Scale symmetry, the Higgs and the Cosmos

Javier Rubio

based on Phys.Rev. D97 (2018) no.4, 043520 & Phys.Rev. D99 (2019) no.6, 063512

If the mass of the Higgs boson is put to zero in the SM, the Lagrangian has a larger symmetry

$$x^{\mu} \to \alpha^{-1} x^{\mu} \qquad \Phi_i(x) \to \alpha^{d_i} \Phi_i(\alpha^{-1} x)$$

It is tempting to use this symmetry for something

The players

The simplest possibility

Scale symmetry must be broken in one way or another

2 different perspectives

Classical but not Quantum

EFT

The Higgs-Dilaton model
$$\frac{\mathcal{L}}{\sqrt{g}} = \frac{1}{2} \left(\xi_{\chi} \chi^2 + \xi_h h^2 \right) R - \frac{1}{2} (\partial h)^2 - \frac{1}{2} (\partial \chi)^2 - U(h, \chi)$$
with $U(h, \chi) = \frac{\lambda}{4} \left(h^2 - \alpha \chi^2 \right)^2$

A singlet under the Standard Model gauge group All scales generated by SSB of global scale invariance Hierarchy of scales not addressed

M. Shaposhnikov, D. Zenhausern, Phys.Lett. B671 (2009) 187-192 J. García-Bellido, JR, M. Shaposhnikov, D. Zenhausern, Phys.Rev. D84 (2011) 123504 A recent revival: P. G: Ferreira, C. T. Hill, G. G. Ross Phys.Lett. B763 (2016) 174-178, Phys.Rev. D95 (2017) no.4, 043507

Einstein-frame formulation

$$\frac{\tilde{\mathcal{L}}}{\sqrt{-\tilde{g}}} = \frac{M_P^2}{2}\tilde{R} - \frac{1}{2}\gamma_{ab}(\Omega)\tilde{g}^{\mu\nu}\partial_\mu\varphi^a\partial_\nu\varphi^b - V(\varphi)$$

Asymptotically flat

Vacuum is infinitely degenerate

Physics independent of dilaton value

$$\gamma_{ab}(\Omega) = \frac{1}{\Omega^2} \left(\delta_{ab} + y \times \frac{3}{2} M_{\rm P}^2 \frac{\partial_a \Omega^2 \partial_b \Omega^2}{\Omega^2} \right)$$
$$R_{\gamma_{ab}} \neq 0 \quad \text{unless} \quad \xi_h \neq \xi_{\chi}$$

Isocurvature fluctuations and non-gaussianities?

Inertial symmetry breaking

$$D_{\mu}J^{\mu} = 0 \longrightarrow \Box \Phi^2 = 0$$

Independent of slow-roll

Insensitive to IR form of the potential

Easily applicable to other scenarios

$$\exp\left[\frac{2\gamma\Phi}{M_{\rm P}}\right] \equiv \frac{\kappa_c}{\kappa} \frac{(1+6\,y\,\xi_h)h^2 + (1+6\,y\,\xi_\chi)\chi^2}{M_{\rm P}^2} \quad \gamma^{-2}\Theta \equiv \frac{(1+6\,y\,\xi_h)h^2 + (1+6\,y\,\xi_\chi)\chi^2}{\xi_h h^2 + \xi_\chi \chi^2}$$
$$\kappa_c \equiv -\frac{\xi_h}{1+6y\xi_h} \qquad \kappa \equiv \kappa_c \left(1-\frac{\xi_\chi}{\xi_h}\right) \qquad \gamma \equiv \sqrt{\frac{\xi_\chi}{1+6y\xi_\chi}}$$

The pole structure

 $\bullet \qquad \Theta > 0 \qquad \qquad \kappa \Theta + c < 0$

A geometrical interpretation

 κ is the Gaussian curvature (in units of M_P) of the manifold spanned by $\varphi_1 = \Theta$ and $\varphi_2 = \Phi$

$$\frac{\mathcal{L}}{\sqrt{g}} = \frac{M_P^2}{2} R - \frac{1}{2} \gamma_{ab}(\varphi_1) g^{\mu\nu} \partial_\mu \varphi^a \partial_\nu \varphi^b - V(\varphi_1)$$

For large field values, the field space of the Higgs-Dilaton model is MAXIMALLY SYMMETRIC

$$\kappa \equiv \kappa_c \left(1 - \frac{\xi_{\chi}}{\xi_h} \right)$$

Inflationary observables

No free parameters left

Onset of hot big bang

No extra relativistic degrees of freedom

A bunch of nice properties

- 1. 2-field but single field dynamics
- 2. Maximally symmetric E-frame kin. sector
- 3. No isocurvature perturbations
- 4. Excellent agreement with observations
- 5. No fifth-force effects
- 6. Massless field without massless d.o.f.

Late-time acceleration ?

SI and Unimodular gravity

General Relativity

CC at the level of the action

$$S = \int d^4x \left(\mathcal{L} \left(g_{\mu\nu}, \partial g_{\mu\nu}, \Phi, \partial \Phi \right) + \mathbf{\Lambda_0} \right)$$

Unrestricted metric determinant

|g|

Unimodular Gravity

$$S = \int d^4 x \mathcal{L} \left(g_{\mu\nu}, \partial g_{\mu\nu}, \Phi, \partial \Phi \right)$$

Restricted metric determinant

$$|g| = 1$$
 $\partial_{\mu}\lambda(x) = 0$

The Cosmological Constant reappears ...

... with a very different interpretation: the strength of a potential

$$U_{\Lambda}(\Phi) = \frac{\Lambda_0}{c^2} e^{-\frac{4\gamma\Phi}{M_P}}$$

Back to the 80's! C. Wetterich 1988

All the new parameters determined by inflation

Consistency relations

with

$$F(\Omega_{\rm DE}) = \left[\frac{1}{\sqrt{\Omega_{\rm DE}}} - \Delta \tanh^{-1} \sqrt{\Omega_{\rm DE}}\right]^2 \qquad \Delta \equiv \frac{1 - \Omega_{\rm DE}}{\Omega_{\rm DE}}$$

Present data constraints

S. Casas, M. Pauly, JR, Phys.Rev. D97 (2018) 043520

Consistency relations

$$n_s = 1 - \frac{2}{N_*} X \coth X \qquad r = \frac{2}{|\kappa_c| N_*^2} X^2 \sinh^{-2} X \qquad X \equiv 4cN_* = \frac{3N_*(1+w)}{4F(\Omega_{\rm DE})}$$

Future surveys

* Dark Energy Spectroscopic Instrument (DESI) ground-based experiment (Arizona) 30 million spectroscopic redshifts 2018

*Euclid satellite 100 million spectroscopic redshifts 2019 --> 2020 --> 2021--> ?

* Square Kilometer Array (SKA1 and SKA2) array of radio telescopes (S. Africa & Australia) 1000 million spectroscopic redshifts 2030

Fisher forecast

Models centered on the fiducial values obtained from its own MCMC run Rotated ellipses indicate changes in correlations

S. Casas, M. Pauly, JR, Phys.Rev. D97 (2018) 043520

Correlation matrices

This breaks degeneracies in param.space/ helps to constrain other

S. Casas, M. Pauly, JR, Phys.Rev. D97 (2018) 043520

Dilaton as part of the metric

TDiff: minimal gauge group including spin-2 polarizations

$$x^{\mu} \mapsto \tilde{x}^{\mu}(x), \text{ with } J \equiv \left| \frac{\partial \tilde{x}^{\mu}}{\partial x^{\nu}} \right| = 1 \quad with \quad \begin{cases} \delta x^{\mu} = \xi^{\mu} \\ \partial_{\mu} \xi^{\mu} = 0 \end{cases}$$

TDiff action contains arbitrary functions of g

$$\frac{\mathcal{L}_{\text{TDiff}}}{\sqrt{g}} = \frac{\rho^2 f(g)}{2} R - \frac{1}{2} \rho^2 G_{gg}(g) (\partial g)^2 - \frac{1}{2} G_{\rho\rho}(g) (\partial \rho)^2 - G_{\rho g}(g) \rho \,\partial g \cdot \partial \rho - \rho^4 v(g)$$

invariant under $g_{\mu\nu}(x) \to g_{\mu\nu}(\lambda x) \qquad \rho(x) \mapsto \lambda \rho(\lambda x)$

TDiff as Diff

TDiff action describes 3 propagating degrees of freedom A equivalent Diff version can be obtained using the Stückelberg trick

J-frame

$$a = J^{-2} \qquad \qquad \theta = g/a$$

$$\begin{split} \frac{\mathcal{L}_{\text{Diff}}}{\sqrt{g}} &= \frac{\rho^2 f(\theta)}{2} R - \frac{1}{2} \rho^2 G_{gg}(\theta) (\partial \theta)^2 - \frac{1}{2} G_{\rho\rho}(\theta) (\partial \rho)^2 - G_{\rho g}(\theta) \rho \, \partial \theta \cdot \partial \rho - \rho^4 v(\theta) \\ \text{invariant under} \quad g_{\mu\nu}(x) \to g_{\mu\nu}(\lambda x) \qquad \rho(x) \mapsto \lambda \rho(\lambda x) \qquad \theta(x) \mapsto \theta(\lambda x) \\ & \text{Goldstone} \end{split}$$

$$\frac{\mathcal{L}}{\sqrt{g}} = \frac{M_P^2}{2}R - \frac{M_P^2}{2} \left[K_{\theta\theta}(\theta)(\partial\theta)^2 + 2K_{\theta\rho}(\theta)(\partial\theta)(\partial\log\rho/M_P) + K_{\rho\rho}(Z)(\partial\log\rho/M_P)^2 \right] - V(\theta)$$

Which sets of theory defining functions give rise to the same inflationary observables?

 n_s

Canonical field stretching

$$\frac{\mathcal{L}}{\sqrt{g}} = \frac{M_P^2}{2}R - \frac{M_P^2}{2}\left[-\frac{(\partial K_{\rho\rho})^2}{4K_{\rho\rho}(\kappa_0 K_{\rho\rho} + c)} + K_{\rho\rho}(\partial\rho)^2\right] - V(K_{\rho\rho})$$

Canonically normalized field

$$\phi = \int \frac{dK_{\rho\rho}}{\sqrt{4 \ K_{\rho\rho}(|\kappa_0|K_{\rho\rho} - c)}}$$

The pole structure

$$\frac{\mathcal{L}}{\sqrt{g}} = \frac{M_P^2}{2}R - \frac{M_P^2}{2} \left[-\frac{(\partial K_{\rho\rho})^2}{4K_{\rho\rho}(\kappa_0 K_{\rho\rho} + c)} + K_{\rho\rho}(\partial\rho)^2 \right] - V(K_{\rho\rho})$$

$$\begin{aligned} |c| \to 0 \\ K_{\rho\rho} \to |c/\kappa_0| \to 0 \end{aligned} \qquad \begin{array}{l} \text{Quadratic pole Asymptotic flatness} \\ K_{\rho\rho} = e^{-2\sqrt{|\kappa_0|}\frac{\phi}{M_P}} \end{aligned}$$
$$\begin{aligned} |c| \neq 0 \\ K_{\rho\rho} = 0 \text{ unreachable} \end{aligned} \qquad \begin{array}{l} \text{Linear pole Restricted flatness} \\ K_{\rho\rho} = \frac{c}{-\kappa_0}\cosh^2\left(\frac{\sqrt{-\kappa_0}\phi}{M_P}\right) \\ \frac{M_P}{\sqrt{-\kappa_0}} \text{ non-compact analog of axion decay constant} \end{aligned}$$

Inflationary observables

$$\frac{\mathcal{L}}{\sqrt{g}} = \frac{M_P^2}{2}R - \frac{M_P^2}{2} \left[-\frac{(\partial K_{\rho\rho})^2}{4K_{\rho\rho}(\kappa_0 K_{\rho\rho} + c)} + K_{\rho\rho}(\partial\rho)^2 \right] - V(K_{\rho\rho})$$

$$\begin{aligned} |c| &\to 0 \\ K_{\rho\rho} \to |c/\kappa_0| \to 0 \end{aligned} \qquad \begin{array}{l} \text{Quadratic pole} \\ n_s &\simeq 1 - \frac{2}{N} \qquad r \simeq \frac{2}{|\kappa_0|N^2} \\ \\ |c| &\neq 0 \\ K_{\rho\rho} &= 0 \text{ unreachable} \end{aligned} \qquad \begin{array}{l} \text{Linear pole } \mathcal{O}\left(c^2/\kappa_0\right) \\ n_s &\approx 1 - 4|c| \qquad r \approx 32|c|^2 \ e^{-4|c|N|} \end{aligned}$$

We deal with an EFT

Cutoffs are parametrically larger than all the energy scales involved in the history of the Universe

Beyond EFT?

- 1. Self-healing mechanism? Borel summation?
- 2. Introducing new degrees of freedom?
 - additional scalar fields?
 - higher order curvature corrections?
- 3. Asymptotic safety?

Conclusions

Higgs-Dilaton Cosmology: A SI + UG EFT extension of the SM

- Inflation with a graceful exit
- Dark energy without CC
- Appealing:
 - No fifth forces
 - No non-gaussianities
 - No isocurvature perturbations.
 - No extra relativistic degrees of freedom at BBN.
 - Non-trivial relations between inflationary and DE observables

Massless dilaton: unique source for masses / scales.

Natural embedding in a TDiff framework: dilaton as a metric d.o.f

