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Motivation

Many many models of inflation

New effects in (higher order) correlation functions could
potentially allow us to detect new fields

Models can be complicated, for example with curved field
space metric

In many systems the large N limit has interesting properties. To
porobe this limit for inflation, however, numerics are essential

Without numerics, theory error even for simple models can be
greater than observational uncertainty

At very least we should be able to take any model of inflation
and confront with (improving) observations



Py ransport

Py Transport and sibling code CppTransport (developed by David
Seery) solves transport equations for inflationary perturbations to
produce full power spectrum and bispectrum

Deals with models with arbitrary numbers of scalar fields, a curved
field space metric, perturbative reheating (unreleased)

Includes all tree-level effects on sub and super-horizon scales

Publicly available and automated in sense user need only provide
potential (and field space metric) — users welcome!
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Observational quantities

e Statistical quantities we want to evaluate

(C(k1)¢ (ko)) = (2m)°6 (k1 + ko) P(k)
(C(k1)¢(k2)¢(k3)) = (2m)°8 (k1 + ko + k3)B(k1, k2, k3)

B(k1, ko, k3)
P(k1)P(kz2) + P(k1)P(ks) + P(k2)P(k3)

O
fi =2

e Basic predictions

P(k) ~ Ak™3

fnL ~ slow roll (for canonical single field)
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action expanded order by order in fluctuations Q!

and gravitational waves (tensor) h; ;
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Calculating statistics

S = 5(2) + S(g)

l N\

O2)in Q' O(3)in Q’

Maldacena 2003; Seery and Lidsey 2006; Chen et al. 2007; Elliston et al. 201

¥

2; many others

Lagranian or Hamiltonian equations of motion for QI

¥

(Q" (k1)Q" (k2)) = (2m) 3 (k1 + k2)

IEIJ(kl )

Q" (k1)Q7 (k2)Q" (k3)) = (2m)*8(ky + ko + k3)B' ' (k1 ko, k3)

Q' —¢
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Background and k dependent quantities
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Calculating the statistics — transport
methoo

* Our approach (schematically)

dQ?! 1
W _ UIJQJ 1+ §uIJKQJQk:
d 17 I wWKJ J vIK
d
&B”K =o', BYE ot SIESEM 4 eyelic perms

deal for a numerical implementation — solve from Bunch
Davis vacuum
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Slice through reduced bispectrum with k1 + ko + k3 fixed
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Slice through reduced bispectrum with k1 + ko + k3 fixed
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Models

Model driven - string theory, supergravity, MSGSM, Standard Model.
At a minimum we should be able to test all models

* Either concrete models, or random potentials e.g. bias, Frazer and Marsh (2017),
Bjorkmo and Marsh (2017)

Phenomenological - how do multi-field dynamics differ from single
field dynamics? - the great hope is that we could detect new fields!

New effects - extra light/heavy fields, curved field space metric ->

curved trajectories, isocurvature modes -> Non-Gaussianity Bymes et al.
2008: Hall and Choi Chen & Wang 2009: Tolley and M. Wyman 2010; Achtcarro et al. 2011 PBH
production e.g. Germani, Prokopec (2017,1018), Tomberg, Rasanen (2018) , Byrnes, Cole, Patil (2018)

Probabilistic for many fields a probabilistic interpretation may be
needed for many fields e.g. Frazer 2014
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Heavy field with turn (c.f. non-
geodesic motion)

Goa, Langlois and Mizuno (2014)
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Non-Minimal coupling to gravity I.e. for
multifield alpha attractors

Ronayne, Carrilho, Mulryne and Tenkanen (2018)
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Non-Minimal coupling to gravity I.e. for
multifield alpha attractors

Ronayne, Carrilho, Mulryne and Tenkanen (2018)
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log(P/ Ppivot)

Primordial black holes

e.g. Germani, Prokopec (2017,1018), Tomberg Raséanen (2018) , Byrnes, Cole, Patil (2018)
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PyTransport with perturbative
reheating (in progress)

e (Often isocurvaure modes left at end of inflation and so zeta evolves

* Phenomenological way tforward is to introduce decay to other
radiation and other fluids, gives (with associated perturbed
equations to second order)

Di¢' +3H¢' =T} ¢+ GV ;=0
lda + 3H/7a10a T F£J$I¢J =0
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* e.0. N-axion (c.f. Kim, Liddle, Seery (2009), uncoupled case leads to observable non-Gaussianity )
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PyTransport with perturbative
reheating (in progress)

* e.0. N-axion (c.f. Kim, Liddle, Seery (2009), uncoupled case leads to observable non-Gaussianity )
1 1 J 4 K
L= §GU(’9¢ 0¢° + ZAK (1 — COS (cb ))
K

\ 4

Background evolution

Fields

* More generally, Gaussian random landscape around a minimum (.
Bjorkmo and Marsh (2017)



Perturbations through non-
perturbative reheating

What happens it isocurvature present and reheating is non-
perturbative (i.e. some form of preheating)

Dynamics must be tracked using lattice simulations
Perturbations can be tracked using oN
However usual expansion can't be used

Archetypal example iIs massless preheating

1 1
V:—)\4 =22 2
1 ¢+29¢x
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e A lot of work on this e.g. Chambers, Rajantie (2008), Bond, Frolov, Huang, Kofman (2009);
Chambers, Nurmi, Rajantie (2010); Suyama and Yokoyama (2013); Bethke, Figueroa, Rajantie (2013)



* |f one wants to know correlates, use full expression:

(C1o-Cm)

<(N1 ) (Nm )>
= dxt .. dX'm (N1 — (N — N)

X P(X1y s Xm)



* |f one wants to know correlates, use full expression:

<C1<m> — <(N1_

* But often don’t know distribution, just the moments (from Py Transport
for example)

¢ Try a different expansions see Suyama and S. Yokoyama (2013); Bethke, Figueroa, Rajantie
(2013)

* Assume field space perturbations are close to Gaussian, and

(09" (x1)0¢" (x2)) < (69" (x)d¢" (%))
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2

+—cychc).
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N[:Z /dxlp ( )NlXm

Npy =555 / A1 P (1) (N1 — W)oK
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method

e Usual method Salopek and bond (1985).
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