Can we show that cosmological structures are of quantum-mechanical origin?

Vincent Vennin

Workshop: Inflation and the dark sector - Current challenges and future perspectives
University of Jyväskylä

Inflation

Quantum vacuum fluctuations of the gravitational and scalar fields amplified by gravitational instability and stretched by cosmic expansion

- Strong statement (extraordinary statement requires extraordinary evidence)
- The consequences that can be inferred from this idea are consistent with observations
- This gives an indirect confirmation that cosmological structures have an quantummechanical origin

Inflationary perturbations

$$
\begin{aligned}
& g_{\mu \nu}=\bar{g}_{\mu \nu}(t)+\widehat{\delta g_{\mu \nu}}(t, \boldsymbol{x}) \\
& \phi=\bar{\phi}(t)+\widehat{\delta \phi}(t, \boldsymbol{x})
\end{aligned}
$$

Scalar perturbations are described by a single combination of metric and field
fluctuations that directly determines CMB temperature anisotropies

Expansion of Einstein-Hilbert + scalar field action at second order:
Interaction term between
the quantum fluctuations and the classical
$\hat{H}=\int \mathrm{d}^{3} \boldsymbol{k}\left[\frac{\text { Free term }}{\frac{k}{2}\left(\hat{c}_{\boldsymbol{k}} \hat{c}_{\boldsymbol{k}}^{\dagger}+\hat{c}_{-\boldsymbol{k}} \hat{c}_{-\boldsymbol{k}}^{\dagger}\right)}\right.$ background
Pump field: time-dependent coupling constant Depends only on the scale factor and its derivative Vanishes if a is constant

Quantum state of cosmological perturbations

Two-mode squeezed sate

$$
\left|\Psi_{\mathrm{CMB}}\right\rangle=\bigotimes_{\boldsymbol{k} \in \mathbb{R}^{3+}}\left|\Psi_{\boldsymbol{k}}\right\rangle \quad \text { with } \quad\left|\Psi_{\boldsymbol{k}}\right\rangle=\frac{1}{\cosh r_{k}} \sum_{n=0}^{\infty} e^{2 i n \varphi_{k}}(-1)^{n} \operatorname{tank}^{n} r_{k}\left|n_{\boldsymbol{k}}, n_{-\boldsymbol{k}}\right\rangle
$$

(correlations between modes k and $-k$)

Strongest squeezed state produced in nature ($r=50$)

Large-squeezing limit: goes to an Einstein-Podolski-Rosen state $|\uparrow, \uparrow\rangle+|\downarrow, \downarrow\rangle$

Can we violate Bell's inequalities with the CMB?

Classicality in the Wigner approach

Wigner function $\quad W(q, p)=\int \Psi^{*}\left(q-\frac{u}{2}\right) e^{-i p u} \Psi\left(q+\frac{u}{2}\right) \frac{\mathrm{d} u}{2 \pi}$

Evolution equation: $\frac{\partial}{\partial t} W(q, p, t)=-\{W(q, p, t), H(q, p, t)\}_{\text {Poisson bracket }}$ for quadratic Hamiltonians

Classicality in the Wigner approach

Wigner function $\quad W(q, p)=\int \Psi^{*}\left(q-\frac{u}{2}\right) e^{-i p u} \Psi\left(q+\frac{u}{2}\right) \frac{\mathrm{d} u}{2 \pi}$

Evolution equation: $\frac{\partial}{\partial t} W(q, p, t)=-\{W(q, p, t), H(q, p, t)\}_{\text {Poisson bracket }}$ for quadratic Hamiltonians

Classicality in the Wigner approach

Wigner function

$$
W(q, p)=\int \Psi^{*}\left(q-\frac{u}{2}\right) e^{-i p u} \Psi\left(q+\frac{u}{2}\right) \frac{\mathrm{d} u}{2 \pi}
$$

Evolution equation: $\quad \frac{\partial}{\partial t} W(q, p, t)=-\{W(q, p, t), H(q, p, t)\}_{\text {Poisson bracket }}$ for quadratic Hamiltonians

Weyl Transform

$$
\begin{aligned}
& \widetilde{A}(q, p)=\int \mathrm{d} u e^{-i p u}\left\langle q+\frac{u}{2}\right| \hat{A}\left|q-\frac{u}{2}\right\rangle \\
& \text { (with this definition: } W=\frac{\widetilde{\rho}}{2 \pi} \text {) }
\end{aligned}
$$

Expectation value of quantum operators $\langle\hat{A}\rangle=\int \widetilde{A}(q, p) W(q, p) \mathrm{d} q \mathrm{~d} p$

$$
W>0 \longrightarrow \text { "quasi-probability distribution" }
$$

John Bell 1986, EPR correlations and EPW distributions:
Bell inequality violation requires non-positive Wigner function

Quantum discord

Henderson and Vedral 2001; Ollivier and Zurek 2001

Idea: Find two ways to calculate the mutual information between A and B that coincide for classical correlations but may differ in quantum systems

$\mathcal{I}=S(A)+S(B)-S(A, B)$
$\mathcal{J}=S(A)-S(A \mid B)$ with respect to measurements $\hat{\Pi}_{j}$
$\hat{\Pi}_{j}$: complete set of projectors defined on \mathcal{E}_{B}
$\hat{\rho} \rightarrow \hat{\rho} \hat{\Pi}_{j} / p_{j}$ with probability $p_{j}=\operatorname{Tr}\left(\hat{\rho} \hat{\Pi}_{j}\right)$ and $\rho_{A ; \hat{\Pi}_{j}}=\operatorname{Tr}_{B}\left(\rho \hat{\Pi}_{j} / p_{j}\right)$
$S(A \mid B)=\sum_{j} p_{j} S\left(\rho_{A ; \hat{\Pi}_{j}}\right)$
$\delta(A, B)=\min _{\left\{\hat{\Pi}_{j}\right\}}(\mathcal{I}-\mathcal{J})$

Quantum discord

Example: $|\Psi\rangle=\frac{|\downarrow \downarrow\rangle+|\uparrow \uparrow\rangle}{\sqrt{2}}$

$$
\longrightarrow \rho=\frac{1}{2}|\downarrow \downarrow\rangle\langle\downarrow \downarrow|+\frac{1}{2}|\uparrow \uparrow\rangle\langle\uparrow \uparrow|+\frac{1}{2}|\downarrow \downarrow\rangle\langle\uparrow \uparrow|+\frac{1}{2}|\uparrow \uparrow\rangle\langle\downarrow \downarrow|
$$

Quantum discord

Example: $|\Psi\rangle=\frac{|\downarrow \downarrow\rangle+|\uparrow \uparrow\rangle}{\sqrt{2}}$

$$
\longrightarrow \rho=\frac{1}{2}|\downarrow \downarrow\rangle\langle\downarrow \downarrow|+\frac{1}{2}|\uparrow \uparrow\rangle\langle\uparrow \uparrow|+\frac{z}{2}|\downarrow \downarrow\rangle\langle\uparrow \uparrow|+\frac{z}{2}|\uparrow \uparrow\rangle\langle\downarrow \downarrow|
$$

Quantum discord

For the two-mode squeezed state of inflation: J. Martin, V.V., 1510.04038

$$
\begin{aligned}
\delta(\boldsymbol{k},-\boldsymbol{k})= & \cosh ^{2} r_{k} \log _{2}\left(\cosh ^{2} r_{k}\right) \\
& -\sinh ^{2} r_{k} \log _{2}\left(\sinh ^{2} r_{k}\right) \\
\sim & 150 \text { at the end of inflation }
\end{aligned}
$$

So is the CMB very classical or very quantum?

You have reached the point of maximum confusion

Revzen 2006

Bell inequalities can be violated even when $W>0$ with improper operators
Proper operator: \widetilde{A} takes values within the spectrum of \hat{A}.

Bell inequalities

$$
\hat{B}=\left(\boldsymbol{u}_{A} \cdot \hat{\boldsymbol{S}}_{A}\right) \otimes\left(\boldsymbol{u}_{B} \cdot \hat{\boldsymbol{S}}_{B}\right)+\left(\boldsymbol{u}_{A} \cdot \hat{\boldsymbol{S}}_{A}\right) \otimes\left(\boldsymbol{u}_{B}^{\prime} \cdot \hat{\boldsymbol{S}}_{B}\right)+\left(\boldsymbol{u}_{A}^{\prime} \cdot \hat{\boldsymbol{S}}_{A}\right) \otimes\left(\boldsymbol{u}_{B} \cdot \hat{\boldsymbol{S}}_{B}\right)-\left(\boldsymbol{u}_{A}^{\prime} \cdot \hat{\boldsymbol{S}}_{A}\right) \otimes\left(\boldsymbol{u}_{B}^{\prime} \cdot \hat{\boldsymbol{S}}_{B}\right)
$$

- Bipartite system: k and $-k$
- Entangled system: two-mode squeezed state
- improper, spin-like operators

Bell inequalities

continuous variable

$$
\hat{q}_{k}=\frac{\hat{c}_{\boldsymbol{k}}+\hat{c}_{\boldsymbol{k}}^{\dagger}}{\sqrt{2 k}}=\hat{q}_{\boldsymbol{k}}^{\dagger}
$$

- Divide the real axis into intervals $[n \ell,(n+1) \ell]$
- Perform a measurement of q_{k}
- Return $S_{z}(\ell)=(-1)^{n}$

Larsson $2004 \quad \hat{S}_{z}(\ell)=\sum_{n=-\infty}^{\infty}(-1)^{n} \int_{n \ell}^{(n+1) \ell} \mathrm{d} q_{\boldsymbol{k}}\left|q_{\boldsymbol{k}}\right\rangle\left\langle q_{\boldsymbol{k}}\right| \quad \longrightarrow \hat{S}_{z}^{2}(\ell)=1$

$$
\begin{aligned}
\hat{S}_{+}(\ell)=\sum_{n=-\infty}^{\infty}(-1)^{n} \int_{2 n \ell}^{(2 n+1) \ell} \mathrm{d} q_{\boldsymbol{k}}\left|q_{\boldsymbol{k}}\right\rangle\left\langle q_{\boldsymbol{k}}+\ell\right| \longrightarrow \hat{S}_{x}(\ell)=\hat{S}_{+}(\ell)+\hat{S}_{+}^{\dagger}(\ell) \\
\hat{S}_{y}(\ell)=-i\left[\hat{S}_{+}(\ell)-\hat{S}_{+}^{\dagger}(\ell)\right]
\end{aligned}
$$

$\longrightarrow\left[\hat{S}_{i}(\ell), \hat{S}_{j}(\ell)\right]=2 i \epsilon_{i j k} \hat{S}_{k}(\ell) \quad$ obey spin algebra

Bell inequalities in the CMB

$$
\begin{aligned}
\hat{B}(\ell) & =\left[\mathbf{n} \cdot \hat{\mathbf{S}}^{(1)}(\ell)\right] \otimes\left[\mathbf{m} \cdot \hat{\mathbf{S}}^{(2)}(\ell)\right]+\left[\mathbf{n} \cdot \hat{\mathbf{S}}^{(1)}(\ell)\right] \otimes\left[\mathbf{m}^{\prime} \cdot \hat{\mathbf{S}}^{(2)}(\ell)\right] \\
& +\left[\mathbf{n}^{\prime} \cdot \hat{\mathbf{S}}^{(1)}(\ell)\right] \otimes\left[\mathbf{m} \cdot \hat{\mathbf{S}}^{(2)}(\ell)\right]-\left[\mathbf{n}^{\prime} \cdot \hat{\mathbf{S}}^{(1)}(\ell)\right] \otimes\left[\mathbf{m}^{\prime} \cdot \hat{\mathbf{S}}^{(2)}(\ell)\right]
\end{aligned}
$$

classically: $\langle\hat{B}(\ell)\rangle<2$

Bell inequalities in the CMB

How to measure $\hat{S}_{+}(\ell)=\sum_{n=-\infty}^{\infty}(-1)^{n} \int_{2 n \ell}^{(2 n+1) \ell} \mathrm{d} q_{k}\left|q_{k}\right\rangle\left\langle q_{k}+\ell\right|$?
requires to access phase information

Can we detect quantum correlations using "position" measurements only?
$\widetilde{\zeta}_{\boldsymbol{k}}=\zeta_{\boldsymbol{k}}$ and $\widetilde{f}\left(\zeta_{\boldsymbol{k}}\right)=f\left(\zeta_{\boldsymbol{k}}\right)$ so according to Revzen's theorem: not with Bell inequalities!

Leggett-Garg inequalities

Two-time correlators

$$
C_{a b}=\left\langle\hat{S}_{z}\left(t_{a}, \ell\right) \hat{S}_{z}\left(t_{b}, \ell\right)\right\rangle
$$

Leggett-Garg three strings $K_{3}=C_{a b}+C_{b c}-C_{a c}, \quad K_{3}^{\prime}=-C_{a b}-C_{b c}-C_{a c}$
Classically: $-3 \leq K_{3}, K_{3}^{\prime} \leq 1$

J. Martin, V.V. (2016)

But requires to measure zeta at three different times

Non-discordant states

Can we detect quantum correlations using single-time, "position" measurements only?
Classical states $=$ non-discordant states $\delta(\boldsymbol{k},-\boldsymbol{k})=0$

Non-discordant states

Can we detect quantum correlations using single-time, "position" measurements only?
Classical states $=$ non-discordant states $\delta(\boldsymbol{k},-\boldsymbol{k})=0$
Theorem: the only classical Gaussian states are product states
Adesso, Datta 2010; Rahimi-Keshari, Calves, Ralph 2013; Mista, Mc Nulty 2014

Conclusions

- Cosmological perturbations are placed in a two-mode highly squeezed state in the very early Universe
- Such a state has a large quantum discord, denoting the presence of large quantum correlations between particles created with opposite wave momenta
- In principle, Bell experiments can therefore be constructed that would prove that CMB anisotropies are of quantum mechanical origin
- In practice, these experiments require to measure exponentially small quantities (\propto decaying mode), at least in the standard setup
- Legget-Garg inequalities evade this issue but require to measure perturbations at different times
- The CMB cannot have been placed in a classical Gaussian state. Current constraints on non-Gaussianities may be already sufficient to exclude non-discordant states!
- Role of decoherence?

Decoherence

