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Inflation
Quantum vacuum fluctuations of the gravitational and scalar fields amplified by 

gravitational instability and stretched by cosmic expansion
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Quantum mechanics on cosmological scales!

• Strong statement (extraordinary statement requires extraordinary evidence)


• The consequences that can be inferred from this idea are consistent with observations


• This gives an indirect confirmation that cosmological structures have an quantum-
mechanical origin

Any direct evidence?



Scalar perturbations are described by a 
single combination of metric and field 


fluctuations that directly determines 
CMB temperature anisotropies


Inflationary perturbations
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ĉkĉ�k � ĉ†�kĉ
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Expansion of Einstein-Hilbert + scalar field action at second order:


Free term

Interaction term between 
the quantum fluctuations 

and the classical 
background 

Pump field: time-dependent coupling constant 
Depends only on the scale factor and its derivative 

Vanishes if a is constant 

Creation / annihilation 
of pairs of particles 



Quantum state  
of cosmological perturbations
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produced in nature (r=50)


Entangled state

(correlations between modes k and -k)


Large-squeezing limit: goes to an Einstein-
Podolski-Rosen state                       . 
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 = highly-non classical state?
 Can we violate Bell’s inequalities 

with the CMB?




Classicality in the Wigner approach
Wigner function 
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Classicality in the Wigner approach
Wigner function 

@
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W (q, p, t) = � {W (q, p, t), H(q, p, t)}

Poisson bracket

Evolution equation:


for quadratic Hamiltonians
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(with this definition:                )


hÂi =
Z

eA (q, p)W (q, p) dqdpExpectation value of quantum operators


“quasi-probability distribution”
W > 0

John Bell 1986, EPR correlations and EPW distributions: 

Bell inequality violation requires non-positive Wigner function 




Quantum discord
Henderson and Vedral 2001; Ollivier and Zurek 2001


A B
Idea: Find two ways to calculate the mutual information 
between A and B that coincide for classical correlations 

but may differ in quantum systems 
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J = S(A)� S(A|B)
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Quantum discord

Example:
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Quantum discord

Example:
 | i =
| ##i+ | ""ip

2

⇢ =
1

2
| ##ih## |+ 1

2
| ""ih"" |+ z

2
| ##ih"" |+ z

2
| ""ih## |

x

y

z

✓

�

⇧̂1

⇧̂2

✓

�0.6�0.4�0.20.0 0.2 0.4 0.6

z

0.0

0.2

0.4

0.6

0.8

1.0

�

0.0

0.2

0.4

0.6

0.8

1.0



Quantum discord
For the two-mode squeezed state of inflation:
 J. Martin, V.V., 1510.04038
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So is the CMB very classical or very quantum?


Revzen 2006


Bell inequalities can be violated even when W>0 with improper operators


Proper operator:      takes values within the spectrum of    . 
eA Â

You have reached the 

point of maximum confusion




Bell inequalities

uA

uB

0

• Bipartite system: k and -k 

• Entangled system: two-mode squeezed state


• improper, spin-like operators
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Bell inequalities

q̂k =
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2k
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continuous variable


qk
continuous spectrum
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• Divide the real axis into intervals 

• Perform a measurement of 


• Return 
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Ŝ+ (`) =
1X

n=�1
(�1)n

Z (2n+1)`

2n`
dqk |qki hqk + `| Ŝ
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Bell inequalities in the CMB
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J. Martin, V.V. (2017) 
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Bell inequalities in the CMB
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requires to access phase information

conjugated momentum

decaying mode

How to measure                                                                                ?
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Can we detect quantum correlations using “position” measurements only?

e⇣k = ⇣k and                           so according to Revzen’s theorem: not with Bell inequalities! ef(⇣k) = f(⇣k)



Leggett-Garg inequalities
Two-time correlators Cab =

D
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J. Martin, V.V. (2016) 


But requires to measure zeta at three different times …



Non-discordant states
Can we detect quantum correlations using single-time, “position” measurements only?

Classical states = non-discordant states � (k,�k) = 0

J. Martin, V.V. (2015) 


Two-mode squeezed state Non-discordant state sharing the same 
two-point functions as the two-mode 

squeezed state



Non-discordant states
Can we detect quantum correlations using single-time, “position” measurements only?

Classical states = non-discordant states � (k,�k) = 0
Back to Discord: Classical States

Classical	states	≡	non-discordant	states	(δ=0)	 Can	we	exclude	non-discordant	states?	

Theorem:	the	only	classical	Gaussian	states	are	product	states	
(Adesso	and	Da6a	2010;	Rahimi-Keshari,	Caves,	Ralph	2013;	Mista,	McNulty,	Adesso	2014)	
	
	 � = 0, nG = 0 ) I = 0

nG = S(⇢G)� S(⇢)

I

can	be	classical	

must	be	quantum	

CM
B	

?
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Theorem: the only classical Gaussian states are product states

Adesso, Datta 2010; Rahimi-Keshari, Calves, Ralph 2013; Mista, Mc Nulty 2014 




Conclusions
• Cosmological perturbations are placed in a two-mode highly squeezed state in the 

very early Universe


• Such a state has a large quantum discord, denoting the presence of large quantum 
correlations between particles created with opposite wave momenta


• In principle, Bell experiments can therefore be constructed that would prove that CMB 
anisotropies are of quantum mechanical origin


• In practice, these experiments require to measure exponentially small quantities          
(∝ decaying mode), at least in the standard setup


• Legget-Garg inequalities evade this issue but require to measure perturbations at 
different times 

• The CMB cannot have been placed in a classical Gaussian state. Current constraints 
on non-Gaussianities may be already sufficient to exclude non-discordant states!


• Role of decoherence?



Decoherence
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Decoherence


