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• Many many models of inflation 

• New effects in (higher order) correlation functions could 
potentially allow us to detect new fields 

• Models can be complicated, for example with curved field 
space metric 

• In many systems the large N limit has interesting properties. To 
probe this limit for inflation, however, numerics are essential  

• Without numerics, theory error even for simple models can be 
greater than observational uncertainty 

• At very least we should be able to take any model of inflation 
and confront with (improving) observations

Motivation



• PyTransport and sibling code CppTransport (developed by David 
Seery) solves transport equations for inflationary perturbations to 
produce full power spectrum and bispectrum 

• Deals with models with arbitrary numbers of scalar fields, a curved 
field space metric, perturbative reheating (unreleased) 

• Includes all tree-level effects on sub and super-horizon scales  

• Publicly available and automated in sense user need only provide 
potential (and field space metric) — users welcome!
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 Observational quantities

• Statistical quantities we want to evaluate 

• Basic predictions

fNL =
5

6

B(k1, k2, k3)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)

P (k) ⇠ Ak�3

fNL ⇠ slow roll (for canonical single field)



• Two questions:  

1.What changes when we move from one to many fields? 

2.How can we tell?
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• Two questions:  

1.What changes when we move from one to many fields? 

2.How can we tell?

action expanded order by order in fluctuations  
and gravitational waves (tensor)

ds2 = �(1 + 2�)dt2 + a2(�ij + hij)dx
idxj
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 Calculating the statistics — transport 
method

Ideal for a numerical implementation — solve from Bunch 
Davis vacuum

• Our approach (schematically)  
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evolution of ↵

evolution of ⌃
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Slice through reduced bispectrum with                      fixedk1 + k2 + k3



Slice through reduced bispectrum with                      fixedk1 + k2 + k3



 Demonstration interlude
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Models

• Model driven - string theory, supergravity, MSSM, Standard Model. 
At a minimum we should be able to test all models 

• Either concrete models, or random potentials e.g. Dias, Frazer and Marsh (2017), 

Bjorkmo and Marsh (2017)  

• Phenomenological  - how do multi-field dynamics differ from single 
field dynamics? - the great hope is that we could detect new fields! 

• New effects - extra light/heavy fields, curved field space metric -> 
curved trajectories, isocurvature modes -> Non-Gaussianity Byrnes et al. 

2008; Hall and Choi Chen & Wang 2009; Tolley and M. Wyman 2010; Achúcarro et al. 2011   PBH 
production  e.g. Germani, Prokopec (2017,1018), Tomberg, Räsänen (2018) , Byrnes, Cole, Patil (2018) 

• Probabilistic for many fields a probabilistic interpretation may be 
needed for many fields e.g. Frazer 2014 
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Non-Minimal coupling to gravity i.e. for 
multifield alpha attractors 
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Primordial black holes 
e.g. Germani, Prokopec (2017,1018), Tomberg Räsänen (2018) , Byrnes, Cole, Patil (2018) 
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Reheating



• Often isocurvaure modes left at end of inflation and so zeta evolves 

• Phenomenological way forward is to introduce decay to other 
radiation and other fluids, gives (with associated perturbed 
equations to second order) 

Dt�̇
I + 3H�̇

I � �IJ
a �̇J +G

IJ
V,J = 0

PyTransport  with perturbative 
reheating (in progress)

⇢̇a + 3H�a⇢a + �IJ
a �̇I �̇J = 0



PyTransport  with perturbative 
reheating (in progress)

• e.g. N-axion (c.f. Kim, Liddle, Seery (2009), uncoupled case leads to observable non-Gaussianity )  
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• More generally, Gaussian random landscape around a minimum (c.f. 
Bjorkmo and Marsh (2017)



Perturbations through non-
perturbative reheating

• What happens if isocurvature present and reheating is non-
perturbative (i.e. some form of preheating) 

• Dynamics must be tracked using lattice simulations 

• Perturbations can be tracked using δN  

• However usual expansion can’t be used 

• Archetypal example is massless preheating 
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• But…. 



• But…. 



• But…. 

• A lot of work on this e.g. Chambers, Rajantie (2008), Bond, Frolov, Huang, Kofman (2009); 
Chambers, Nurmi,  Rajantie (2010); Suyama and Yokoyama (2013); Bethke, Figueroa, Rajantie (2013) 



• If one wants to know correlates, use full expression: 



• If one wants to know correlates, use full expression: 

• But often don’t know distribution, just the moments (from PyTransport 
for example) 

• Try a different expansions see Suyama and S. Yokoyama (2013); Bethke, Figueroa, Rajantie 
(2013) 

• Assume field space perturbations are close to Gaussian, and  

h��I(x1)��
J(x2)i < h��I(x)��J(x)i



• Leads to: 

• With: 



• Allows…. 



• Allows…. 
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• Usual method Salopek and bond (1985):  

Maldacena (2003)

 Calculating the statistics — usual 
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