Numerically calculating observables from inflation and reheating: PyTransport and beyond

David Mulryne
Queen Mary University of London

Numerically calculating observables from inflation and reheating: PyTransport and beyond

David Mulryne
Queen Mary University of London

Collaborators

Transport collaborators:
D Seery, M Dias, J Frazer, J Ronayne arXiv:1609.00379; arXiv:1708.07130 + ongoing

Visit TransportMethod.com for more information

Non-perturbative reheating collaborations:
S Imrith, A Rajantie arxiv:1801.02600; arXiv:1903.07487

Motivation

- Many many models of inflation
- New effects in (higher order) correlation functions could potentially allow us to detect new fields
- Models can be complicated, for example with curved field space metric
- In many systems the large N limit has interesting properties. To probe this limit for inflation, however, numerics are essential
- Without numerics, theory error even for simple models can be greater than observational uncertainty
- At very least we should be able to take any model of inflation and confront with (improving) observations

PyTransport

- PyTransport and sibling code CppTransport (developed by David Seery) solves transport equations for inflationary perturbations to produce full power spectrum and bispectrum
- Deals with models with arbitrary numbers of scalar fields, a curved field space metric, perturbative reheating (unreleased)
- Includes all tree-level effects on sub and super-horizon scales
- Publicly available and automated in sense user need only provide potential (and field space metric) - users welcome!

PyTransport

- PyTransport and sibling code CppTransport (developed by David Seery) solves transport equations for inflationary perturbations to produce full power spectrum and bispectrum
- Deals with models with arbitrary numbers of scalar fields, a curved field space metric, perturbative reheating (unreleased)
- Includes all tree-level effects on sub and super-horizon scales
- Publicly available and automated in sense user need only provide potential (and field space metric) - users welcome!

PyTransport

- PyTransport and sibling code CppTransport (developed by David Seery) solves transport equations for inflationary perturbations to produce full power spectrum and bispectrum
- Deals with models with arbitrary numbers of scalar fields, a curved field space metric, perturbative reheating (unreleased)
- Includes all tree-level effects on sub and super-horizon scales
- Publicly available and automated in sense user need only provide potential (and field space metric) - users welcome!

Observational quantities

- Statistical quantities we want to evaluate

$$
\begin{gathered}
\left\langle\zeta\left(\mathbf{k}_{1}\right) \zeta\left(\mathbf{k}_{2}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) P(k) \\
\left\langle\zeta\left(\mathbf{k}_{1}\right) \zeta\left(\mathbf{k}_{2}\right) \zeta\left(\mathbf{k}_{3}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) B\left(k_{1}, k_{2}, k_{3}\right) \\
f_{\mathrm{NL}}=\frac{5}{6} \frac{B\left(k_{1}, k_{2}, k_{3}\right)}{P\left(k_{1}\right) P\left(k_{2}\right)+P\left(k_{1}\right) P\left(k_{3}\right)+P\left(k_{2}\right) P\left(k_{3}\right)}
\end{gathered}
$$

- Basic predictions

$$
P(k) \sim A k^{-3}
$$

$f_{\mathrm{NL}} \sim$ slow roll (for canonical single field)

Calculating statistics

$$
S=\frac{1}{2} \int d^{4} x \sqrt{-g}\left[M_{p}^{2} R+\mathcal{L}_{m}\right]
$$

Calculating statistics

$S=\frac{1}{2} \int d^{4} x \sqrt{-g}\left[M_{p}^{2} R+\mathcal{L}_{m}\right]$
$\mathrm{d} s^{2}=-(1+2 \Phi) \mathrm{d} t^{2}+a^{2}\left(\delta_{i j}+h_{i j}\right) \mathrm{d} x^{i} \mathrm{~d} x^{j}$

Calculating statistics

$$
\begin{array}{c|c|}
\mathrm{ds} s^{2}=-(1+2 \Phi) \mathrm{d} t^{2}+a^{2}\left(\delta_{i j}+h_{i j}\right) \mathrm{d} x^{i} \mathrm{~d} x^{j} & \begin{array}{c}
\mathcal{L}_{m}=-G_{I J} g^{\mu \nu} \partial_{\alpha} \phi^{I} \partial_{\nu} \phi^{J}-V \\
\phi^{I}+\delta \phi^{I}
\end{array} \\
\hline
\end{array}
$$

Calculating statistics

$$
\left.\mathrm{d} s^{2}=-(1+2 \Phi) \mathrm{d} t^{2}+a^{2}\left(\delta_{i j}+h_{i j}\right) \mathrm{d} x^{i} \mathrm{~d} x^{j}\right] \left\lvert\, \begin{gathered}
\mathcal{L}_{m}=-G_{I J} g^{\mu \nu} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J}-V \\
\phi^{I}+\delta \phi^{I}
\end{gathered}\right.
$$

action expanded order by order in fluctuations Q^{I} and gravitational waves (tensor) $h_{i j}$

Calculating statistics

$$
\begin{array}{ll}
S=S_{(2)}+S_{(3)} \\
\downarrow & \searrow \\
\mathcal{O}(2) \text { in } Q^{I} & \mathcal{O}(3) \text { in } Q^{I}
\end{array}
$$

Maldacena 2003; Seery and Lidsey 2006; Chen et al. 2007; Elliston et al. 2012; many others

Calculating statistics

$$
\begin{aligned}
& S=S_{(2)}+S_{(3)} \\
& \downarrow \\
& \mathcal{O}(2) \text { in } Q^{I} \\
& \mathcal{O}(3) \text { in } Q^{I}
\end{aligned}
$$

Maldacena 2003; Seery and Lidsey 2006; Chen et al. 2007; Elliston et al. 2012; many others

Lagranian or Hamiltonian equations of motion for Q^{I}

Calculating statistics

$$
\begin{array}{cl}
S=S_{(2)}+S_{(3)} \\
\downarrow & \\
\mathcal{O}(2) \text { in } Q^{I} & \mathcal{O}(3) \text { in } Q^{I}
\end{array}
$$

Maldacena 2003; Seery and Lidsey 2006; Chen et al. 2007; Elliston et al. 2012; many others

Lagranian or Hamiltonian equations of motion for Q^{I}

$$
\left\langle Q^{I}\left(k_{1}\right) Q^{J}\left(k_{2}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}\right) \Sigma^{I J}\left(k_{1}\right)
$$

$\left\langle Q^{I}\left(k_{1}\right) Q^{J}\left(k_{2}\right) Q^{K}\left(k_{3}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{\mathbf{3}}\right) B^{I J K}\left(k_{1}, k_{2}, k_{3}\right)$

Calculating statistics

$$
\begin{array}{ll}
S=S_{(2)}+S_{(3)} \\
\downarrow & \searrow \\
\mathcal{O}(2) \text { in } Q^{I} & \mathcal{O}(3) \text { in } Q^{I}
\end{array}
$$

Maldacena 2003; Seery and Lidsey 2006; Chen et al. 2007; Elliston et al. 2012; many others

Lagranian or Hamiltonian equations of motion for Q^{I}

$$
\left\langle Q^{I}\left(k_{1}\right) Q^{J}\left(k_{2}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}} \Sigma^{I J}\left(k_{1}\right)\right.
$$

$\left\langle Q^{I}\left(k_{1}\right) Q^{J}\left(k_{2}\right) Q^{K}\left(k_{3}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{\mathbf{3}}\right) B^{I J K}\left(k_{1}, k_{2}, k_{3}\right)$

Calculating statistics

$$
\begin{array}{ll}
S=S_{(2)}+S_{(3)} \\
\downarrow & \searrow \\
\mathcal{O}(2) \text { in } Q^{I} & \mathcal{O}(3) \text { in } Q^{I}
\end{array}
$$

Maldacena 2003; Seery and Lidsey 2006; Chen et al. 2007; Elliston et al. 2012; many others

Lagranian or Hamiltonian equations of motion for Q^{I}

$$
\left\langle Q^{I}\left(k_{1}\right) Q^{J}\left(k_{2}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}\right) \Sigma^{I J}\left(k_{1}\right)
$$

$\left\langle Q^{I}\left(k_{1}\right) Q^{J}\left(k_{2}\right) Q^{K}\left(k_{3}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{\mathbf{3}}\right) B^{I J K}\left(k_{1}, k_{2}, k_{3}\right)$

Calculating statistics

$$
\begin{array}{ll}
S=S_{(2)}+S_{(3)} \\
\downarrow & \searrow \\
\mathcal{O}(2) \text { in } Q^{I} & \mathcal{O}(3) \text { in } Q^{I}
\end{array}
$$

Maldacena 2003; Seery and Lidsey 2006; Chen et al. 2007; Elliston et al. 2012; many others

Lagranian or Hamiltonian equations of motion for Q^{I}

$$
\left\langle Q^{I}\left(k_{1}\right) Q^{J}\left(k_{2}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}} \Sigma^{I J}\left(k_{1}\right)\right.
$$

$$
\left\langle Q^{I}\left(k_{1}\right) Q^{J}\left(k_{2}\right) Q^{K}\left(k_{3}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{\mathbf{3}}\right) B^{I J K}\left(k_{1}, k_{2}, k_{3}\right)
$$

$$
Q^{I} \rightarrow \zeta
$$

Calculating the statistics - transport method

- Our approach (schematically)

$$
\frac{\mathrm{d} Q^{I}}{\mathrm{~d} t}=u_{J}^{I} Q^{J}+\frac{1}{2} u_{J K}^{I} Q^{J} Q^{k}
$$

Calculating the statistics - transport method

- Our approach (schematically)

$$
\begin{gathered}
\frac{\mathrm{d} Q^{I}}{\mathrm{~d} t}=u_{J}^{I} Q^{J}+\frac{1}{2} u_{J K}^{I} Q^{J} Q^{k} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \Sigma^{I J}=u_{K_{K}}^{I} \Sigma^{K J}+u_{K_{K}}^{J} \Sigma^{I K} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} B^{I J K}=u_{L}^{I} B^{L J K}+u_{L M}^{I} \Sigma^{J L} \Sigma^{K M}+\text { cyclic perms }
\end{gathered}
$$

Calculating the statistics - transport method

- Our approach (schematically)

$$
\begin{gathered}
\frac{\mathrm{d} Q^{I}}{\mathrm{~d} t}=u^{I}{ }_{J} Q^{J}+\frac{1}{2} u^{I}{ }_{J K} Q^{J} Q^{k} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \Sigma^{I J}=u_{K}^{I} \Sigma^{K J}+u^{J}{ }_{K} \Sigma^{I K} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} B^{I J K}=u_{L}^{I} B^{L J K}+u_{L M}^{I} \Sigma^{J L} \Sigma^{K M}+\text { cyclic perms }
\end{gathered}
$$

Background and k dependent quantities

Calculating the statistics - transport method

- Our approach (schematically)

$$
\begin{gathered}
\frac{\mathrm{d} Q^{I}}{\mathrm{~d} t}=u_{J}^{I} Q^{J}+\frac{1}{2} u_{J K}^{I} Q^{J} Q^{k} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \Sigma^{I J}=u_{K_{K}}^{I} \Sigma^{K J}+u_{K_{K}}^{J} \Sigma^{I K} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} B^{I J K}=u_{L}^{I} B^{L J K}+u_{L M}^{I} \Sigma^{J L} \Sigma^{K M}+\text { cyclic perms }
\end{gathered}
$$

Calculating the statistics - transport method

- Our approach (schematically)

$$
\frac{\mathrm{d} Q^{I}}{\mathrm{~d} t}=u_{J}^{I} Q^{J}+\frac{1}{2} u_{J K}^{I} Q^{J} Q^{k}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Sigma^{I J}=u_{K}^{I} \Sigma^{K J}+u_{K}^{J} \Sigma^{I K}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} B^{I J K}=u_{L}^{I} B^{L J K}+u_{L M}^{I} \Sigma^{J L} \Sigma^{K M}+\text { cyclic perms }
$$

Ideal for a numerical implementation - solve from Bunch Davis vacuum
evolution of Σ

evolution of B

Slice through reduced bispectrum with $k_{1}+k_{2}+k_{3}$ fixed

Slice through reduced bispectrum with $k_{1}+k_{2}+k_{3}$ fixed

Demonstration interlude

$$
V=\frac{1}{2} m_{\phi}^{2} \phi^{2}+\frac{1}{2} m_{\chi}^{2} \chi^{2}
$$

Models

- Model driven - string theory, supergravity, MSSM, Standard Model. At a minimum we should be able to test all models
- Either concrete models, or random potentials e.g. Dias, Frazer and Marsh (2017), Bjorkmo and Marsh (2017)
- Phenomenological - how do multi-field dynamics differ from single field dynamics? - the great hope is that we could detect new fields!
- New effects - extra light/heavy fields, curved field space metric -> curved trajectories, isocurvature modes -> Non-Gaussianity Byrnes et al. 2008; Hall and Choi Chen \& Wang 2009; Tolley and M. Wyman 2010; Achúcarro et al. 2011 PBH production e.g. Germani, Prokopec (2017,1018), Tomberg, Räsänen (2018), Byrnes, Cole, Patil (2018)
- Probabilistic for many fields a probabilistic interpretation may be needed for many fields e.g. Frazer 2014

Heavy field with turn (c.f. nongeodesic motion) geodesic motion)
Goa, Langlois and Mizuno (2014)

Heavy field with turn (c.f. nongeodesic motion)

Goa, Langlois and Mizuno (2014)

Heavy field with turn (c.f. nongeodesic motion)

Goa, Langlois and Mizuno (2014)

Heavy field with turn (c.f. nongeodesic motion)

Goa, Langlois and Mizuno (2014)

Achucarro, Hardeman, Palma, Patil (2010)

$$
\begin{gathered}
\Gamma\left(\phi_{1}\right)=\frac{\Gamma_{0}}{\cosh ^{2}\left(2\left(\frac{\phi_{1}-\phi_{1(0)}}{\Delta \phi_{1}}\right)\right)} \\
G_{I J}=\left(\begin{array}{ccc}
1 & \Gamma\left(\phi_{1}\right) & 0 \\
\Gamma\left(\phi_{1}\right) & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Heavy field with turn (c.f. nongeodesic motion)

Goa, Langlois and Mizuno (2014)

Achucarro, Hardeman, Palma, Patil (2010)

$$
\begin{gathered}
\Gamma\left(\phi_{1}\right)=\frac{\Gamma_{0}}{\cosh ^{2}\left(2\left(\frac{\phi_{1}-\phi_{1(0)}}{\Delta \phi_{1}}\right)\right)} \\
G_{I J}=\left(\begin{array}{ccc}
1 & \Gamma\left(\phi_{1}\right) & 0 \\
\Gamma\left(\phi_{1}\right) & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Non-Minimal coupling to gravity i.e. for multifield alpha attractors

Ronayne, Carrilho, Mulryne and Tenkanen (2018)

$$
\begin{gathered}
S_{J}=\int d^{4} x \sqrt{-g}\left(\frac{1}{2} \delta_{I J} g^{\mu \nu} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J}-\frac{M_{\mathrm{P}}^{2}}{2}\left(1+f\left(\phi^{I}\right)\right) g^{\mu \nu} R_{\mu \nu}(\Gamma)-V\left(\phi^{I}\right)\right) \\
f\left(\phi^{I}\right)=\sum_{I} \xi_{I}^{(n)}\left(\frac{\phi^{I}}{M_{\mathrm{P}}}\right)^{n}
\end{gathered}
$$

Non-Minimal coupling to gravity i.e. for multifield alpha attractors

Ronayne, Carrilho, Mulryne and Tenkanen (2018)

$$
\begin{gathered}
S_{J}=\int d^{4} x \sqrt{-g}\left(\frac{1}{2} \delta_{I J} g^{\mu \nu} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J}-\frac{M_{\mathrm{P}}^{2}}{2}\left(1+f\left(\phi^{I}\right)\right) g^{\mu \nu} R_{\mu \nu}(\Gamma)-V\left(\phi^{I}\right)\right) \\
f\left(\phi^{I}\right)=\sum_{I} \xi_{I}^{(n)}\left(\frac{\phi^{I}}{M_{\mathrm{P}}}\right)^{n} \\
g_{\mu \nu} \rightarrow \Omega^{-1}\left(\phi^{I}\right) g_{\mu \nu}, \quad \Omega\left(\phi^{I}\right) \equiv 1+f\left(\phi^{I}\right)
\end{gathered}
$$

Non-Minimal coupling to gravity i.e. for multifield alpha attractors

Ronayne, Carrilho, Mulryne and Tenkanen (2018)

$$
\begin{gathered}
S_{J}=\int d^{4} x \sqrt{-g}\left(\frac{1}{2} \delta_{I J} g^{\mu \nu} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J}-\frac{M_{\mathrm{P}}^{2}}{2}\left(1+f\left(\phi^{I}\right)\right) g^{\mu \nu} R_{\mu \nu}(\Gamma)-V\left(\phi^{I}\right)\right) \\
f\left(\phi^{I}\right)=\sum_{I} \xi_{I}^{(n)}\left(\frac{\phi^{I}}{M_{\mathrm{P}}}\right)^{n} \\
g_{\mu \nu} \rightarrow \Omega^{-1}\left(\phi^{I}\right) g_{\mu \nu}, \quad \Omega\left(\phi^{I}\right) \equiv 1+f\left(\phi^{I}\right) \\
S_{\mathrm{E}}=\int d^{4} x \sqrt{-g}\left(\frac{1}{2} G_{I J}\left(\phi^{I}\right) \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J}-\frac{1}{2} M_{\mathrm{P}}^{2} R-V\left(\phi^{I}\right) \Omega^{-2}\left(\phi^{I}\right)\right) \\
G_{I J}=\Omega^{-1} \delta_{I J}+\frac{3}{2} v M_{\mathrm{P}}^{2} \Omega^{-2} \frac{\partial \Omega}{\partial \phi^{I}} \frac{\partial \Omega}{\partial \phi^{J}} \\
0 \text { for metric, } 1 \text { for Palatini }
\end{gathered}
$$

Non-Minimal coupling to gravity i.e. for multifield alpha attractors

Ronayne, Carrilho, Mulryne and Tenkanen (2018)

Primordial black holes

e.g. Germani, Prokopec (2017,1018), Tomberg Räsänen (2018) , Byrnes, Cole, Patil (2018)

Reduced bispectrum in equilateral configuration

Reheating

PyTransport with perturbative reheating (in progress)

- Often isocurvaure modes left at end of inflation and so zeta evolves
- Phenomenological way forward is to introduce decay to other radiation and other fluids, gives (with associated perturbed equations to second order)

$$
\begin{gathered}
D_{t} \dot{\phi}^{I}+3 H \dot{\phi}^{I}-\Gamma_{a}^{I J} \dot{\phi}_{J}+G^{I J} V_{, J}=0 \\
\dot{\rho}_{a}+3 H \gamma_{a} \rho_{a}+\Gamma_{a}^{I J} \dot{\phi}_{I} \dot{\phi}_{J}=0
\end{gathered}
$$

PyTransport with perturbative reheating (in progress)

- e.g. N -axion (c.f. Kim, Liddle, Seery (2009), uncoupled case leads to observable non-Gaussianity)

$$
\mathcal{L}=\frac{1}{2} G_{I J} \partial \phi^{I} \partial \phi^{J}+\sum_{K} \Lambda_{K}^{4}\left(1-\cos \left(\phi^{K}\right)\right)
$$

PyTransport with perturbative reheating (in progress)

- e.g. N -axion (c.f. Kim, Liddle, Seery (2009), uncoupled case leads to observable non-Gaussianity)

$$
\mathcal{L}=\frac{1}{2} G_{I J} \partial \phi^{I} \partial \phi^{J}+\sum_{K} \Lambda_{K}^{4}\left(1-\cos \left(\phi^{K}\right)\right)
$$

PyTransport with perturbative reheating (in progress)

- e.g. N-axion (c.f. Kim, Liddle, Seery (2009), uncoupled case leads to observable non-Gaussianity)

$$
\mathcal{L}=\frac{1}{2} G_{I J} \partial \phi^{I} \partial \phi^{J}+\sum_{K} \Lambda_{K}^{4}\left(1-\cos \left(\phi^{K}\right)\right)
$$

PyTransport with perturbative reheating (in progress)

- e.g. N-axion (c.f. Kim, Liddle, Seery (2009), uncoupled case leads to observable non-Gaussianity)

$$
\mathcal{L}=\frac{1}{2} G_{I J} \partial \phi^{I} \partial \phi^{J}+\sum_{K} \Lambda_{K}^{4}\left(1-\cos \left(\phi^{K}\right)\right)
$$

PyTransport with perturbative reheating (in progress)

- e.g. N-axion (c.f. Kim, Liddle, Seery (2009), uncoupled case leads to observable non-Gaussianity)

$$
\mathcal{L}=\frac{1}{2} G_{I J} \partial \phi^{I} \partial \phi^{J}+\sum_{K} \Lambda_{K}^{4}\left(1-\cos \left(\phi^{K}\right)\right)
$$

PyTransport with perturbative reheating (in progress)

- e.g. N-axion (c.f. Kim, Liddle, Seery (2009), uncoupled case leads to observable non-Gaussianity)

$$
\mathcal{L}=\frac{1}{2} G_{I J} \partial \phi^{I} \partial \phi^{J}+\sum_{K} \Lambda_{K}^{4}\left(1-\cos \left(\phi^{K}\right)\right)
$$

- More generally, Gaussian random landscape around a minimum (c.f. Bjorkmo and Marsh (2017)

Perturbations through nonperturbative reheating

- What happens if isocurvature present and reheating is nonperturbative (i.e. some form of preheating)
- Dynamics must be tracked using lattice simulations
- Perturbations can be tracked using $\delta \mathrm{N}$
- However usual expansion can't be used
- Archetypal example is massless preheating

$$
V=\frac{1}{4} \lambda \phi^{4}+\frac{1}{2} g^{2} \phi^{2} \chi^{2}
$$

Wands et al., 2000

Wands et al., 2000

$$
\begin{aligned}
& \zeta(\mathbf{x})=\delta N(\mathbf{x})=N(\vec{\chi}(\mathbf{x}))-\bar{N} \\
& \delta N(\mathbf{x})=N_{, I} \delta \chi^{I}(\mathbf{x})+\frac{1}{2} N_{, I J}\left(\delta \chi^{I}(\mathbf{x}) \delta \chi^{J}(\mathbf{x})-\overline{\delta \chi^{I} \delta \chi^{J}}\right)
\end{aligned}
$$

Wands et al., 2000

- But....

$$
V=\frac{1}{4} \lambda \phi^{4}+\frac{1}{2} g^{2} \phi^{2} \chi^{2}
$$

- But....

$$
V=\frac{1}{4} \lambda \phi^{4}+\frac{1}{2} g^{2} \phi^{2} \chi^{2}
$$

- But....

$$
V=\frac{1}{4} \lambda \phi^{4}+\frac{1}{2} g^{2} \phi^{2} \chi^{2}
$$

- A lot of work on this e.g. Chambers, Rajantie (2008), Bond, Frolov, Huang, Kofman (2009); Chambers, Nurmi, Rajantie (2010); Suyama and Yokoyama (2013); Bethke, Figueroa, Rajantie (2013)
- If one wants to know correlates, use full expression:

$$
\begin{aligned}
\left\langle\zeta_{1} \ldots \zeta_{m}\right\rangle= & \left\langle\left(N_{1}-\bar{N}\right) \ldots\left(N_{m}-\bar{N}\right)\right\rangle \\
= & \int \mathrm{d} \vec{\chi}_{1} \ldots \int \mathrm{~d} \vec{\chi}_{m}\left(N_{1}-\bar{N}\right) \ldots\left(N_{m}-\bar{N}\right) \\
& \quad \times \mathcal{P}\left(\vec{\chi}_{1}, \ldots, \vec{\chi}_{m}\right)
\end{aligned}
$$

- If one wants to know correlates, use full expression:

$$
\begin{aligned}
\left\langle\zeta_{1} \ldots \zeta_{m}\right\rangle= & \left\langle\left(N_{1}-\bar{N}\right) \ldots\left(N_{m}-\bar{N}\right)\right\rangle \\
= & \int \mathrm{d} \vec{\chi}_{1} \ldots \int \mathrm{~d} \vec{\chi}_{m}\left(N_{1}-\bar{N}\right) \ldots\left(N_{m}-\bar{N}\right) \\
& \quad \times \mathcal{P}\left(\vec{\chi}_{1}, \ldots, \vec{\chi}_{m}\right)
\end{aligned}
$$

- But often don't know distribution, just the moments (from PyTransport for example)
- Try a different expansions see Suyama and S. Yokoyama (2013); Bethke, Figueroa, Rajantie (2013)
- Assume field space perturbations are close to Gaussian, and

$$
\left\langle\delta \phi^{I}\left(\mathbf{x}_{1}\right) \delta \phi^{J}\left(\mathbf{x}_{2}\right)\right\rangle<\left\langle\delta \phi^{I}(\mathbf{x}) \delta \phi^{J}(\mathbf{x})\right\rangle
$$

- Leads to:

$$
\begin{aligned}
& P_{\zeta}(k) \approx \tilde{N}_{I} \tilde{N}_{J} \Sigma^{I J}(k) \\
& B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right) \approx \tilde{N}_{I} \tilde{N}_{J} \tilde{N}_{K} \alpha^{I J K}\left(k_{1}, k_{2}, k_{3}\right) \\
&+\left(\tilde{N}_{I} \tilde{N}_{J} \tilde{N}_{K L} \Sigma^{I K}\left(k_{1}\right) \Sigma^{J L}\left(k_{2}\right)\right. \\
&\quad+\text { cyclic }) .
\end{aligned}
$$

- With:

$$
\begin{gathered}
\tilde{N}_{I}=\Sigma_{I J}^{-1} \int \mathrm{~d} \vec{\chi}_{1} \mathcal{P}_{\mathrm{G}}\left(\vec{\chi}_{1}\right) N_{1} \delta \chi_{1}^{J} \\
\tilde{N}_{I J}=\Sigma_{I K}^{-1} \Sigma_{J L}^{-1} \int \mathrm{~d} \vec{\chi}_{1} \mathcal{P}_{\mathrm{G}}\left(\vec{\chi}_{1}\right)\left(N_{1}-\bar{N}\right) \delta \chi_{1}^{K} \delta \chi_{1}^{L}
\end{gathered}
$$

- Allows....

- Allows....

Calculating the statistics - usual method

- Usual method salopek and bond (1985):

$$
Q^{I}(k)=\Psi_{L}^{I}(t, k) a^{L}(k)+\Psi_{L}^{* I}(t, k) a^{\dagger}(-k)
$$

Calculating the statistics - usual method

- Usual method salopek and bond (1985):

$$
Q^{I}(k)=\Psi_{L}^{I}(t, k) a^{L}(k)+\Psi_{L}^{* I}(t, k) a^{\dagger^{L}}(-k)
$$

Calculating the statistics - usual method

- Usual method salopek and bond (1985):

$$
Q^{I}(k)=\Psi_{L}^{I}(t, k) a^{L}(k)+\Psi_{L}^{* I}(t, k) a^{\dagger^{L}}(-k)
$$

Calculating the statistics - usual method

- Usual method salopek and bond (1985):

$$
\begin{aligned}
& Q^{I}(k)=\Psi^{I}{ }_{L}(t, k) a^{L}(k)+\Psi^{* I}{ }_{L}(t, k) a^{\dagger}(-k)
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma^{I J}=\Psi^{I L} \Psi^{* J} \\
& \left\langle Q^{I} Q^{J} Q^{L}\right\rangle=-i \int_{-\infty}^{t} \mathrm{~d} t^{\prime}\left\langle\left[Q^{I} Q^{J} Q^{L}, H_{\mathrm{int}}\left(t^{\prime}\right)\right]\right\rangle
\end{aligned}
$$

