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Inflation

Quantum vacuum fluctuations of the gravitational and scalar fields amplified by
gravitational instability and stretched by cosmic expansion

Ak wavelength

Particle Production —

MinkowskKi a/a Hubble radius
vacuum

> time

Quantum mechanics on cosmological scales!

- Strong statement (extraordinary statement requires extraordinary evidence)
- The consequences that can be inferred from this idea are consistent with observations

 This gives an indirect confirmation that cosmological structures have an quantum-
mechanical origin

Any direct evidence?



Inflationary perturbations

Scalar perturbations are described by a

Juv = Guv(t) + 09, (t, ) single combination of metric and field R
> ()
¢ = ¢(t) + 00 (t, ) fluctuations that directly determines

CMB temperature anisotropies

Expansion of Einstein-Hilbert + scalar field action at second order:

Interaction term between
the quantum fluctuations
and the classical

Free term background

Pump field: time-dependent coupling constant
Depends only on the scale factor and its derivative
Vanishes if a is constant



Quantum state
of cosmological perturbations

Two-mode squeezed sate
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Classicality in the Wigner approach

Wigner function W(q,p) = [ T* <q _ E) o~ Puy <q X 3) du
2 2/ 21

, , 0
Evolution equatlon: EW (Q7 p, t) - {W(Q7 p, t)a H(Q7p7 t)}Poisson bracket

for quadratic Hamiltonians




Classicality in the Wigner approach

Wigner function W(q,p) = [ T* <q _ 3) o~ Puy (q X E) du
2 2/ 21

_ , 0
Evolution equatlon: EW (Q7 p, t) - {W(Q7 p, t)a H(Qapv t)}Poisson bracket

for quadratic Hamiltonians

2.0

1.5¢

1.0}

0.5}

-1.0}

—-1.5}¢

=200 15 -10 —05 00 05 10 15 2.0

p



Classicality in the Wigner approach

Wigner function W (q,p) = /\1;* (q _ 3) o Uy (q 4 3) du
2 2/ 21

. . 0
Evolution equation: 5 W (g,p,t) = —{W(q,p,1), H(q, P, 1) } poisson bracket

for quadratic Hamiltonians

o)

Weyl Transform A(q, p) = /due_ip“ <q + g

(with this definition: W = ﬁ)
27

Expectation value of quantum operators (A) = / A (q,p) W (q,p) dgdp

W >0 » “quasi-probability distribution”

John Bell 1986, EPR correlations and EPW distributions:
Bell inequality violation requires non-positive Wigner function



Quantum discord

Henderson and Vedral 2001; Ollivier and Zurek 2001

Idea: Find two ways to calculate the mutual information
between A and B that coincide for classical correlations
but may differ in quantum systems

T =S(A)+ S(B) - S(A, B)
J = S(A) — S(A|B) with respect to measurements ﬁj

A

I1; : complete set of projectors defined on &g

p — ﬁf[j/pj with probability p; = 1Ir (ﬁﬂj) and Paq, = Irp (Pﬂj/pj)

S(A[B) = Zpy (PA;ﬁj>

d(A,B) = 3111]% (Z-J)



Quantum discord

Example: |¥) = | ¢¢>\W/L§| (D
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Quantum discord

Example: |U) = |¢¢>\W/L§| )
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Quantum discord

For the two-mode squeezed state of inflation: J. Martin, V.., 1510.04038
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Revzen 2006

Bell inequalities can be violated even when W>0 with improper operators

Proper operator: A takes values within the spectrum of A.



Bell inequalities

B = (uA-S’A) & <u3-53> + (uA-SA) &® (u’B-SB) + (u;l-SA'A) 0 (uB-S'B) - ('U';l‘SA'A) ® (U/B'S'B)

> N

Classically: <B> < 2

* Bipartite system: k and -k
e Entangled system: two-mode squeezed state

* improper, spin-like operators



Bell inequalities

1 el .

continuous spectrum
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Bell inequalities in the CMB

B(¢) :[n s<1>(e)} [m-é<2>(z)} [n s<1>(z)] [m S(Q)(E)]

+ 08D (0)] @ [m- 8@ ()] - [0 8D (0)] @ [m' - 5@ (0)]
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Bell inequalities in the CMB

A o0 (2n+1)¢
How to measure 5, (/) = )  (-1)" / dar |qr) (g + 2] ?

n=—o00 2nt v

requires to access phase information

}
conjugated momentum 7

l
decaying mode

(e ~ e " (g

Can we detect quantum correlations using “position” measurements only?

~

Ck = (k. and f(Ck) = f({x) so according to Revzen’s theorem: not with Bell inequalities!



Leggett-Garg inequalities

Two-time correlators Cyp = <SZ (ta,é)gz(tb,€)>
Leggett-Garg three strings K3 = Cyp + Cpe — Cue, Kz = —Cup — Cpe — Cie

Classically: —3 < K3, K5 <1

J. Martin, V.V. (2016)
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Non-discordant states

Can we detect quantum correlations using single-time, “position” measurements only?

Classical states = non-discordant states § (k,—k) =0

J. Martin, V.V. (2015) Vi g

WC 1 004

Two-mode squeezed state Non-discordant state sharing the same
two-point functions as the two-mode
squeezed state



Non-discordant states

Can we detect quantum correlations using single-time, “position” measurements only?

Classical states = non-discordant states ¢ (k,—k) =0

Theorem: the only classical Gaussian states are product states

Adesso, Datta 2010; Rahimi-Keshari, Calves, Ralph 2013; Mista, Mc Nulty 2014

z

CMB

must be quantum J

nG = S(p%) — S(p)

can be classical ]



Conclusions

Cosmological perturbations are placed in a two-mode highly squeezed state in the
very early Universe

Such a state has a large quantum discord, denoting the presence of large quantum
correlations between particles created with opposite wave momenta

In principle, Bell experiments can therefore be constructed that would prove that CMB
anisotropies are of quantum mechanical origin

In practice, these experiments require to measure exponentially small quantities
(<« decaying mode), at least in the standard setup

Legget-Garg inequalities evade this issue but require to measure perturbations at
different times

The CMB cannot have been placed in a classical Gaussian state. Current constraints
on non-Gaussianities may be already sufficient to exclude non-discordant states!

Role of decoherence?
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Decoherence
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k, /k,

Decoherence

103 - heavy test scalar field
- non linearities
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