_{F}\left(z-x_{1}\right)_{C_{\gamma}} S_{F}\left(w-x_{2}\right)_{V} \\
& (-1)^{\circ} S_{F}\left(z-x_{2}\right)_{\text {os }} S_{F}\left(w-x_{1}\right)_{n y} \tag{3,125}
\end{align*}
$$

This notation assumes that you form all possible products of terms in the two columns, However, since we can change. $z \leftrightarrow W$ in the integrand we see that there in only 2 different terms

$$
\begin{equation*}
=-g^{2} \int d^{4} z d^{w} W S_{F}\left(y_{-}-w\right)_{\alpha \in F} S_{-}\left(y_{2}-z\right) D_{\beta} \nabla_{\gamma}(w-z) \cdot\left(S_{F}\left(z-x_{1}\right) S_{F}\left(w-x_{2}\right)_{n \delta}-S_{F}\left(z-x_{2}\right) S_{F}\left(w-x_{0_{n}}\right)\right. \tag{3.125a}
\end{equation*}
$$

putting this back to ( 3.122 ) and using $\left(s_{F}^{+}(x-y)=y^{0} S_{F}(y-x) y^{\circ}\right)$

$$
\begin{align*}
& \int d^{4} y\left[-i \bar{u}(q, s)\left(i \gamma_{y}-m\right)\right]_{\beta} S_{F}(y-w)_{p \in}=e^{i q \cdot w} \bar{u}(q, s)_{G} \\
& \int d^{4} x e^{-i p \cdot x} S_{F}(z-x)_{\eta \varphi}\left[i u(p s)\left(i \chi_{x}+m\right)\right]_{\varphi}=e^{-i p \cdot i} u(p . s)_{Y} \tag{3,126}
\end{align*}
$$

we easily get:
Dirac index always follows the portion index.

$$
\begin{aligned}
\langle f \mid i\rangle_{\text {in }}= & g^{2} \int d z d{ }^{\eta} w e^{i q_{1} w+i q_{2} \cdot z} \bar{u}\left(q_{1}, s_{i}\right)_{\epsilon} \bar{u}\left(q_{2}, s_{2}\right)_{\eta} \times D_{\phi}(z-w) \\
& \times\left\{e^{-i p_{1} \cdot w-i p_{2} \cdot z} u\left(p_{1}, s_{1}^{i}\right)_{\epsilon} u\left(p_{1}, s_{2}^{i}\right)_{\eta}\right. \\
& \left.-e^{-i p_{1} \cdot z-i p_{2} \cdot w} u\left(p_{1}, s^{i}\right)_{\eta} u\left(p_{2}, s_{2}^{i}\right)_{\epsilon}\right\}
\end{aligned}
$$

Observing that

$$
\begin{equation*}
\int d^{4} z d w e^{-i P_{1} \cdot w-i P_{2} \cdot z} D_{\phi}(z-w)=(2 \pi)^{4} \delta^{4}\left(P_{1}+P_{2}\right) D_{\beta}\left(P_{1}\right) \tag{3,127}
\end{equation*}
$$

where of course $D_{\phi}(p)=i /\left(p^{2}-m_{p}^{2}+i c\right)$.
Now in the first term in the brackets $\}$ we have

$$
P_{1}=p_{1}-q_{1} ; \quad P_{2} \equiv p_{2}-q_{2}
$$

and is the second term

$$
P_{1} \equiv p_{1}-q_{2} ; P_{2}=p_{2}-q_{1}
$$

So we get

$$
\begin{aligned}
{ }_{\text {out }}\langle\cdots \mid \ldots\rangle_{\text {in }}= & (2 \pi)^{4} \delta^{4}\left(q_{1}+q_{2}-p_{1}-p_{2}\right)= \\
& \approx\left\{g^{2} \bar{u}\left(q_{1}\right) u\left(p_{1}\right) \frac{i}{\left(p_{1}-q_{1}\right)^{2}-m_{y}^{2}+i \epsilon} \bar{u}\left(q_{2}\right) u\left(p_{2}\right)\right. \\
& \left.-g^{2} \bar{u}\left(q_{1}\right) u\left(p_{2}\right) \frac{i}{\left(p_{1}-q_{2}\right)^{2}-m_{1}^{2}+i t} \bar{u}\left(q_{2}\right) u\left(p_{1}\right)\right\}
\end{aligned}
$$

$$
=(2 \pi)^{4} \delta^{u}\left(p_{f}-p_{i}\right) T
$$

These terms in T-matrix correspond to the following

Feynman graphs:

"t-channel"
$\rightarrow$ fermion number flow
$\rightarrow$ momentum flow

" u-channel"

The names $t$-and $u$-channel follow from the dorenty-miveriant Mandelstam variables

$$
\begin{equation*}
s \equiv\left(p_{1}+p_{2}\right)_{j}^{2} \quad t=\left(p_{1}-q_{1}\right)^{2} ; u=\left(p_{1}-q_{2}\right)^{2} \tag{3,130}
\end{equation*}
$$


It is easy ought to do the same calculation for particle- antipartake scattering. The Greens function and the contractions remain the same, so ( $3.125 a$ ) is unchanged. However, in ( 3,122 ) particle operators corresp. to $P_{2}$ and $q_{2}$ become antiparticle operators, which also skip the sides wort. Green function. Eventually one has (EX):

$$
\begin{align*}
\operatorname{aut}\left\langle q_{1} \bar{q}_{2} \mid p_{1} \bar{p}_{2}\right\rangle_{\text {in }} & =(2 \pi)^{4} \delta^{4}\left(p_{1}+\bar{q}_{2}-q_{1}-\bar{p}_{2}\right) \\
& \times\left\{g^{2} \bar{v}\left(p_{2}\right) u\left(p_{1}\right) \frac{i}{\left(p_{1}+p_{2}\right)^{2}-m_{2}^{2}+i=} \bar{u}\left(q_{1}\right) \cup\left(q_{2}\right)\right. \\
& \left.\left.-g^{2} \bar{u}\left(q_{1}\right) u\left(p_{1}\right) \frac{i}{\left(p_{1}-q_{1}\right)^{2}-2^{2}+i \in} \overline{v_{p_{2}}}\right) \sigma\left(q_{2}\right)\right\}
\end{align*}
$$

These terms correspond to diagrams:
$u\left(p_{1}\right)$ $\bar{v}(p)$


S-channel

$z$-channel
$\rightarrow$ fermion number flow
$\rightarrow$ momentum flow
(f-flow
reversed for antip w.r.t momentum flow)
With help of these examples it is already eary to see what are the Fegnman cules for the Yukawa theory. .
(1) Exteral legn.
 particles \& anti-
particles. But remember the $t$ reversed f-numbor
flow $\nabla$ flow $\overline{ }$
…-..: 1
(2) Rropagators

$$
\begin{aligned}
& \cdots: \frac{i}{p^{2}-m_{\phi}^{2}+i \epsilon} \\
& \cdots \cdots \cdots \frac{i}{p-m+i \epsilon}
\end{aligned}
$$

(3) Interaction vertex
$p_{2} \not p_{1} p_{1}+p_{2}$ : -ig
( 4 . momenturn is consewed through restex)
(3.133)

* Dot represents the outer point in the TPI part of the graph. eg
 reversed $f$-numberflow for ants: particles.

In addition to these there are the following rules:
(4) Integrate over the momenta in closed leaps:

$$
\int \frac{d^{4} p}{(2 \pi)^{-4}}
$$

(5) Figure out the relative signs of the diagrams by working out the complete contraction signs.

Some other miler that we will learn later with be needed. Let us mention one of those here:
(6) Each fermion loop introduces a Trace oven Dirac indices and induces a - sign.


$$
\begin{align*}
& \alpha \bar{\psi}_{\alpha} \Psi_{\beta} \frac{\psi_{\beta}}{\psi_{\gamma}} \ldots \bar{\Psi}_{\epsilon} \psi_{\alpha} \\
& =(-1)^{2 n-1} \operatorname{Tr}[\Psi \bar{\psi} \ldots \psi \bar{\psi}] \\
& =-\operatorname{Tr}\left[s_{F} \ldots s_{F}\right] \tag{3,134}
\end{align*}
$$

To compute the cross section we will need the square of the T-matrix. This in easily done for our ceamples using the Diracology we have learned ss far. We leave this to an exercise however. Explicit calculations for $\sigma$. will be done later on in connection with Gca.

Symmetry factor in this theory in always 1.

